

Precision Tests of the Standard Model with Cabibbo Unitarity and Nuclear β -Decays

Misha Gorshteyn

Universität Mainz

Collaborators: *Chien-Yeah Seng Michael Gennari Mehdi Drissi Petr Navratil Ben Ohayon Bijaya Sahoo John Behr N. Cargioli*

Neutron beta decay review: MG, Seng, Universe **2023**, 9(9), 422, arXiv:**2307.01145** Nuclear beta decay review: MG, Seng, Ann.Rev.Part.Nucl.Sci. 74 (2024) 23-47, arXiv:**2311.00044**

XV SILAFAE, November 4-8, 2024, CDMX Mexico

Outline

Beta decay, radiative corrections and the Standard Model

Cabibbo anomaly: have we found BSM?

Summary of experimental measurements

Radiative corrections to β -decays: overall setup

 γW -box: Dispersion Theory, lattice QCD and EFT

Nuclear corrections

Summary & Outlook

What to work on to win a Nobel prize?

What to work on to win a Nobel prize?

Beta decay has been an excellent choice for a century! 1896- Becquerel discovers spontaneous radioactivity of uranium, identified β with the electron 1898- Curie-Sklodowska, Curie discover polonium and radium

1899- Rutherford systematized α, β, γ rays, identified α with He-4

1934- F.&I. Joliot-Curie discovered β^+ decay with β^+ - positron

1956- Lee & Yang proposed parity non conservation in eta-decay, confirmed by Wu experiment

1961- Glashow proposed electroweak unification1967- Weinberg & Salam implemented Higgs mechanism1973- Neutral weak current discovered at CERN

1973- Kobayashi, Maskawa: 3-flavor quark mixing matrix

That was the bright side...

Niepce de Saint-Victor: observed radioactivity in 1857 cited in Becquerel-father's book

Cox, McIlwraith, Kurrelmeier (1928); Chase (1929-30) "Apparent evidence of polarization in a beam of beta rays"

1930: Pauli postulated existence of neutrinos1934: Fermi formulated the contact theory of beta decay

1938: Klein predicted $M_W \sim \sqrt{4\pi\alpha\sqrt{2}/G_F} \sim 100 \, GeV$

1957: Wu's experiment was crucial to prove Lee-Yang's conjecture, but Chien-Shiung Wu was not awarded the NP

1963- Cabibbo: proposed 2-flavor quark mixing to reconcile μ, β , K decay rates

V - A theory (Sudarshan&Marshak and Gell-Mann&Feynman 1957); S-PS not excluded

V - A theory (Sudarshan&Marshak and Gell-Mann&Feynman 1957); S-PS not excluded

Radiative corrections to muon decay: important evidence for V-A theory RC to muon decay - UV finite for V-A but divergent for S-PS

Muon lifetime $\tau_{\mu} = 2196980.3(2.2)ps$ —> Fermi constant $G_{\mu} = 1.1663788(7) \times 10^{-5} GeV^{-2}$

V - A theory (Sudarshan&Marshak and Gell-Mann&Feynman 1957); S-PS not excluded

Radiative corrections to muon decay: important evidence for V-A theory RC to muon decay - UV finite for V-A but divergent for S-PS

Muon lifetime $\tau_{\mu} = 2196980.3(2.2)ps$ —> Fermi constant $G_{\mu} = 1.1663788(7) \times 10^{-5} GeV^{-2}$

But: RC to neutron decay - UV divergent even in V-A theory! Kinoshita, Sirlin, Behrends, ...

1-loop RC to spectrum:

$$\Delta P^0 d^3 p = \frac{\alpha}{2\pi} P^0 d^3 p \left[6 \ln \frac{\Lambda}{M_p} + \text{finite} \right] \qquad \qquad \text{UV cut-off}$$

V - A theory (Sudarshan&Marshak and Gell-Mann&Feynman 1957); S-PS not excluded

Radiative corrections to muon decay: important evidence for V-A theory RC to muon decay - UV finite for V-A but divergent for S-PS

Muon lifetime $\tau_{\mu} = 2196980.3(2.2)ps$ —> Fermi constant $G_{\mu} = 1.1663788(7) \times 10^{-5} GeV^{-2}$

But: RC to neutron decay - UV divergent even in V-A theory! Kinoshita, Sirlin, Behrends, ...

1-loop RC to spectrum:

$$\Delta P^0 d^3 p = \frac{\alpha}{2\pi} P^0 d^3 p \left[6 \ln \frac{\Lambda}{M_p} + \text{finite} \right] \qquad \qquad \text{UV cut-off}$$

Is weak interaction universal for leptons and hadrons?

1967: Sirlin applied current algebra:
general UV behavior of β decay rate at 1-loop $\frac{\alpha}{2\pi}P^0d^3p \ 3[1+2\bar{Q}]\ln(\Lambda/M)$

$$\bar{Q}$$
: average charge of fields involved: $1 + 2\bar{Q}_{\mu,\nu_{\mu}} = 0$ but $1 + 2\bar{Q}_{n,p} = 2$

Finiteness of RC to muon decay was accidental!

V - A theory (Sudarshan&Marshak and Gell-Mann&Feynman 1957); S-PS not excluded

Radiative corrections to muon decay: important evidence for V-A theory RC to muon decay - UV finite for V-A but divergent for S-PS

Muon lifetime $\tau_{\mu} = 2196980.3(2.2)ps$ —> Fermi constant $G_{\mu} = 1.1663788(7) \times 10^{-5} GeV^{-2}$

But: RC to neutron decay - UV divergent even in V-A theory! Kinoshita, Sirlin, Behrends, ...

1-loop RC to spectrum:

$$\Delta P^0 d^3 p = \frac{\alpha}{2\pi} P^0 d^3 p \left[6 \ln \frac{\Lambda}{M_p} + \text{finite} \right] \qquad \qquad \text{UV cut-off}$$

Is weak interaction universal for leptons and hadrons?

1967: Sirlin applied current algebra: general UV behavior of β decay rate at 1-loop $\frac{\alpha}{2\pi}P^0d^3p \ 3[1+2\bar{Q}]\ln(\Lambda/M)$

 \bar{Q} : average charge of fields involved: $1 + 2\bar{Q}_{\mu,\nu_{\mu}} = 0$ but $1 + 2\bar{Q}_{n,p} = 2$

Finiteness of RC to muon decay was accidental!

Eventually, massive W-boson renders RC to beta decay UV-finite

In SM the same coupling of W-boson to leptons and quarks, $G_V = G_\mu$

Before RC were included: $G_V \sim 0.98 G_\mu$

In SM the same coupling of W-boson to leptons and quarks, $G_V = G_\mu$

Before RC were included: $G_V \sim 0.98 G_\mu$

Large $\log(M_Z/M_p)$ in RC for neutron —> $G_V \sim 0.95G_\mu$

Kaon and hyperon decays? ($\Delta S = 1$) — even smaller coupling!

In SM the same coupling of W-boson to leptons and quarks, $G_V = G_\mu$

Before RC were included: $G_V \sim 0.98 G_\mu$

Large $\log(M_Z/M_p)$ in RC for neutron —> $G_V \sim 0.95 G_\mu$

Kaon and hyperon decays? ($\Delta S = 1$) — even smaller coupling!

Cabibbo: strength shared between 2 generations

Cabibbo unitarity: $\cos^2 \theta_C + \sin^2 \theta_C = 1$

 $|G_V^{\Delta S=0}| = \cos \theta_C G_\mu$ $|G_V^{\Delta S=1}| = \sin \theta_C G_\mu$

In SM the same coupling of W-boson to leptons and quarks, $G_V = G_\mu$

Before RC were included: $G_V \sim 0.98 G_\mu$

Large $\log(M_Z/M_p)$ in RC for neutron —> $G_V \sim 0.95G_\mu$

Kaon and hyperon decays? ($\Delta S = 1$) — even smaller coupling!

Cabibbo: strength shared between 2 generations

Cabibbo unitarity: $\cos^2 \theta_C + \sin^2 \theta_C = 1$

$$|G_V^{\Delta S=0}| = \cos \theta_C G_\mu$$
$$|G_V^{\Delta S=1}| = \sin \theta_C G_\mu$$

Kobayashi & Maskawa: 3 flavors + CP violation — CKM matrix V

Detailed understanding of β decays largely shaped the Standard Model

Cabibbo Angle Anomaly: Status and BSM interpretation

Status of Cabibbo unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9985(6)_{V_{ud}}(4)_{V_{us}}$$

~ 0.95 ~ ~ 0.05 ~ ~ 10⁻⁵

 V_{ud} and V_{us} determinations inconsistent with the SM

Superallowed nuclear β : $|V_{ud}| = 0.9737(3)$

At variance with kaon decays + Cabibbo unitarity

$$K \to \pi \ell \nu : \quad |V_{us}| = 0.2233(5)$$

Unitarity
$$\rightarrow |V_{ud}| = \sqrt{1 - |V_{us}|^2} = 0.9747(1)$$

 $\frac{K \rightarrow \mu\nu}{\pi \rightarrow \mu\nu}$: $|V_{us}/V_{ud}| = 0.2311(5)$
Unitarity $\rightarrow |V_{ud}| = [1 + |V_{us}/V_{ud}|^2]^{-1/2} = 0.9743(1)$

But consistent with the free neutron decay:

 $|V_{ud}| = 0.9743\,(9)$

$$CAA \text{ summary - 3 anomalies!} \Delta_{CKM}^{(1)} = |V_{ud}|^2 + |V_{us}^{K_{\ell3}}|^2 - 1 \Delta_{CKM}^{(2)} = |V_{ud}|^2 \left[1 + \left(\left| \frac{V_{us}}{V_{ud}} \right|^{K_{\mu2}} \right)^2 \right] - 1 \quad 3 \text{ ways to test unitarity} \Delta_{CKM}^{(1)} = |V_{ud}|^2 + |V_{us}^{K_{\ell3}}|^2 - 1 \quad = -0.00176(56) \quad -3.1\sigma \Delta_{CKI..}^{(2)} \Delta V_{us}(K_{\ell3} - K_{\mu2}) = V_{us}^{K_{\ell3}} - V_{ud} \left(\frac{V_{us}}{V_{ud}} \right)^{K_{\mu2}} \quad = -0.00098(58) \quad -1.7\sigma \Delta_{CKI..}^{(3)} = |V_{us}^{K_{\ell3}}|^2 \left[\left(\frac{1}{|V_{us}/V_{ud}|^{K_{\mu2}}} \right)^2 + 1 \right] - 1 \quad = -0.0164(63) \quad -2.6\sigma \Delta V_{us}(\mathbf{h}_{\ell3} - \mathbf{h}_{\mu2}) = V_{us}^{K_{\ell3}} - V_{ud} \left(\overline{V_{ud}} \right)$$

Can it be a signal of BSM?

$$\Delta_{\text{CKM}}^{(3)} = |V_{us}^{K_{\ell 3}}|^2 \left[\left(\frac{1}{|V_{us}/V_{ud}|^{K_{\mu 2}}} \right)^2 + 1 \right] - 1$$

CAA in presence of RH currents

Cirigliano et al.

PLB 838 (2023)

- In SM, W couples only to LH chiral fermion states
- New physics with couplings to RH currents could explain both unitarity deficit and $K_{\ell 3}$ - $K_{\mu 2}$ difference
- Define ϵ_R = admixture of RH currents in non-strange sector $\epsilon_R + \Delta \epsilon_R$ = admixture of RH currents in strange sector

Review the " σ " that defines the significane of the Cabibbo angle anomaly!

V_{us} from world data

 V_{us} / V_{ud} from $K_{\mu 2} = K \rightarrow \mu \nu / \pi_{\mu 2} = \pi \rightarrow \mu \nu$

$$\frac{|V_{us}|}{|V_{ud}|}\frac{f_K}{f_{\pi}} = \left(\frac{\Gamma_{K_{\mu^2(\gamma)}}m_{\pi^{\pm}}}{\Gamma_{\pi_{\mu^2(\gamma)}}m_{K^{\pm}}}\right)^{1/2}\frac{1-m_{\mu}^2/m_{\pi^{\pm}}^2}{1-m_{\mu}^2/m_{K^{\pm}}^2}\left(1-\frac{1}{2}\delta_{\rm EM}-\frac{1}{2}\delta_{SU(2)}\right)$$

Inputs from experiment:

From K^{\pm} BR fit: [KLOE, CNTR] BR $(K^{\pm}_{\mu 2(\gamma)}) = 0.6358(11)$ $\tau_{K\pm} = 12.384(15)$ ns

From PDG:

BR($\pi^{\pm}_{\mu^{2}(\gamma)}$) = 0.9999 $\tau_{\pi^{\pm}}$ = 26.033(5) ns

Inputs from theory:

 $\delta_{\rm EM}$ Long-distance EM corrections

 $\begin{aligned} & \delta_{SU(2)} \text{ Strong isospin breaking} \\ & f_K / f_\pi \to f_{K\pm} / f_{\pi\pm} \end{aligned}$

 f_{K}/f_{π} Ratio of decay constants Cancellation of lattice-scale uncertainties from ratio

NB: Most lattice results already corrected for SU(2)-breaking: $f_{K\pm}/f_{\pi\pm}$

New development: QCD + QED on the Lattice

Giusti et al. PRL 120 (2018)

First lattice calculation of EM corrections to P_{l2} decays

- Ensembles from ETM
- $N_f = 2+1+1$ Twisted-mass Wilson fermions

 $\delta_{SU(2)} + \delta_{EM} = -0.0122(16)$

• Uncertainty from quenched QED included (0.0006)

Compare to ChPT result from Cirigliano, Neufeld '11: $\delta_{SU(2)} + \delta_{EM} = -0.0112(21)$

Di Carlo et al. PRD 100 (2019) Update, extended description, and systematics of Giusti et al. $\delta_{SU(2)} + \delta_{EM} = -0.0126(14)$

$|V_{us}/V_{ud}| \times f_K/f_{\pi} = 0.27679(28)_{BR}(20)_{corr}$

$f_{\rm K}/f_{\rm \pi}$ on the lattice and result for V_{us}/V_{ud}

Some lattice groups include strong isospin breaking, others work in isospin limit

ISB from χ PT

Isospin breaking

$$\frac{JK^{\pm}}{f_{\pi^{\pm}}} = \frac{JK}{f_{\pi}} \sqrt{1 + \delta_{SU(2)}}$$
$$\delta_{SU(2)} \approx \sqrt{3} \epsilon_{SU(2)} \left[-\frac{4}{3} \left(f_K / f_\pi - 1 \right) + \frac{2}{3(4\pi)^2 f_0^2} \left(M_K^2 - M_\pi^2 - M_\pi^2 \ln \frac{M_K^2}{M_\pi^2} \right) \right]$$

f

fre

$$\begin{aligned} \sum_{K^{\pm}} QCD \ (N_f = 2 + 1 + 1): \\ f_{K^{\pm}} / f_{\pi^{\pm}} &= 1.1934(19) \\ \\ LQCD \ (N_f = 2 + 1): \\ f_{K^{\pm}} / f_{\pi^{\pm}} &= 1.1917(37) \\ \end{aligned}$$

$$\frac{|V_{us}|}{|V_{ud}|} = 0.23108(23)_{\exp}(42)_{lat}(16)_{ISB}$$

$$(51)_{tot} = 0.22\%$$

V_{us} from $K\ell 3 = K \rightarrow \pi e\nu, \pi \mu \nu$

$$\Gamma(K_{\ell 3(\gamma)}) = \frac{C_K^2 G_F^2 m_K^5}{192\pi^3} S_{\rm EW} |V_{us}|^2 |f_+^{K^0 \pi^-}(0)|^2 \\ \times I_{K\ell}(\lambda_{K\ell}) \left(1 + 2\Delta_K^{SU(2)} + 2\Delta_{K\ell}^{\rm EM}\right) \\ \text{with } K \in \{K^+, K^0\}; \ \ell \in \{e, \mu\}, \text{ and:} \\ C_{K^2} \quad 1/2 \text{ for } K^+, 1 \text{ for } K^0$$

 $S_{\rm EW}$ Universal SD EW correction (1.0232)

Inputs from experiment:

 $\Gamma(K_{\ell 3(\gamma)})$

Rates with well-determined treatment of radiative decays:

- Branching ratios: K_S , K_L , K^{\pm}
- Kaon lifetimes

 $I_{K\ell}(\{\lambda\}_{K\ell})$

Integral of form factor over phase space: λ s parameterize evolution in *t*

- K_{e3} : Only λ_+ (or λ_+' , λ_+'')
- $K_{\mu3}$: Need λ_+ and λ_0

Inputs from theory:

- $f_{+}^{K^{0}\pi^{-}}(0)$
- Hadronic matrix element (form factor) at zero momentum transfer (t = 0)

Form-factor correction for SU(2) breaking

 $\Delta_{K\ell}^{\rm EM}$

Form-factor correction for long-distance EM effects

Fit to $K\ell 3$ branching ratios of K_S , K_L , K^{\pm}

Fit to K_S rate data (2022)

7 input measurements:

KLOE '06 BR $\pi^0 \pi^0 / \pi^+ \pi^-$
NA48 $\Gamma(K_S \rightarrow \pi ev)/\Gamma(K_L \rightarrow \pi ev), \tau_S$
KLOE '11 τ_S
ΚΤeV '11 <i>τ</i> _S
KLOE-2 ' 22 BR $\pi ev/\pi^+\pi^-$ New!
KLOE-2 '20 BR <i>πμν/π</i> ⁺ π ⁻

2 possible constraints:

- Σ BR = 1
- $BR(K_{e3})/BR(K_{u3}) = 0.6640(17)$ From ratio of phase-space integrals from current fit to dispersive $K_{\ell 3}$ form factor parameters

Only sum constraint used for fit

Parameter	Value
$BR(\pi^+\pi^-(\gamma))$	69.20(5)%
$BR(\pi^0\pi^0)$	30.69(5)%
BR(<i>K</i> _{<i>e</i>3})	7.15(6) × 10 ^{−4}
BR(<i>K</i> _{µ3})	4.56(20) × 10 ⁻⁴
$ au_S$	89.58(4) ns
γ ² /ndf = 0.36/3 (Prob = 95%)	

Little correlation for $K_{e3} K_{u3}$ from fit 10-20% correlations with $\pi^0 \pi^0 / \pi^+ \pi^-$ Input measurements essentially unchanged

Fit to K_L rate data (2010)

21 input measurements:	Parameter	Value	S
5 KTeV ratios	BR(<i>K</i> ₂₃)	0.4056(9)	1.3
NA48 BR(<i>K</i> _{<i>e</i>3} /2 track)	$BR(K_{u3})$	0.2704(10)	1.5
4 KLOE BRs	BR($3\pi^{0}$)	0.1952(9)	1.2
with dependence of t_L	$BR(\pi^+\pi^-\pi^0)$	0.1254(6)	1.3
KLOE , NA48 DR($\pi^{-}\pi^{-}/\Lambda_{\ell_3}$)	$BR(\pi^+\pi^-(\gamma_{IB}))$	1.967(7) × 10⁻³	1.1
RECE , NA48 BR($\gamma\gamma/3\pi^{\circ}$) BR($2\pi^{0}/\pi^{+}\pi^{-}$) from K fit Be s'/s	$BR(\pi^+\pi^-\gamma)$	4.15(9) × 10 ⁻⁵	1.6
$\mathbf{K} = \mathbf{C} \mathbf{E} \mathbf{E} \mathbf{E}$	$BR(\pi^+\pi^-\gamma_{DE})$	2.84(8) × 10 ^{−5}	1.3
Nooburgh '72 -	BR($2\pi^{0}$)	8.65(4) × 10 ⁻⁴	1.4
VOSDURGIN $72 t_L$	BR(γγ)	5.47(4) × 10 ⁻⁴	1.1
E731, 2 KTeV BR($\pi^+\pi^-\gamma_{\text{DE}}/\pi^+\pi^-\gamma)$	τ_L	51.16(21) ns	1.1

1 constraint: Σ BR = 1

 γ^2 /ndf = 19.8/12 (Prob = 7.0%)

Essentially same result as 2010 fit Current PDG (since '09): **37.4/17** (0.30%)

Fit to K^{\pm} rate data (2014)

· — · · ·			
17 input measurements:	Parameter	Value	S
KLOE τ	BR(µv)	63.58(11)%	1.1
KLOE BR $\mu v, \pi \pi^\circ$	BR(<i>ππ</i> ^υ)	20.64(7)%	1.1
with dependence on τ	$BR(\pi\pi\pi)$	5.56(4)% 5.088(27)%	1.0
NA48/2 BR $K_{e3}/\pi\pi^0$, $K_{\mu3}/\pi\pi^0$	$BR(K_{e3})$	3 366(30)%	1 0
E865 BR K_{e3} /KDai 3 old BR $\pi\pi^0/\mu v$	$BR(\pi\pi^0\pi^0)$	1.764(25)%	1.0
KEK-246 K _{µ3} /K _{e3}	$ au_{\pm}$	12.384(15) ns	1.2
KLOE BR πππ, ππ ⁰ π ⁰ (Bisi '65 BR ππ ⁰ π ⁰ /πππ removed)	χ^2 /ndf = 2	5.5/11 (Prob = 0.78°	%)

1 constraint: Σ BR = 1

Much more selective than PDG fit PDG '16: 35 inputs, 8 parameters

Parameter	Value	S
BR(µv)	63.58(11)%	1.1
$BR(\pi\pi^0)$	20.64(7)%	1.1
BR(<i>ππ</i> π)	5.56(4)%	1.0
BR(<i>K</i> _{<i>e</i>3})	5.088(27)%	1.2
BR(<i>K</i> _{µ3})	3.366(30)%	1.9
$BR(\pi\pi^0\pi^0)$	1.764(25)%	1.0
$ au_{\pm}$	12.384(15) ns	1.2

are PDG 16: 53/28 (0.26%)

With ISTRA+ '14 BR($K_{e3}^{-}/\pi^{-}\pi^{0}$) • BR(K_{e3}) = 5.083(27)% Negligible changes in other parameters, fit quality

Compared to Kl2:

Many decay channels

multiple consistency checks possible

$K - \pi$ transition form factors

Hadronic matrix element:

 $\langle \pi | J_{\alpha} | K \rangle = f(0) \times \begin{bmatrix} \tilde{f}_{+}(t)(P+p)_{\alpha} + \tilde{f}_{-}(t)(P-p)_{\alpha} \end{bmatrix}$ $K_{e3} \text{ decays: Only vector form factor: } \tilde{f}_{+}(t)$ $K_{\mu3} \text{ decays: Also need scalar form factor: } \tilde{f}_{0}(t) = \tilde{f}_{+} + \tilde{f}_{-} \frac{t}{m_{K}^{2} - m_{\pi}^{2}} \overset{+(t)}{f_{0}(t)} = \tilde{f}_{+} + \tilde{f}_{-} \frac{t}{m_{K}^{2} - m_{\pi}^{2}} \overset{+(t)}{f_{0}(t)} = \tilde{f}_{+} + \tilde{f}_{-} \frac{t}{m_{K}^{2} - m_{\pi}^{2}}$

To extract V_{us}: need a phase-space integral over the form factor Parametrize FFs —> best option: dispersion representation Perform a fit to Dalitz plot

Long-distance EM correction

Mode-dependent corrections $\Delta^{\text{EM}}_{K\ell}$ to phase-space integrals $I_{K\ell}$ from EM-induced Dalitz plot modifications

- Values depend on acceptance for events with additional real photon(s)
- All recent measurements assumed fully inclusive

FlaviaNet analysis and updates used Cirigliano et al. '08

• Comprehensive analysis at fixed order e^2p^2

Seng et al. JHEP 07 (2022)

Calculation of complete EW RC using hybrid current algebra and ChPT with resummation of largest terms to all chiral orders

- Reduced uncertainties at O(*e*²*p*⁴)
- Lattice evaluation of QCD contributions to γW box diagrams
- Conventional value of $S_{\rm EW}$ subtracted from results for use with standard formula for V_{us}

	Cirigliano et al. '08	Seng et al. '21
$\Delta^{\sf EM}(K^{0}_{e3})$ [%]	0.50 ± 0.11	0.580 ± 0.016
$\Delta^{EM}(K_{e3}^{+})$ [%]	0.05 ± 0.12	0.105 ± 0.023
$\Delta^{EM}(K^{+}_{\mu3})$ [%]	0.70 ± 0.11	0.770 ± 0.019
$\Delta^{\sf EM}(K^{0}_{\mu 3})$ [%]	0.01 ± 0.12	0.025 ± 0.027

Seng, Galviz, Meißner 1910.13208; Seng, Galviz, MG, Meißner 2103.04843; Seng, Galviz, MG, Meißner 2203.05217; Feng, MG, Jin, Ma, Seng 2003.09798; Ma, Feng, MG, Jin, Seng 2102.12048

$V_{us}|f_+(0)$ from world data

$f_{\rm +}(0)$ on the lattice and extraction of $\mid V_{us} \mid$

FLAG '21 averages:

$N_f = 2+1+1$ $f_+(0) = 0.9698(17)$

Uncorrelated average of:

FNAL/MILC 18: HISQ, 5sp, $m_{\pi} \rightarrow 135$ MeV, new ensembles added to FNAL/MILC 13E **ETM 16:** TwMW, 3sp, $m_{\pi} \rightarrow 210$ MeV, full q^2 dependence of f_+ , f_0

$N_f = 2+1$ $f_+(0) = 0.9677(27)$

Uncorrelated average of:

FNAL/MILC 12I: HISQ, $m_{\pi} \sim 300 \text{ MeV}$ **RBC/UKQCD 15A:** DWF, $m_{\pi} \rightarrow 139 \text{ MeV}$ **JLQCD 17** not included because only single lattice spacing used

ChPT

$f_{+}(0) = 0.970(8)$

Ecker 15, Chiral Dynamics 15: Calculation from Bijnens 03, with new LECs from Bijnens, Ecker 14

$$|V_{us}| = 0.22330(35)_{exp}(39)_{lat}(8)_{IB}$$

(53)_{tot} = 0.24 %

$$\sum_{\Delta_{\text{CKM}}^{(1)}} = |V_{ud}|^2 + |V_{us}^{K_{\ell 3}}|^2 - 1$$

High-precisio $\Delta_{\text{CKM}}^{(2)} = |V_{ud}|^2 \left[1 + \left(\left| \frac{V_{us}}{V_{ud}} \right|^{K_{\mu 2}} \right)^2 \right] - 1$ Theoretical e
its, radiative corrections as important as data

Past ~5 years: ChPT is officially superseded by lattice; LQCD results very consistent!

Great consistency
$$\Delta V_{us}(K_{\ell 3} - K_{\mu 2}) = V_{us}^{K_{\ell 3}} - V_{ud} \left(\frac{V_{us}}{V_{ud}}\right)^{K_{\mu 2}}$$

 $K\mu^2$ channel: first ever QCD+QED calculation on the lattice

$$\Delta_{\rm CKM}^{(3)} = |V_{us}^{K_{\ell 3}}|^2 \left[\left(\frac{1}{|V_{us}/V_{ud}|^{K_{\mu 2}}} \right)^2 + 1 \right] - 1 = -0.0164(63) -2.6\sigma$$

 $\begin{array}{l} K\mu 2 - K\ell 3 \text{ discrepancy confirmed} \\ \text{Cabibbo anomaly even w/o info on } V_{ud} ! \\ \text{Upcoming exp. Belle II, NA62, KOTO} \end{array} \qquad \begin{array}{l} \text{Unitarity} \to |V_{ud}^{K\ell 3}| = \sqrt{1 - |V_{us}^{K\ell 3}|^2} = 0.9747(1) \\ \text{Unitarity} \to |V_{ud}^{K\mu 2}| = [1 + |(V_{us}/V_{ud})^{K\mu 2}|^2]^{-1/2} = 0.9743(1) \end{array}$

Hyperon and tau decays: not precise enough or inconsistent — Belle II, Super Tau-Charm Factory? $|V_{us}| = 0.2250(27)$ (Hyperon Decays) $|V_{us}| = 0.2207(14)$ (Tau Decays) $|V_{ud}^{\text{Hyp}}| = 0.9743(6)$ $|V_{ud}^{\tau}| = 0.9753(3)$

Vud from world data

Vud from neutron decay

Neutron decay: 2 measurements needed

$$|V_{ud}|^2 = \frac{5024.7 \text{ s}}{\tau_n (1 + 3g_A^2)(1 + \Delta_R^V)}$$

RC Δ_R^V : bottleneck since 40 years

Pre-2018: $\Delta_R^V = 0.02361(38)$ Marciano, Sirlin PRL 2006 Post-2018: $\Delta_R^V = 0.02479(21)$ MG, Seng Universe 2023

Since 2018: DR+data+pQCD+EFT+LQCD Δ_R^V uncertainty: factor 2 reduction

C-Y Seng et al., PRL 2018; PRD 2019 A. Czarnecki, B. Marciano, A. Sirlin, PRD 2018 K. Shiells et al, PRD 2021; L. Hayen PRD 2021 P-X Ma, X. Feng, MG, L-C Jin, et al 2308.16755

Experiment: factor 3-5 uncertainties improvement; discrepancies in τ_n and g_A

3.4 σ $g_A = -1.27641(56)$ $g_A = -1.2677(28)$ 4 σ $\tau_n = 877.75(28)^{+16}_{-12}$ $\tau_n = 887.7(2.3)$

PERKEO-III B. Märkisch et al, Phys.Rev.Lett. 122 (2019) 24, 242501 **aSPECT** M. Beck et al, Phys. Rev. C101 (2020) 5, 055506; 2308.16170

UCN*τ F. M. Gonzalez et al. Phys. Rev. Lett. 127 (2021) 162501* **BL1 (NIST)** *Yue et al, PRL 111 (2013) 222501*

PDG average $|V_{ud}^{\text{free n}}| = 0.9743 (3)_{\tau_n} (8)_{g_A} (1)_{RC} [9]_{total}$ Single best measurements only $|V_{ud}^{\text{free n}}| = 0.9740 (2)_{\tau_n} (3)_{g_A} (1)_{RC} [4]_{total}$

Vud from semileptonic pion decay

Pion decay $\pi^+ \rightarrow \pi^0 e^+ \nu_e$: theoretically cleanest, experimentally tough

$$|V_{ud}|^2 = \frac{0.9799}{(1+\delta)} \frac{\Gamma_{\pi\ell3}}{0.3988(23)\,\mathrm{s}^{-1}} \qquad |V_{ud}^{\pi\ell3}| = 0.9739(27)_{exp}(1)_{RC}$$

RC to semileptonic pion decay

 δ uncertainty: factor 3 reduction

ChPT: $\delta = -0.0334(10)_{\text{LEC}}(3)_{\text{HO}}$ Cirigliano et al, 2003; Passera et al, 2011 DR + LQCD + ChPT: $\delta = 0.0332(1)_{\gamma W}(3)_{\text{HO}}$ Feng et al, 2020; Yoo et al, 2023

Future exp: 1 o.o.m. (PIONEER @ PSI)

Talk by Saul Cuen-Rochin on Monday

V_{ud} from superallowed $0^+ - 0^+$ nuclear decays

Transitions within JP=0+ isotriplets $(T=1)_{40}$ Elementary process: p—>ne+ ν Only conserved vector current 15 measured to better than 0.2% Internal consistency as a check SU(2) good —> corrections ~small

1.

2.

3.

4.

5.

6.

	_
$^{26m}_{13}$ Al \rightarrow^{26}_{12} Mg	2
$^{34}_{17}\text{Cl} \rightarrow ^{34}_{16}\text{S}$	Ç
$^{38m}_{19}{ m K} \rightarrow ^{38}_{18}{ m Ar}$	
$\begin{array}{c} {}^{42}_{21}\mathrm{Sc} \rightarrow {}^{42}_{20}\mathrm{Ca} \end{array}$	
$^{46}_{23}\text{V} \rightarrow ^{46}_{22}\text{Ti}$	
\sum_{25}^{50} Mn \rightarrow_{24}^{50} Cr	
$\begin{array}{c} {}^{54}_{27}\text{Co} \rightarrow {}^{54}_{26}\text{Fe} \end{array}$	
$\begin{bmatrix} 62\\31 \end{bmatrix}$ Ga $\rightarrow ^{62}_{30}$ Zn	
$\stackrel{66}{_{33}}\text{As} \rightarrow \stackrel{66}{_{32}}\text{Ge}$	
$^{70}_{35}\text{Br} \rightarrow ^{70}_{34}\text{Se}$	
74_{37} Rb $\rightarrow 74_{36}$ Kr	

V_{ud} from superallowed $0^+ - 0^+$ nuclear decays

Exp.: **f** - phase space (Q value)

1.

2.

3.

4.

5.

6.

t - partial half-life ($t_{1/2}$, branching ratio)

ft values: same within ~2% but not exactly! Reason: SU(2) slightly broken

- RC (e.m. interaction does not conserve isospin) a.
- Nuclear WF are not SU(2) symmetric b. (proton and neutron distribution not the same)

Vud extraction: Universal RC and Universal Ft

To obtain Vud —> absorb all decay-specific corrections into universal Ft

Vud extraction: Universal RC and Universal Ft

To obtain Vud —> absorb all decay-specific corrections into universal Ft

Are all SM contributions under control?

Radiative Corrections to beta decay: Overall Setup

RC to beta decay: overall setup $\nu_e(\bar{\nu}_e)$ $\frac{f}{f} = p, A'(0^+)$ Tree-level amplitude $i = n, A(0^+)$ $\sim \alpha/2\pi \approx 10^{-3}$ Radiative corrections to tree-level amplitude 1×10^{-4} Precision goal for V_{ud} extraction Weak boson scale Electron carries away energy E < Q-value of a decay $M_7, M_W \sim 90 \,\mathrm{GeV}$ $\frac{\alpha}{2\pi}\left(\frac{E}{\Lambda},\ln\frac{E}{\Lambda},\ldots\right)$ E-dep RC: Hadronic scale Universal $\Lambda_{\rm had} = 300 \,{\rm MeV}$ Energy scales Λ Nuclear scale Nuclear structure dependent $\Lambda_{\rm nuc} = 10 - 30 \,{\rm MeV}$ (QCD) Decay Q-value (endpoint energy) Nucleus-specific $Q_{if} = M_i - M_f = 1 - 10 \,\mathrm{MeV}$ **Electron mass** Nuclear structure independent $m_{\rho} \approx 0.5 \,\mathrm{MeV}$ (QED)

RC to beta decay: separating scales

Generically: only IR and UV extremes feature large logarithms! Works by Sirlin (1930-2022) and collaborators: all large logs under control

IR: Fermi function (Dirac-Coulomb problem) + Sirlin function (soft Bremsstrahlung)

W,Z - loops

UV structure of SM

UV: large EW logs + pQCD corrections

Inner RC: energy- and model-independent

γW -box: sensitive to all scales

New method for computing EW boxes: dispersion theory Combine exp. data with pQCD, lattice, EFT, ab-initio nuclear

 $\int \frac{d^4q}{(2\pi)^4} e^{iq \cdot x} p T\{J^{\mu}_{em}(x) (J^{\nu}_{W}(0))_{A}\} n = \frac{i\varepsilon^{\mu\nu\alpha\beta} p_{\alpha}q_{\beta}}{2m_{N}\nu} T_3(\nu, Q)$

UV-sensitive γW -box on free neutron Δ_R^V : Sirlin, Marciano, Czarnecki 1967 - 2006 $d^4q = m_W^2 + q^2 T_3(v,-q^2)$

$$g_V^2 = |V_{ud}|^2 \left[1 + \frac{\alpha}{2\pi} \left\{ 3 \ln \frac{M_Z}{M_p} + \ln \frac{M_Z}{M_W} + \tilde{a}_g \right\} + \delta_{\text{QED}}^{HO} + 2 \Box_{\gamma W} \right]$$

Nuclear structure: $\delta_{NS} = 2(\Box_{\gamma W}^{Nucl} - \Box_{\gamma W}^{free n})$

All non-enhanced terms ~ $\alpha/2\pi \sim 10^{-3}$ — only need to ~10%

Unified Formalism for Δ_R^V and $\delta_{\rm NS}$ Dispersion Theory of the γW -box

γW-box by Marciano & Sirlin

$$\Box_{\gamma W}^{VA} = 4\pi\alpha \text{Re} \int \frac{d^4q}{(2\pi)^4} \frac{M_W^2}{M_W^2 + Q^2} \frac{Q^2 + \nu^2}{Q^4} \frac{T_3(\nu, Q^2)}{M\nu}$$

 $Q^2 = -q^2$ $v = \frac{\psi \cdot \#}{m_N} (pq)/M$

Marciano & Sirlin used loop techniques:

$$(\operatorname{Re} c)_{\operatorname{md} A} = 8\pi^{2} \operatorname{Re} \underbrace{\int}_{\gamma W} \frac{d^{4}q}{2\pi} \int_{0}^{\infty} \underbrace{m_{W}^{2}}_{M_{W}} \frac{d^{2}}{dQ} \underbrace{\int}_{Q}^{2} \underbrace{M_{W}^{2}}_{M_{W}} \frac{d^{2}}{M_{W}} \frac{d^{2}}{M_{W}} \underbrace{M_{W}^{2}}_{M_{W}} \underbrace{M_{W}^{2}}_{M_{W}} \frac{d^{2}}{M_{W}} \underbrace{$$

 $\left[\Delta_R^V\right]^{\gamma W} = \frac{\alpha}{2\pi} \left| \ln \frac{M_W}{\Lambda} + A_g + 2C_B \right|$

~4.1 -0.24 1.85

Short distance Q²>> $F^{\text{DIS}}(Q^2)$

$$0 = \frac{1}{Q^2} \qquad \qquad \int_{\gamma W}^{d^4 q} e^{iq \cdot x} p T\{J^{\mu}_{Sem}(x) (J^{\nu}_{W}(0))\} n = \frac{i\varepsilon^{\mu\nu\alpha\beta}}{2m_N\nu} p_{\alpha}q_{\beta} T_3(\nu,Q^2) \\ \Box^{\text{DIS}}_{\gamma W} = \frac{\alpha}{8\pi} \int_{\Lambda^2}^{\infty} \frac{dQ^2 M_W^2}{M_W^2 + Q^2} F^{\text{DIS}}(Q^2) = \frac{\alpha}{4\pi} \ln \frac{M_W}{\Lambda}$$

Finite Q² - pQCD corrections:

$$F^{\rm DIS} = \frac{1}{Q^2} \to \frac{1}{Q^2} \left[1 - \frac{\alpha_s^{\overline{MS}}}{\pi} \right]$$

Long distance Q²<< - elastic box

MS 1987: asymptotic + pQCD + Born

Problem: connecting short and long distances

MS 2006 update

Short distance:
$$F^{\text{DIS}} = \frac{1}{Q^2} \rightarrow \frac{1}{Q^2} \left[1 - \frac{\alpha_s^{\overline{MS}}}{\pi} - C_2 \left(\frac{\alpha_s^{\overline{MS}}}{\pi} \right)^2 - C_3 \left(\frac{\alpha_s^{\overline{MS}}}{\pi} \right)^3 \right] \quad \text{GLS and Bjorken SR to N3LO} \\ \text{Larin, Vermaseren 1997} \\ Q^2 > Q_2^2 \\ \text{Interpolate between them} \\ \text{Vector Dominance Model Ansatz} \qquad F^{\text{INT}}(Q^2) = -\frac{1.490}{Q^2 + m_\rho^2} + \frac{6.855}{Q^2 + m_A^2} - \frac{4.414}{Q^2 + m_{\rho'}^2} \\ Q^2 < Q_1^2 \\ \text{Long distance: Born} \qquad F(Q^2) = F^B(Q^2) \\ \left[\Delta_R^V \right]^{\gamma W} = \frac{\alpha}{2\pi} \left[\ln \frac{M_W}{\Lambda} + A_g + 2C_B \right] \\ \sim 3.86 \qquad 1.78 \qquad \left[\Delta_R^V \right]^{\gamma W} = \frac{\alpha}{2\pi} \left[\ln \frac{M_W}{\Lambda} + A_g + C^{Int} + 2C_B \right] \\ \sim 3.77 \qquad 0.14(14) \qquad 1.66 \end{cases}$$

Uncertainty reduced by a factor ~2

γW -box from dispersion relations

Model-dependent part or RC: γW -box

$$\delta \mathfrak{M}^{b}_{\gamma W} = -i \frac{G_F V_{ud} e^2}{\sqrt{2}} L_{\lambda} \int \frac{d^4 k}{(2\pi)^4} \frac{m_W^2}{m_W^2 - k^2} \frac{\epsilon^{\mu\nu\alpha\lambda} k_{\alpha}}{[(p_e - k)^2 - m_e^2] k^2} T_{\mu\nu}$$

Generalized Compton tensor time-ordered product — complicated!

 $\int dx e^{iqx} \langle H_f(p) | T\{J_{em}^{\mu}(x)J_W^{\nu,\pm}(0)\} | H_i(p) \rangle$

Commutator (Im part) - only on-shell hadronic states — related to data

 $\int dx e^{iqx} \langle H_f(p) | [J^{\mu}_{em}(x), J^{\nu,\pm}_W(0)] | H_i(p) \rangle$

γW -box from dispersion relations

Model-dependent part or RC: γW -box

$$\delta\mathfrak{M}^{b}_{\gamma W} = -i \frac{G_F V_{ud} e^2}{\sqrt{2}} L_{\lambda} \int \frac{d^4 k}{(2\pi)^4} \frac{m_W^2}{m_W^2 - k^2} \frac{\epsilon^{\mu\nu\alpha\lambda} k_{\alpha}}{[(p_e - k)^2 - m_e^2] k^2} T_{\mu\nu}$$

Generalized Compton tensor time-ordered product — complicated!

$$dxe^{iqx}\langle H_f(p) | T\{J^{\mu}_{em}(x)J^{\nu,\pm}_W(0)\} | H_i(p) \rangle$$

Generalized (non-diagonal) Compton amplitudes

Amplitudes = analytic functions inside the contour C in the complex v-plane with singularities on the real axis - poles + cuts

Discontinuity ~ structure functions

Commutator (Im part) - only on-shell hadronic states — related to data

$$\int dx e^{iqx} \langle H_f(p) | [J^{\mu}_{em}(x), J^{\nu,\pm}_W(0)] | H_i(p) \rangle$$

Interference structure functions

 $\operatorname{Im} T_i^{\gamma W}(\nu,Q^2) = 2\pi F_i^{\gamma W}(\nu,Q^2)$

Universal RC from dispersion relations

Cauchy theorem (dispersion relation) + some algebra

$$\Box_{\gamma W}^{b,e}(E_e) = \frac{\alpha}{\pi} \int_0^\infty dQ^2 \frac{M_W^2}{M_W^2 + Q^2} \int_{\nu_{thr}}^\infty \frac{d\nu'}{\nu'} \frac{\nu' + 2\sqrt{\nu'^2 + Q^2}}{(\nu' + \sqrt{\nu'^2 + Q^2})^2} \frac{F_{3,-}(\nu',Q^2)}{Mf_+(0)} + \mathcal{O}(E_e^2)$$

$$\Box_{\gamma W}^{b,o}(E_e) = \frac{2\alpha E_e}{3\pi} \int_0^\infty dQ^2 \int_{\nu_{thr}}^\infty \frac{d\nu'}{\nu'} \frac{\nu' + 3\sqrt{\nu'^2 + Q^2}}{(\nu' + \sqrt{\nu'^2 + Q^2})^3} \frac{F_{3,+}(\nu',Q^2)}{Mf_+(0)} + \mathcal{O}(E_e^3)$$

Structure functions are measurable or may be related to data

Universal RC from dispersion relations

Cauchy theorem (dispersion relation) + some algebra

$$\Box_{\gamma W}^{b,e}(E_e) = \frac{\alpha}{\pi} \int_0^\infty dQ^2 \frac{M_W^2}{M_W^2 + Q^2} \int_{\nu_{thr}}^\infty \frac{d\nu'}{\nu'} \frac{\nu' + 2\sqrt{\nu'^2 + Q^2}}{(\nu' + \sqrt{\nu'^2 + Q^2})^2} \frac{F_{3,-}(\nu',Q^2)}{Mf_+(0)} + \mathcal{O}(E_e^2)$$

$$\Box_{\gamma W}^{b,o}(E_e) = \frac{2\alpha E_e}{3\pi} \int_0^\infty dQ^2 \int_{\nu_{thr}}^\infty \frac{d\nu'}{\nu'} \frac{\nu' + 3\sqrt{\nu'^2 + Q^2}}{(\nu' + \sqrt{\nu'^2 + Q^2})^3} \frac{F_{3,+}(\nu',Q^2)}{Mf_+(0)} + \mathcal{O}(E_e^3)$$

Structure functions are measurable or may be related to data

Input into dispersion integral - $\nu/\bar{\nu}$ data

Isospin symmetry: Mixed CC-NC γW SF (no data) <—> Purely CC WW SF (inclusive neutrino data)

Input into dispersion integral - $\nu/\bar{\nu}$ data

Isospin symmetry: Mixed CC-NC γW SF (no data) <—> Purely CC WW SF (inclusive neutrino data)

DR (Seng et al. 2018): $\Delta_R^V = 0.02467(22) \rightarrow |V_{ud}| = 0.97370(10)_{Ft}(10)_{RC}$

Input into dispersion integral - $\nu/\bar{\nu}$ data

Isospin symmetry: Mixed CC-NC γW SF (no data) <—> Purely CC WW SF (inclusive neutrino data)

DR (Seng et al. 2018): $\Delta_R^V = 0.02467(22) \rightarrow |V_{ud}| = 0.97370(10)_{Ft}(10)_{RC}$

Shift upwards by 3σ + reduction of uncertainty by factor 2

Confirmed by lattice QCD: LQCD on pion + pheno:

 $\Delta_R^V = 0.02477(24)_{\text{LQCD}^{\pi} + \text{pheno}}$

LQCD on neutron:

 $\Delta_R^V = 0.02439(19)_{LQCD^n}$

Seng, MG, Feng, Jin, 2003.11264 Yoo et all, 2305.03198

Ma, Feng, MG et al 2308.16755

EFT: scale separation for free n

Cirigliano et al, 2306.03138

Effective Field Theory: explicit separation of scales + RGE running between SM —> LEFT (no H,t,Z,W) —> ChPT —> NR QED Formal consistency built in, RGE, transparent error estimation (naturalness) Precision limited by matching (LEC) and HO — relies on inputs (e.g. γW -box from DR) To improve: need to go to higher order — new LECs, still tractable? At present: order $O(\alpha, \alpha \alpha_s, \alpha^2)$ — realistic to go beyond?

Total RC: $1 + \Delta_{\text{TOT}} = 1.07761(27) \%$

Good agreement within errors!

 ν_e

е

Total RC from DR:1 + $\Delta_{\text{TOT}} = 1.07735(27)$ %

Nuclear-Structure RC $\delta_{\rm NS}$

History of δ_{NS} : γW -box on nuclei

Jaus, Rasche 1990

 γ and W on same nucleon —> already in Δ_R^V : drop!

Towner 1994

Nucleons are bound — free-nucleon RC modified: δ^A_{NS}

Jaus, Rasche 1990; Hardy, Towner 1992-2020 γ and W on distinct nucleons —> only in nuclei: δ^B_{NS}

History of δ_{NS} : γW -box on nuclei

Jaus, Rasche 1990

 γ and W on same nucleon —> already in Δ_R^V : drop!

Towner 1994

Nucleons are bound — free-nucleon RC modified: δ^A_{NS}

Jaus, Rasche 1990; Hardy, Towner 1992-2020 γ and W on distinct nucleons —> only in nuclei: δ^B_{NS}

Seng et al. 2018: continuum contribution (quasielastic nucleon knockout) — can check the δ_{NS}^A calculation explicitly in dispersion theory in Fermi gas model

MG 2019: energy dependence non negligible: $\mathcal{F}t = ft(1 + \delta_{NS}^A + \delta_{NS}^{E-dep} + ...)$

History of δ_{NS} : γW -box on nuclei

Jaus, Rasche 1990

 γ and W on same nucleon —> already in Δ_R^V : drop!

Towner 1994

Nucleons are bound — free-nucleon RC modified: δ^A_{NS}

Jaus, Rasche 1990; Hardy, Towner 1992-2020 γ and W on distinct nucleons —> only in nuclei: δ_{NS}^{B}

Seng et al. 2018: continuum contribution (quasielastic nucleon knockout) — can check the δ^A_{NS} calculation explicitly in dispersion theory in Fermi gas model

MG 2019: energy dependence non negligible: $\mathscr{F}t = ft(1 + \delta_{NS}^A + \delta_{NS}^{E-dep} + ...)$

Old estimate: $\delta \mathcal{F}t = -(1.8 \pm 0.4)s + (0 \pm 0)s$ New estimate: $\delta \mathcal{F}t = -(3.5 \pm 1.0)s + (1.6 \pm 0.5)s$

Two effects cancel but introduce 100% uncertainty: $\mathscr{F}t = (3072.1 \pm 0.7)s \rightarrow \mathscr{F}t = (3072 \pm 2)s$ Has to be checked in modern ab-initio nuclear theory

Dispersion theory of δ_{NS} with ab-initio input

Low-momentum part of the loop: account for nucleon d.o.f. only

Ab-initio methods:

A. Ekström et al, 2212.11064

NN interaction from chiral EFT: systematically improvable, self consistent

Solve many-body QM problem with potential derived from χ EFT

Dispersion theory of δ_{NS} with ab-initio input

Low-momentum part of the loop: account for nucleon d.o.f. only

Ab-initio methods:

NN interaction from chiral EFT: systematically improvable, self consistent

Solve many-body QM problem with potential derived from χ EFT

First case study: ${}^{10}C \rightarrow {}^{10}B$ in No-Core Shell Model (NCSM)

NCSM result for ${}^{10}C \rightarrow {}^{10}B$:

 $\delta_{\rm NS} = -0.406(39)\,\%$

M. Gennari et al, 2405.19281

Compare to Hardy-Towner

$$\delta_{\rm NS} = -0.347(35)\%$$
(2014)
$$\delta_{\rm NS} = -0.400(50)\%$$
(2020)

A. Ekström et al, 2212.11064

Nuclear Corrections

QED: Corrections to Decay Spectrum

$$f = m_e^{-5} \int_{m_e}^{E_0} dE_e \left[\vec{p}_e \right] E_e (E_0 - E_e)^2 F(E_e) C(E_e) Q(E_e) R(E_e) r(E_e)$$

Unperturbed beta spectrum

Fermi function: e⁺ in Coulomb field of daughter nucleus

Shape factor: spatial distribution of decay

Traditionally: assumed that decay probability is equally distributed across the entire nucleus

Recent development:

isospin symmetry + known charge distributions

Only the outer protons can decay: all neutron states in the core occupied

Photon probes the entire nuclear charge

Relative shift in f-values downwards of 0.01-0.1% Non-negligible given the precision goal 0.01% $\rho_{ch}(r)$

Atomic screening and overlap corrections

Seng, 2212.02681 MG, Seng 2311.16755

Recoil correction

Isospin breaking in nuclear WF: δ_C Tree-level effect — ISB "large"

Isospin symmetry breaking in superallowed β -decay

Tree-level Fermi matrix element

$$M_F = \langle f \, | \, \tau^+ \, | \, i \rangle$$

 τ^+ — Isospin operator $|i\rangle$, $|f\rangle$ — members of T=1 isotriplet

Isospin symmetry breaking in superallowed β -decay

Tree-level Fermi matrix element

 $M_F = \langle f \, | \, \tau^+ \, | \, i \rangle$

 τ^+ — Isospin operator $|i\rangle$, $|f\rangle$ — members of T=1 isotriplet

If isospin symmetry were exact, $M_F \rightarrow M_0 = \sqrt{2}$

Isospin symmetry is broken in nuclear states (e.g. Coulomb, nucleon mass difference, ...)

In presence of isospin symmetry breaking (ISB): $|M_F|^2 = |M_0|^2(1 - \delta_C)$ MacDonald 1958

ISB correction almost singlehandedly aligns ft-values!

$$\delta_C \sim 0.17\% - 1.6\%!$$

Crucial for V_{ud} extraction

J. Hardy, I. Towner, Phys. Rev. C 91 (2014), 025501

BSM searches with superallowed beta decays

Induced scalar CC —> Fierz interference bF

$$\mathcal{F}t^{SM} \to \mathcal{F}t^{SM}\left(1 + b_F \frac{m_e}{\langle E_e \rangle}\right)$$

 $b_F = -0.0028(26)$ ~ consistent with 0

Independently of V_{ud} and CKM unitarity: internal consistency of the data base with SM! Like $\Delta_{\rm CKM}^{(3)}$ does not require other experimental inputs to make a statement on (B)SM

Entangled with nuclear theory uncertainties — a global effort of nuclear theory community needed

S, T interaction flips helicity: Suppressed at high energy

```
Beta decay vs. LHC on S,T
Complementarity now and in the future!
```

Gonzalez-Alonso et al 1803.08732

Nuclear model dependence of δ_C

J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

				RPA				
	SM-WS	SM-HF	PKO1	DD-ME2	PC-F1	IVMR ^a	DFT	
$T_{z} = -1$								
^{10}C	0.175	0.225	0.082	0.150	0.109	0.147	0.650	
14 O	0.330	0.310	0.114	0.197	0.150		0.303	L. Xayavong, N.A. Smirnova, Phys.Rev. C 97 (2018), 024324
^{22}Mg	0.380	0.260					0.301	o c SM-WS (2015) → SV-DFT (2012) →
³⁴ Ar	0.695	0.540	0.268	0.376	0.379			2.5 SM-HF (1995)× SHZ2-DFT (2012)
³⁸ Ca	0.765	0.620	0.313	0.441	0.347			RHF-RPA (2009) ··· ··· Damgaard (1969) ··· •··
$T_z = 0$								2 - RH-RPA (2009) VMR (2009)
26m Al	0.310	0.440	0.139	0.198	0.159		0.370	
34 Cl	0.650	0.695	0.234	0.307	0.316			
³⁸ <i>m</i> K	0.670	0.745	0.278	0.371	0.294	0.434		
42 Sc	0.665	0.640	0.333	0.448	0.345		0.770	
⁴⁶ V	0.620	0.600					0.580	
⁵⁰ Mn	0.645	0.610					0.550	
⁵⁴ Co	0.770	0.685	0.319	0.393	0.339		0.638	
⁶² Ga	1.475	1.205					0.882	
⁷⁴ Rb	1.615	1.405	1.088	1.258	0.668		1.770	
χ^2/ν	1.4	6.4	4.9	3.7	6.1		4.3 ^b	5 10 15 20 25 30 35 Z of parent

HT: χ^2 as criterion to prefer SM-WS; V_{ud} and limits on BSM strongly depend on nuclear model

Nuclear community embarked on ab-initio δ_C calculations (NCSM, GFMC, CC, IMSRG) Especially interesting for light nuclei accessible to different techniques!

Data-Driven δ_C from nuclear radii

ISB-sensitive combinations of radii can be constructed

Seng, MG 2208.03037; 2304.03800; 2212.02681

$$\Delta M_B^{(1)} \equiv \frac{1}{2} \left(Z_1 R_{p,1}^2 + Z_{-1} R_{p,-1}^2 \right) - Z_0 R_{p,0}^2 \qquad \Delta M_B^{(1)} = 0 \text{ used for ft-value in isospin limit}$$

$$\Delta M_A^{(1)} \equiv - \langle r_{CW}^2 \rangle + \left(\frac{N_1}{2} \langle r_{n,1}^2 \rangle - \frac{Z_1}{2} \langle r_{p,1}^2 \rangle \right) \qquad \text{Neutron radius: measurable with PV e- scattering!}$$

$$\vec{e} - \frac{e^-}{A_f} \qquad A^{PV} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \frac{Q_W}{Z} \frac{F_{NW}(Q^2)}{F_{Ch}(Q^2)} \qquad R_{NW} \approx R_n$$

Z-boson couples to neutrons, photon - to protons;

PV asymmetry at low Q² sensitive to the difference $\langle r_{n,1}^2 \rangle - \langle r_{p,1}^2 \rangle$ - neutron skin Extensive studies in neutron rich nuclei (PREX, CREX) —> input to physics of neutron stars

Upcoming exp. program at Mainz (MREX) Neutron skins of stable daughters (e.g. Mg-26, Ca-42, Fe-54) PV asymmetry on C-12 for a sub-% measurement of R_n Unexpected connections via neutron skins: ISB for precision tests vs. EoS of neutron-rich matter

N. Cargioli, MG et al, 2407.09743

Summary & Outlook

Cabibbo Angle Anomaly at 2-3 σ

Future experiments:

Neutron: UCN τ , τ SPECT ($\delta \tau_n : 0.4 \rightarrow 0.1s$); PERC, Nab ($\delta g_A : 4 \rightarrow 1 \times 10^{-4}$) Competitive! But: resolve existing discrepancies (e.g. "beam-bottle" lifetime) Kaon decays: NA62, BELLE II $K\ell$ 3 vs $K\mu$ 2 (+ Lattice effort!) Pion: $\pi^+ \rightarrow \pi^0 e^+ \nu$ PIONEER @ PSI (δ BR: 0.3%—>0.03%) but 2033+

Nuclear uncertainties under scrutiny: δ_{NS} in ab-initio and EFT $\delta_C \& \delta_{NS}$ for 15 decays from ${}^{10}C$ to ${}^{74}Rb$ — Community effort required!

Nuclear charge radii across superallowed isotriplets Stable: μ-atoms @ PSI, radii of unstable nuclei @ ISOLDE, TRIUMF Neutron skins of stable daughters with PVES @ MESA Interplay with the nuclear EoS program: neutron skin via symmetry energy vs. ISB

BSM: Cabibbo anomaly(ies) and superallowed dataset consistency

Backup

Status of Cabibbo Unitarity

γW -box from DR + Lattice QCD input

Currently available neutrino data at low Q^2 - low quality; Look for alternative input — compute Nachtmann moment $M_3^{(0)}$ on the lattice

First direct LQCD computation $\pi^- \rightarrow \pi^0 e^- \nu_e$

5 LQCD gauge ensembles at physical pion mass Generated by RBC and UKQCD collaborations w. 2+1 flavor domain wall fermion

Match onto pQCD at $Q^2 \sim 2\,{ m GeV^2}$

Quark contraction diagrams

$$\Box_{\gamma W}^{VA, \pi} = 2.830(11)_{\text{stat}}(26)_{\text{sys}}$$

Independent calculation by Los Alamos group

Yoo et all, 2305.03198

$$\Box_{\gamma W}^{VA, \pi} = 2.810(26)_{\text{stat+sys}}$$
First lattice QCD calculation of γW -box

Direct impact for pion decay $\pi^+ \rightarrow \pi^0 e^+ \nu_e$

Previous calculation of δ — in ChPT

Significant reduction of the uncertainty!

Indirectly constrains the free neutron
$$\gamma W$$
-box
— requires some phenomenology
Based on Regge universality & factorization

Independent confirmation

 $\Delta_R^V = 0.02467(22)_{\rm DR} \rightarrow 0.02477(24)_{\rm LQCD+DR}$ Seng, MG, Feng, Jin, 2003.11264

$$|V_{ud}|^2 = \frac{0.9799}{(1+\delta)} \frac{\Gamma_{\pi\ell3}}{0.3988(23) \,\mathrm{s}^{-1}}$$

Cirigliano, Knecht, Neufeld and Pichl, EPJC 2003

$$\delta: 0.0334(10)_{\text{LEC}}(3)_{\text{HO}} \rightarrow 0.0332(1)_{\gamma W}(3)_{\text{HO}}$$

First LQCD calculation of γW -box on the neutron

Much more challenging than pion:

Numerically heavier Excited state contamination requires longer time Large contribution from low Q ~ $g_A \, \mu^V$ absent for pion

Split into long/short distance separated by ts

 $M_n(Q^2) = M_n^{\mathrm{SD}}(Q^2, t_s) + M_n^{\mathrm{LD}}(Q^2, t_s, t_g)$

RBC/UKQCD 2+1 domain wall fermion

Ensemble	$m_{\pi} [\text{MeV}]$	L T	a^{-1} [GeV]	$N_{\rm conf}$
24D	142.6(3)	$24 \ 64$	1.023(2)	207
32D-fine	143.6(9)	$32 \ 64$	1.378(5)	69

$$\Delta_R^V = 0.02439(19)_{LQCD}$$
 vs $0.02467(22)_{DR}$

The result slightly lower than DR; Finer lattice calculations underway

Ma, Feng, MG et al 2308.16755

Global fit to charge radii off mirror nuclei

Linear fit to known radii in isotriplets (red) predictions for unknown radii

Compare to ab-initio theory estimate (blue) Navario et al, Phys.Rev.Lett 130 B. Ohayon, 2409.08193

Experimental input:

reference radii from muonic atoms; measured isotope shifts

Global fit to charge radii off mirror nuclei

B. Ohayon, 2409.08193

δ_{NS} in ab-initio nuclear theory

M. Gennari, M. Drissi, MG, P. Navratil, C.-Y. Seng, arXiv: 2405.19281

Low-momentum part of the loop: account for nucleon d.o.f. only First case study: ${}^{10}C \rightarrow {}^{10}B$ in No-Core Shell Model (NCSM) Many-body problem in HO basis with separation Ω and up to $N = N_{max} + N_{Pauli}$

Ab-initio δ_{NS} : numerical results

Large negative contribution: low-lying 1+ level in ¹⁰B Large GT and M1 rates favor a two-step process

GT $\frac{T = 1, T_z = 0, J^P = (0^+)}{T = T_z = 0, J^P = (1^+)}$ M1

Final result for ${}^{10}C \rightarrow {}^{10}B$:

 $T = 1, T_z = -1, J^P = (0^+)$

 $\delta_{\rm NS} = -0.406(39)\,\%$

arXiv: 2405.19281

Compare to Hardy-Towner (old-fashion SM)

 $\delta_{\rm NS} = -0.347(35)\% \tag{2014}$

$$\delta_{\rm NS} = -0.400(50)\% \tag{2020}$$

