

Deutsche Deutsche Forschungsgemeinschaft STRONG-2:120 JG U JOHANNES GUTENBERG **DFG UNIVERSITÄT MAINZ Fundamental Interactions** and Structure of Matter

Precision Tests of the Standard Model with Cabibbo Unitarity and Nuclear *β***-Decays**

Misha Gorshteyn

Universität Mainz

Collaborators: *Chien-Yeah Seng Michael Gennari Mehdi Drissi Petr Navratil Ben Ohayon Bijaya Sahoo John Behr N. Cargioli*

Neutron beta decay review: MG, Seng, Universe **2023**, 9(9), 422, arXiv:**2307.01145** Nuclear beta decay review: MG, Seng, Ann.Rev.Part.Nucl.Sci. 74 (2024) 23-47, arXiv:**2311.00044**

XV SILAFAE, November 4-8, 2024, CDMX Mexico

Outline

Beta decay, radiative corrections and the Standard Model

Cabibbo anomaly: have we found BSM?

Summary of experimental measurements

Radiative corrections to β -decays: overall setup

 γ *W*-box: Dispersion Theory, lattice QCD and EFT

Nuclear corrections

Summary & Outlook

What to work on to win a Nobel prize?

What to work on to win a Nobel prize?

Beta decay has been an excellent choice for a century! 1896- Becquerel discovers spontaneous radioactivity of uranium, identified β with the electron 1898- Curie-Sklodowska, Curie discover polonium and radium

1899- Rutherford systematized α , β , γ rays, identified α with He-4

1934- F.&I. Joliot-Curie discovered β^+ decay with β^+ - positron

1956- Lee & Yang proposed parity non conservation in β -decay, confirmed by Wu experiment

1961- Glashow proposed electroweak unification 1967- Weinberg & Salam implemented Higgs mechanism 1973- Neutral weak current discovered at CERN **¹⁹⁷⁹**

1973- Kobayashi, Maskawa: 3-flavor quark mixing matrix

2008

That was the bright side…

Niepce de Saint-Victor: observed radioactivity in 1857 cited in Becquerel-father's book

Cox, McIlwraith, Kurrelmeier (1928); Chase (1929-30) "Apparent evidence of polarization in a beam of beta rays"

1930: Pauli postulated existence of neutrinos 1934: Fermi formulated the contact theory of beta decay

1938: Klein predicted $M_W \sim \sqrt{4\pi\alpha \sqrt{2}/G_F} \sim 100 \, GeV$

1957: Wu's experiment was crucial to prove Lee-Yang's conjecture, but Chien-Shiung Wu was not awarded the NP

1963- Cabibbo: proposed 2-flavor quark mixing to reconcile μ , β , K decay rates

Precision Era: V-A + Radiative Corrections

V - A theory (Sudarshan&Marshak and Gell-Mann&Feynman 1957); S-PS not excluded

Precision Era: V-A + Radiative Corrections

V - A theory (Sudarshan&Marshak and Gell-Mann&Feynman 1957); S-PS not excluded

Radiative corrections to muon decay: important evidence for V-A theory RC to muon decay - UV finite for V-A but divergent for S-PS

 M uon lifetime $\tau_\mu = 2196980.3(2.2)ps \implies$ Fermi constant $G_\mu = 1.1663788(7) \times 10^{-5} GeV^{-2}$

Precision Era: V-A + Radiative Corrections

V - A theory (Sudarshan&Marshak and Gell-Mann&Feynman 1957); S-PS not excluded

Radiative corrections to muon decay: important evidence for V-A theory RC to muon decay - UV finite for V-A but divergent for S-PS

 M uon lifetime $\tau_\mu = 2196980.3(2.2)ps \implies$ Fermi constant $G_\mu = 1.1663788(7) \times 10^{-5} GeV^{-2}$

But: RC to neutron decay - UV divergent even in V-A theory! Kinoshita, Sirlin, Behrends, …

1-loop RC to spectrum:

$$
\Delta P^0 d^3 p = \frac{\alpha}{2\pi} P^0 d^3 p \left[6 \ln \frac{\Lambda}{M_p} + \text{finite} \right]
$$

Precision Era: V-A + Radiative Corrections Corrections

V - A theory (Sudarshan&Marshak and Gell-Mann&Feynman 1957); S-PS not excluded

Radiative corrections to muon decay: important evidence for V-A theory RC to muon decay - UV finite for V-A but divergent for S-PS e corrections to maderacea,
upon decay - LIV finite for V-A T_{r} accuy are finite to α is a theory which in the V -A theory while the V -A theory which is a theory which in the finite, α

 M uon lifetime $\tau_{\mu} = 2196980.3(2.2)ps \implies$ Fermi constant $G_{\mu} = 1.1663788(7) \times 10^{-5} GeV^{-2}$

But: RC to neutron decay - UV divergent even in V-A theory! Kinoshita, Sirlin, Behrends, … it is not possible to bring the two charged particles into the same covariant which retaining α and β and $\$

1-loop RC to spectrum:

$$
\Delta P^0 d^3 p = \frac{\alpha}{2\pi} P^0 d^3 p \left[6 \ln \frac{\Lambda}{M_p} + \text{finite} \right]
$$

Is weak interaction universal for leptons and hadrons?

1967: Sirlin applied current algebra: general UV behavior of *β* decay rate at 1-loop α 2π $P^0d^3p~3[1+2\bar{Q}]\ln(\Lambda/M),$

$$
\bar{Q}
$$
: average charge of fields involved: $1 + 2\bar{Q}_{\mu,\nu_{\mu}} = 0$ but $1 + 2\bar{Q}_{n,p} = 2$

Finiteness of RC to muon decay was accidental! α , so that are all α and α and Eq.(44) vanishes, consistent with the fact that the fac

Precision Era: V-A + Radiative Corrections Corrections

V - A theory (Sudarshan&Marshak and Gell-Mann&Feynman 1957); S-PS not excluded

Radiative corrections to muon decay: important evidence for V-A theory RC to muon decay - UV finite for V-A but divergent for S-PS e corrections to maderacea,
upon decay - LIV finite for V-A T_{r} accuy are finite to α is a theory which in the V -A theory while the V -A theory which is a theory which in the finite, α

 M uon lifetime $\tau_{\mu} = 2196980.3(2.2)ps \implies$ Fermi constant $G_{\mu} = 1.1663788(7) \times 10^{-5} GeV^{-2}$

But: RC to neutron decay - UV divergent even in V-A theory! Kinoshita, Sirlin, Behrends, … it is not possible to bring the two charged particles into the same covariant which retaining α and β and $\$

1-loop RC to spectrum:

to spectrum:
$$
\Delta P^0 d^3 p = \frac{\alpha}{2\pi} P^0 d^3 p \left[6 \ln \frac{\Lambda}{M_p} + \text{finite} \right]
$$
UV cut-off

Is weak interaction universal for leptons and hadrons?

1967: Sirlin applied current algebra: general UV behavior of *β* decay rate at 1-loop α 2π $P^0d^3p~3[1+2\bar{Q}]\ln(\Lambda/M),$

 \bar{Q} : average charge of fields involved: $1+2\bar{Q}_{\mu,\nu_{\mu}}=0$ but $1+2\bar{Q}_{n,p}=2$ $\sim \mu, \nu_\mu$ and proton so the neutron so the neutron so that $\sim \mu, \nu$

Finiteness of RC to muon decay was accidental! α , so that are all α and α and Eq.(44) vanishes, consistent with the fact that the fac

Eventually, massive W-boson renders RC to beta decay UV-finite $M_{\rm 3}$ is the Fermion matrix element 3 ln(α 4) and α ln(α

In SM the same coupling of W-boson to leptons and quarks, G_V = G_μ

Before RC were included: $G_V \thicksim 0.98 G_\mu$

In SM the same coupling of W-boson to leptons and quarks, G_V = G_μ

Before RC were included: $G_V \thicksim 0.98 G_\mu$

Large $\log (M_Z/M_p)$ in RC for neutron \Longrightarrow $G_V \sim 0.95 G_\mu$

Kaon and hyperon decays? $(\Delta S = 1)$ – even smaller coupling!

In SM the same coupling of W-boson to leptons and quarks, G_V = G_μ

Before RC were included: $G_V \thicksim 0.98 G_\mu$

Large $\log (M_Z/M_p)$ in RC for neutron \Longrightarrow $G_V \sim 0.95 G_\mu$

Kaon and hyperon decays? $(\Delta S = 1)$ – even smaller coupling!

Cabibbo: strength shared between 2 generations

Cabibbo unitarity: $\cos^2\theta_C + \sin^2\theta_C = 1$

 $|G_V^{\Delta S=0}| = \cos \theta_C G_\mu$ $|G_V^{\Delta S=1}|$ = sin $\theta_C G_\mu$

In SM the same coupling of W-boson to leptons and quarks, G_V = G_μ

Before RC were included: $G_V \thicksim 0.98 G_\mu$

Large $\log (M_Z/M_p)$ in RC for neutron \Longrightarrow $G_V \sim 0.95 G_\mu$

Kaon and hyperon decays? $(\Delta S = 1)$ – even smaller coupling!

Cabibbo: strength shared between 2 generations

Cabibbo unitarity: $\cos^2\theta_C + \sin^2\theta_C = 1$

$$
|G_V^{\Delta S=0}| = \cos \theta_C G_\mu
$$

$$
|G_V^{\Delta S=1}| = \sin \theta_C G_\mu
$$

Kobayashi & Maskawa: 3 flavors + CP violation - CKM matrix V

Detailed understanding of β decays largely shaped the Standard Model

Cabibbo Angle Anomaly: Status and BSM interpretation

Status of Cabibbo unitarity

$$
\left|V_{ud}\right|^2 + \left|V_{us}\right|^2 + \left|V_{ub}\right|^2 = 0.9985(6)_{V_{ud}}(4)_{V_{us}}\sim 0.95 \sim 0.05 \sim 10^{-5}
$$

 V_{ud} and V_{us} determinations inconsistent with the SM

Superallowed nuclear β : $|V_{ud}| = 0.9737(3)$

At variance with kaon decays + Cabibbo unitarity

$$
K \to \pi \ell \nu : \quad |V_{us}| = 0.2233(5)
$$

Unitarity
$$
\rightarrow |V_{ud}| = \sqrt{1 - |V_{us}|^2} = 0.9747(1)
$$

\n
$$
\frac{K \rightarrow \mu\nu}{\pi \rightarrow \mu\nu} : |V_{us}/V_{ud}| = 0.2311(5)
$$
\nUnitarity $\rightarrow |V_{ud}| = [1 + |V_{us}/V_{ud}|^2]^{-1/2} = 0.9743(1)$

$$
(6)_{V_{ud}}(4)_{V_{us}}
$$
\n0.226\n0.225\n
\n0.225\n
\n0.224\n
\n0.223\n
\n0.224\n
\n0.223\n
\n
$$
K \rightarrow \pi \mu v, \pi e v
$$
\n0.223\n
\n0.223\n
\n0.223\n
\n0.224\n
\n0.223\n
\n0.224\n
\n0.223\n
\n0.224\n
\n0.225\n
\n0.225\n
\n0.226\n
\n0.227\n
\n0.228\n
\n0.229\n
\n0.229\n
\n0.229\n
\n0.220\n
\n0.221\n
\n0.224\n
\n0.225\n
\n0.225\n
\n0.226\n
\n0.227\n
\n0.228\n
\n0.229\n
\n0.229\n
\n0.229\n
\n0.221\n
\n0.223\n
\n0.225\n
\n0.224\n
\n0.228\n
\n0.229\n
\n0.229\n
\n0.229\n
\n0.220\n
\n0.221\n
\n0.221\n
\n0.223\n
\n0.225\n
\n0.224\n
\n0.227\n
\n0.228\n
\n0.229\n
\n0.229\n
\n0.221\n
\n0.221\n
\n0.223\n
\n0.225\n
\n0.228\n
\n0.229\n
\n0.229\n
\n0.221\n
\n0.221\n
\n0.223\n
\n0.225\n
\n0.229\n
\n0.221\n
\n0.223\n
\n0.221\n
\n0.225\n
\n0.229\n
\n0.221\n
\n0.221\n
\n0.223\n
\n0.225\n
\n0.227\n
\n0.229\n
\n0.221\n
\n0.223\n
\n0.227\n
\n0.228\n
\n0.229\n
\n0

Unitarity $\rightarrow |V_{ud}| = 0.9745(2)$

 $|V_{ud}| = 0.9743(9)$

$$
\mathcal{L}_{CKM}^{(1)} = |V_{ud}|^2 + |V_{us}^{K_{\ell 3}}|^2 - 1
$$
\n
$$
\Delta_{CKM}^{(2)} = |V_{ud}|^2 \left[1 + \left(\left| \frac{V_{us}}{V_{ud}} \right|^{K_{\mu 2}} \right)^2 \right] - 1
$$
\n
$$
\Delta_{CKM}^{(2)} = |V_{ud}|^2 \left[1 + \left(\left| \frac{V_{us}}{V_{ud}} \right|^{K_{\mu 2}} \right)^2 \right] - 1
$$
\n
$$
3 \text{ ways to test unitarity}
$$
\n
$$
\Delta_{CKM}^{(1)} = |V_{ud}|^2 + |V_{us}^{K_{\ell 3}}|^2 - 1 = -0.00176(56) -3.1\sigma
$$
\n
$$
\Delta_{CKM}^{(2)} \Delta V_{us}(K_{\ell 3} - K_{\mu 2}) = V_{us}^{K_{\ell 3}} - V_{ud} \left(\frac{V_{us}}{V_{ud}} \right)^{K_{\mu 2}}
$$
\n
$$
= -0.00098(58) -1.7\sigma
$$
\n
$$
\Delta_{CKM}^{(3)} = |V_{us}^{K_{\ell 3}}|^2 \left[\left(\frac{1}{|V_{us}/V_{ud}|^{K_{\mu 2}}} \right)^2 + 1 \right] - 1 = -0.0164(63) -2.6\sigma
$$
\n
$$
\Delta V_{us}(\Delta_{\ell 3} - \Delta_{\mu 2}) = V_{us} - V_{ud} \left(\frac{V_{ud}}{V_{ud}} \right)
$$

Can it be a signal of BSM?
\n
$$
\Delta_{\text{CKM}}^{(3)} = |V_{us}^{K_{\ell 3}}|^2 \left[\left(\frac{1}{|V_{us}/V_{ud}|^{K_{\mu 2}}} \right)^2 + 1 \right] - 1
$$

CAA In presence of RH currents CAA in presence of RH currents

Cirigliano et al.

PLB 838 (2023)

- In SM, *W* couples only to LH chiral fermion states
- New physics with couplings to RH currents could explain both unitarity deficit and *Kℓ*3*-Kμ*² difference
- Define ϵ_R = admixture of RH currents in non-strange sector ϵ_R + $\Delta \epsilon_R$ = admixture of RH currents in strange sector

Review the "*σ*" that defines the significane of the Cabibbo angle anomaly!

Vus from world data

 V_{us} / V_{ud} from $K_{\mu 2} = K \rightarrow \mu \nu / \pi_{\mu 2} = \pi \rightarrow \mu \nu$

$$
\frac{|V_{us}|}{|V_{ud}|}\frac{f_K}{f_\pi} = \left(\frac{\Gamma_{K_{\mu2(\gamma)}}m_{\pi^{\pm}}}{\Gamma_{\pi_{\mu2(\gamma)}}m_{K^{\pm}}}\right)^{1/2}\frac{1-m_\mu^2/m_{\pi^{\pm}}^2}{1-m_\mu^2/m_{K^{\pm}}^2}\left(1-\frac{1}{2}\delta_{\text{EM}}-\frac{1}{2}\delta_{SU(2)}\right)
$$

Inputs from experiment:

From *K*±BR fit: **BR(** K^{\pm} _{μ 2(γ)) = 0.6358(11)} *τ^K***[±] = 12.384(15) ns** [**KLOE**, CNTR]

From PDG:

 $BR(\pi^{\pm}_{\mu^2(\gamma)}) = 0.99999$ $\tau_{\pi+}$ = 26.033(5) ns

Inputs from theory:

 δ_{EM} Long-distance EM corrections

*δSU***(2)** Strong isospin breaking $f_K/f_\pi \longrightarrow f_{K\pm}f_{\pi\pm}$

*fK***/***f^π* Ratio of decay constants Cancellation of lattice-scale uncertainties from ratio

NB: Most lattice results already corrected for $SU(2)$ -breaking: $f_{K+}/f_{\pi+}$

New development: QCD + QED on the Lattice

Giusti et al. PRL 120 (2018)

First lattice calculation of EM corrections to P_{12} **decays**

- Ensembles from ETM
- N_f = 2+1+1 Twisted-mass Wilson fermions

 $\delta_{SU(2)} + \delta_{EM} = -0.0122(16)$

• Uncertainty from quenched QED included (0.0006)

Compare to ChPT result from Cirigliano, Neufeld '11: $\delta_{SU(2)} + \delta_{EM} = -0.0112(21)$

Di Carlo et al. PRD 100 (2019)

Update, extended description, and systematics of Giusti et al. $\delta_{SU(2)} + \delta_{EM} = -0.0126(14)$

$|V_u/V_{ud}| \times f_K/f_\pi = 0.27679(28)_{BR}(20)_{corr}$

t_{ν}/f_{-} and the lattice and result for $f_{\mathsf K}/f_{\mathsf T}$ on the lattice and result for $V_{\mu s}/V_{\mu d}$ HPQCD/UKQCD 07 and RBC/UKQCD 14B at *N^f* = 2 + 1 and ETM 09 at *N^f* = 2. To this t_h on the lattice and result for V / V, the matter of \mathcal{C} PT **extending the set of the set of**

end, as in the previous editions of the FLAG reviews [1, 56, 127], we make use of NLO *SU*(3) Some lattice groups include strong isospin breaking, others work in isospin limit *fK[±] f*⇡*[±]* , c *f^K f*⇡ \sim 1 + *SU*(2) *,* (80)

ISB from *χ*PT

Isospin breaking
$$
\frac{f_{K^{\pm}}}{f_{\pi^{\pm}}} = \frac{f_K}{f_{\pi}} \sqrt{1 + \delta_{SU(2)}}
$$

\nISBN from χPT $\delta_{SU(2)} \approx \sqrt{3} \epsilon_{SU(2)} \left[-\frac{4}{3} (f_K/f_{\pi} - 1) + \frac{2}{3(4\pi)^2 f_0^2} \left(M_K^2 - M_{\pi}^2 - M_{\pi}^2 \ln \frac{M_K^2}{M_{\pi}^2} \right) \right]$

 $f_{\text{z}+1}$

 f_{τ}

FIG average for N _f = 2+1+1
ETM 21
Call at 20
ENAL/MILC 17
ETM 13F
ENAL/MILC 14A
ETM 13F
HPQCD
STM 13F
HTM 13F
HPC 13A
MILC 13A
MILC 13A
MILC 13A
MLC 13A
MLC 13A
MLC 13A
MLC 13A
ELAG average for N _f = 2+1

\nLQCD
$$
(N_f = 2 + 1)
$$
:

$$
f_{\text{RBC/UKQCD 14B}}^{\text{LCAS average for N_f = 2 + 1}}
$$
\n
$$
f_{K^{\pm}}/f_{\pi^{\pm}} = 1.1917(37)
$$
\n
$$
f_{K}/f_{\pi} = 1.1946(34)
$$

Moreover, for *N^f* = 2 + 1 + 1 HPQCD [101], FNAL/MILC [97] and ETM [128] estimate a value for *SU*(2) equal to 0*.*0054(14), 0*.*0052(9) and 0*.*0073(6), respectively. Note that 12 *Updated Feb. 2023* |*Vus*| |*Vud* | = 0.23108(23)exp(42)lat(16)ISB (51)tot = 0.22 %

V_{us} from $K\ell 3 = K \rightarrow \pi e \nu$, $\pi \mu \nu$

$$
\Gamma(K_{\ell3(\gamma)}) = \frac{C_K^2 G_F^2 m_K^5}{192\pi^3} S_{\text{EW}} |V_{us}|^2 |f_+^{K^0 \pi^-}(0)|^2
$$

\nwith $K \in \{K^+, K^0\}$; $\ell \in \{e, \mu\}$, and:
\n C_K^2 1/2 for K^+ , 1 for K^0

*S*_{EW} Universal SD EW correction (1.0232)

Inputs from experiment:

 $\Gamma(K_{\ell3(\gamma)})$

) Rates with well-determined treatment of radiative decays:

- Branching ratios: K_S , K_L , K^{\pm}
- Kaon lifetimes

 $I_{K\ell}(\{\lambda\}_{K\ell})$ Integral of form factor over phase space: *λ*s parameterize evolution in *t*

- K_{e3} : Only λ_+ (or λ_+ ', λ_+ ")
- $K_{\mu 3}$: Need λ_+ and λ_0

Inputs from theory:

- *f*+ *K*0*π*−
- Hadronic matrix element (form factor) at zero momentum transfer $(t = 0)$

Form-factor correction for *SU*(2) breaking

 $\Delta_{K}P^{\text{EM}}$

Form-factor correction for long-distance EM effects

Fit to $K\ell 3$ branching ratios of K_S, K_L, K^{\pm}

Fit to $K_{\rm s}$ rate data (2022)

7 input measurements:

KLOE '06 BR $\pi^{0}\pi^{0}/\pi^{+}\pi^{-}$ **NA48** Γ(K_s → $πev$)/Γ(K_t → $πev$), $τ_s$ **KLOE** '11 τ_S **KTeV '11** *τς* **KLOE-2 '22** BR *πeν*/*π*⁺*π*− **New! KLOE-2 '20** BR *πμν*/*π*⁺*π*[−]

2 possible constraints:

- $\cdot \Sigma$ BR = 1
- \cdot **BR(** K_{e3})/**BR(** K_{u3}) = 0.6640(17) From ratio of phase-space integrals from current fit to dispersive *Kℓ3* form factor parameters

Only sum constraint used for fit

Little correlation for K_{e3} K_{u3} from fit 10-20% correlations with $\pi^0 \pi^0/\pi^+\pi^-$ Input measurements essentially unchanged

Fit to K_L rate data (2010)

1 constraint: Σ **BR = 1** $\chi^2/\text{ndf} = 19.8/12$ (Prob = 7.0%)

Essentially same result as 2010 fit Current PDG (since '09): **37.4/17** (0.30%)

Fit to K^{\pm} rate data (2014)

1 constraint: Σ BR = 1

Much more selective than PDG fit PDG '16: 35 inputs, 8 parameters

compare PDG '16: 53/28 (0.26%)

With **ISTRA+ '14 BR(***K***[−]** *^e***3/***π***[−]***π***⁰)** \cdot **BR(***K_e***₃)** = 5.083(27)% • Negligible changes in other parameters, fit quality

Compared to Kl2:

Many decay channels

multiple consistency checks possible

$K - \pi$ transition form factors $X - \pi$ transition form factors

ℓ

ν

Hadronic matrix element:

 $K(P)$ *π*(*p*) $\langle \pi | J_{\alpha} | K \rangle = f(0) \times [\tilde{f}_{+}(t) (P + p)_{\alpha} + \tilde{f}_{-}(t) (P - p)_{\alpha}]$ $t = (P - p)^2$ K_{e3} decays: Only **vector form factor:** $\tilde{f}_+(t)$ $(t)(P-p)_{\alpha}$ **a** $\tilde{f}_0(t) = \tilde{f}_1 + \tilde{f}_2$ *Kμ***³** decays: Also need **scalar form factor:** $m_K^- - m_{\pi}^2$

For *Vus*, need integral over phase space of squared matrix element: To extract V_{us} : need a phase-space integral over the form factor **Parameterizations based on systematic expansions Parform a fit to Dalitz plat decisions** in the system of the syst *Forexitact v_{us}. Heed a phase-space integral over the form range carriers*. Perform a fit to Dalitz plot **incorporations** Perform a fit to Dalitz plot $\sum_{i=1}^{n}$

Long-distance EM correction

Mode-dependent corrections $\Delta^{\text{EM}}{}_{K\ell}$ **to phase-space integrals** $I_{K\ell}$ **from EM-induced Dalitz plot modifications**

- Values depend on acceptance for events with additional real photon(s)
- All recent measurements assumed fully inclusive

FlaviaNet analysis and updates used Cirigliano et al. '08

• Comprehensive analysis at fixed order *e*²*p*²

Seng et al. JHEP 07 (2022)

Calculation of complete EW RC using hybrid current algebra and ChPT with resummation of largest terms to all chiral orders

- Reduced uncertainties at $O(e^2p^4)$
- Lattice evaluation of QCD contributions to *γW* box diagrams
- Conventional value of S_{FW} subtracted from results for use with standard formula for *Vus*

Seng, Galviz, Meißner 1910.13208; Seng, Galviz, MG, Meißner 2103.04843; Seng, Galviz, MG, Meißner 2203.05217; Feng, MG, Jin, Ma, Seng 2003.09798; Ma, Feng, MG, Jin, Seng 2102.12048

$|V_{us}| f_{+}(0)$ from world data $|V_{us}| f_{+}(0)$ from world data:

Evaluations of *f+*(0) $f_+(0)$ on the lattice and extraction of $|V_{us}|$

FLAG '21 averages:

$N_f = 2 + 1 + 1$ $f_+(0) = 0.9698(17)$

Uncorrelated average of:

FNAL/MILC 18: HISQ, 5sp, $m_{\pi} \rightarrow 135$ MeV, new ensembles added to FNAL/MILC 13E **ETM 16:** TwMW, 3sp, $m_\pi \rightarrow 210$ MeV, full q^2 dependence of f_{+} , f_{0}

$N_f = 2+1$ $f_+(0) = 0.9677(27)$

Uncorrelated average of:

FNAL/MILC 12I: HISQ, $m_{\pi} \sim 300$ MeV **RBC/UKQCD 15A:** DWF, $m_\pi \rightarrow 139$ MeV **JLQCD 17** not included because only single lattice spacing used

ChPT $f_{+}(0) = 0.970(8)$

Ecker 15, Chiral Dynamics 15**:** Calculation from Bijnens 03, with new LECs from Bijnens, Ecker 14

$$
|V_{us}| = 0.22330(35)_{exp}(39)_{lat}(8)_{IB}
$$

(53)_{tot} = 0.24 %

$$
\Delta_{CKM}^{(1)} = |V_{ud}|^2 + |V_{us}^{K_{\ell 3}}|^2 - 1
$$

High-precisio_n and $\left(\begin{array}{cc} |N_{1}N_{2}\setminus 2| & nC \end{array}\right)$ decay channels Theoretical evaluation of $\vert \text{Var} \vert \text{Var}$ and \vert arts, radiative corrections as important as data *ffi*⁺ 67.11, 67.12 and from *Kµ*² in eqs. 67.15, 67.16 with *N^f* = 2+1+1. Assuming 20% correlation $\Phi_{\text{CKM}} = |v_{ud}| - |I + \sqrt{|\bar{V}_{ud}|} - 1$ $f = 1$ and f its, radiative correction

Past ~5 years: ChPT is officially superseded by lattice; LQCD results very consistent! **when |***Vud***| obtained from beta decays:** Past ~5 years: ChPT is officially superseded by lattice; LQCD results very consist *V***us** = 0.23431(8) S = 2.23431(8) S = 2.57.281(8) S = 2.57.2

Great consistency_{AV_{us}}(
$$
K_{\ell 3} - K_{\mu 2}
$$
) = $V_{us}^{K_{\ell 3}} - V_{ud} \left(\frac{V_{us}}{V_{ud}}\right)^{K_{\mu 2}}$

 $K\mu2$ channel: first ever QCD+QED calculation on the lattice 67.11, 67.12 and from *Kµ*² in eqs. 67.15, 67.16 with *N^f* = 2+1+1. Assuming 20% correlation $\frac{dy}{dx}$ diametring the cycle first ever QCD+QED calculation on the lattice

$$
\Delta_{\text{CKM}}^{(3)} = |V_{us}^{K_{\ell 3}}|^2 \left[\left(\frac{1}{|V_{us}/V_{ud}|^{K_{\mu 2}}} \right)^2 + 1 \right] - 1 = -0.0164(63) \quad -2.6\sigma
$$

Unitarity → $|V_{ud}^{K\ell 3}| = \sqrt{1 - |V_{us}^{K\ell 3}|^2} = 0.9747(1)$ Upcoming exp. Belle II, NA62, KOTO Unitarity $\rightarrow |V_{ud}^{K\mu2}| = [1 + |(V_{us}/V_{ud})^{K\mu2}|^2]^{-1/2} = 0.9743(1)$ $K\mu$ 2 - $K\ell$ 3 discrepancy confirmed cabibbo anomaly even w/o info on V_{ud}! Upcoming exp. Belle II, NA62, K0T0 $K\mu$ 2 - $K\ell$ 3 discrepancy confirmed Unitarity $\rightarrow |V_{ud}^{K\ell}^3| = \sqrt{1 - |V_{us}^{K\ell}^3|^2} = 0.9747(1)$ eort [56] that incorporates SU(3) breaking found *Vus* = 0*.*226(5). Strangeness changing tau decays,

Hyperon and tau decays: not precise enough or inconsistent — Belle II, Super Tau-Charm Factory? $|V_{us}| = 0.2250(27)$ (Hyperon Decays) $|V_{ud}^{\text{Hyp}}| = 0.9743(6)$ | $V_{ud}^{\tau}| = 0.9753(3)$ au decavs: not precise enough or inconsistent — Relle II, Suner Tau-Charm Factor $|V_{us}| = 0.2207(14)$ (Tau Decays) $|V_{ud}^{\tau}| = 0.9753(3)$

Vud from world data

V_{ud} from neutron decay

^R) Neutron decay: ² measurements needed

$$
|V_{ud}|^2 = \frac{5024.7 \text{ s}}{\tau_n (1 + 3g_A^2)(1 + \Delta_R^V)}
$$

RC Δ_R^V : bottleneck since 40 years

 Pre -2018: $\Delta_R^V = 0.02361(38)$ Marciano, Sirlin PRL 2006 Post-2018: $\Delta_R^V = 0.02479(21)$ MG, Seng Universe 2023

Since 2018: DR+data+pQCD+EFT+LQCD Δ_R^V uncertainty: factor 2 reduction

C-Y Seng et al., PRL 2018; PRD 2019 A. Czarnecki, B. Marciano, A. Sirlin, PRD 2018 K. Shiells et al, PRD 2021; L. Hayen PRD 2021 P-X Ma, X. Feng, MG, L-C Jin, et al *[2308.16755](https://arxiv.org/abs/2308.16755)*

Experiment: factor 3-5 uncertainties improvement; discrepancies in τ_n and g_A

 $g_A = -1.27641(56)$ $g_A = -1.2677(28)$ 3.4*σ* $\tau_n = 877.75(28)_{-12}^{+16}$ −12 $\tau_n = 887.7(2.3)$ 4*σ*

PERKEO-III *B. Märkisch et al, Phys.Rev.Lett. 122 (2019) 24, 242501* **aSPECT** *M. Beck et al, Phys. Rev. C101 (2020) 5, 055506; 2308.16170*

UCN*τ F. M. Gonzalez et al. Phys. Rev. Lett. 127 (2021) 162501* **BL1 (NIST)** *Yue et al, PRL 111 (2013) 222501*

PDG average **Single best measurements only** Single best measurements only $|V_{ud}^{\text{free n}}| = 0.9743(3)_{\tau_n}(8)_{g_A}(1)_{RC}[9]_{total}$

 $|V_{ud}^{\text{free n}}| = 0.9740(2)_{\tau_n}(3)_{g_A}(1)_{RC}[4]_{total}$

Vud from semileptonic pion decay

 P ion decay $\pi^+ \to \pi^0 e^+ \nu_e$: theoretically cleanest, experimentally tough

$$
|V_{ud}|^2 = \frac{0.9799}{(1+\delta)} \frac{\Gamma_{\pi\ell 3}}{0.3988(23) \text{ s}^{-1}} \qquad |V_{ud}^{\pi\ell 3}| = 0.9739 (27)_{exp}(1)_{RC}
$$

RC to semileptonic pion decay δ uncertainty: factor 3 reduction

ChPT: $\delta = -0.0334(10)_{\text{LEC}}(3)_{\text{HO}}$ Cirigliano et al, 2003; Passera et al, 2011 $DR + LQCD + ChPT: \delta = 0.0332(1)_{\gamma W} (3)_{\text{HO}}$ *Feng et al, 2020; Yoo et al, 2023*

Future exp: 1 o.o.m. (PIONEER @ PSI)

Talk by Saul Cuen-Rochin on Monday

V^{*ud*} from superallowed $0^+ - 0^+$ nuclear decays

1. Transitions within $J^p=0^+$ isotriplets (T=1). 2. Elementary process: p—>ne+ *ν* 3. Only conserved vector current 4. 15 measured to better than 0.2% 5. Internal consistency as a check 6. SU(2) good \rightarrow corrections ~small NUMBE 30 10 $^{\rm 10}$ C

V^{*ud*} from superallowed $0^+ - 0^+$ nuclear decays

Ex Exp.: **f** - phase spa Exp.: **f** - phase space (Q value)

 $\overline{}$ ft values: same within ~2% but not exactly! Reason: SU(2) slightly broken

a. RC (e.m. interaction does not conserve isospin)

--

,

- ┑.

,

ш. Ш.

-

Ш. п.

٠.

Ш.

Ш. ⊣.

-

-

,

b. Nuclear WF are not SU(2) symmetric (proton and neutron distribution not the same)

Vud extraction: Universal RC and Universal Ft

To obtain Vud -> absorb all decay-specific corrections into universal Ft

Vud extraction: Universal RC and Universal Ft Ω **CEA CATE CATE CARGE CATE CATE**

To obtain Vud \rightarrow absorb all decay-specific corrections into universal Ft \mathbf{r} and \mathbf{r} and y-specific correcti

Are all SM contributions under control?

Radiative Corrections to beta decay: Overall Setup

RC to beta decay: separating scales

Generically: only IR and UV extremes feature large logarithms! Works by Sirlin (1930-2022) and collaborators: all large logs under control

IR: Fermi function (Dirac-Coulomb problem) + Sirlin function (soft Bremsstrahlung)

W,Z - loops

UV structure of SM

UV: large EW logs + pQCD corrections

Inner RC: energy- and model-independent

*γW***-box: sensitive to all scales**

New method for computing EW boxes: dispersion theory Combine exp. data with pQCD, lattice, EFT, ab-initio nuclear

2

 $\int_{(2\pi)^4}^{a} e^{iq \cdot x} p T \{J_{em}^{\mu}(x) (J_W^{\nu}(0))_A\} n = \int_{2m_N V}^{2\pi} T_3(\nu, Q)$

iq x $p T\{J^{\mu}_{\mu}(x)(J^{\nu}_{\mu}(0))\}\}$ $n =$

4

 e^{em} $\left(\frac{\lambda}{\mu}\right)$ $\left(\frac{\nu}{\mu}\right)$ $\left(\frac{\nu}{\mu}\right)$

 $e^{iq \cdot x}$ $p T\{J_{em}^{\mu}(x) (J_{W}^{\nu}(0))_{A}\}\; n$

 $\int \frac{d^4q}{(2\pi)^4} e^{iq \cdot x} p T \{J_{em}^{\mu}(x) (J_{W}^{\nu}(0))_{A}\} n = \frac{i \varepsilon^{\mu\nu\alpha\beta}}{2m}$

4

 d^4q

π

m $T_3(v,-q)$

3

2

 $T_3(\nu, Q)$

q

ε

q

m

N

ν

 α Υ β

 $i\varepsilon^{\mu\nu\alpha\beta}p_{\alpha}q$

2 P 2 a^2

 $(\text{Rec})_{\text{rad}} = 8\pi^2 \text{ Re} \int \frac{d^2q}{(2\pi)^4} \frac{m_W^2}{m_W^2 - q^2} \frac{v^2 - q^2}{(q^2)^2} \frac{I_3(v, -q^2)}{m_W^2}$ π π $W - Y$ (q) W_N *W* $m_W^2 - q$ $g(c)_{\text{rad}} = 8\pi^2 \text{Re} \int d^4q \frac{m_W^2}{r^2} v^2 - q^2 T_3(v, -q^2)$ (2π) $\text{Re } c$ _{md} = $8\pi^2$ Re 2 α^2 4 2 m.d $=8\pi^2 \text{Re} \int \frac{d^4q}{(2\pi)^4} \frac{m_W^2}{m_W^2-q^2} \frac{v^2-q^2}{(a^2)^2} \frac{T_3(v,-1)}{m_V^2}$ UV-sensitive γW -box on free neutron Δ_R^V : Sirlin, Marciano, Czarnecki 1967 - 2006

$$
g_V^2 = |V_{ud}|^2 \left[1 + \frac{\alpha}{2\pi} \left\{ 3 \ln \frac{M_Z}{M_p} + \ln \frac{M_Z}{M_W} + \tilde{a}_g \right\} + \delta_{\text{QED}}^{HO} + 2 \square_{\gamma W} \right]
$$

 N uclear structure: $\delta_{\text{NS}} = 2(\Box_{\gamma W}^{\text{Nucl}} - \Box_{\gamma W}^{\text{free n}})$

All non-enhanced terms $\;\sim \alpha/2\pi\sim\,10^{-3}$ — only need to ~10%

Unified Formalism for Δ_R^V and $\delta_{\rm NS}$ Dispersion Theory of the $γW$ -box

2^{*N*} hay hy Marciano & Sirlin h_1 , Maraiana & Cirlin and so its connection to the older notation in [5] is just ⇤*V A ^W* = (↵*/*2⇡) (Re *c*) *V A ^W* . The explicit expression of ⇤*V A ^W* is ad N hovebur Moroiono & Cirlin **the web but we we have a** yW-box by Marciano & Sirlin $VVV-U$ ν and *t* dependent. In particular, the ν (or ε) dependence of To calculate the *real part of the γ* by hij Niarniann X, ' adispersion with the calculation with α of the imaginary part of the imaginary part of the direct box (the crossed box) α

$$
\Box_{\gamma W}^{VA} = 4\pi \alpha \text{Re} \int \frac{d^4q}{(2\pi)^4} \frac{M_W^2}{M_W^2 + Q^2} \frac{Q^2 + \nu^2 T_3(\nu, Q^2)}{Q^4} \frac{T_3(\nu, Q^2)}{M\nu} \frac{\partial^2}{\partial \nu} \frac{\partial^2}{\partial \nu} \frac{\partial^2}{\partial \nu} \frac{\partial^2}{\partial \nu} \frac{\partial^2}{\partial \nu} \frac{\partial^2}{\partial \nu} = \frac{Q^2}{m_N} \frac{Q^2}{(pq)/M}
$$

$$
\Box_{\gamma W}^{VA} = 4\pi \alpha \text{Re} \int \frac{d^4q}{(2\pi)^4} \frac{M_W^2}{M_W^2 + Q^2} \frac{Q^2 + \nu^2}{Q^4} \frac{T_3(\nu, Q^2)}{M\nu} \qquad \qquad \sum_{\substack{n = -\infty \\ n \to \infty}}^{\infty} \sum_{\substack{q = -\infty \\ n \to \infty}}^{\infty} \frac{e}{n}
$$

 m_N^2 $Q^2 = -q^2$ *^W* !! (i.e. *V* ⇥ *A* is NOT the only

 $T_3(\nu, Q)$

m

N

ν

 α Υ β

 $i\varepsilon^{\mu\nu\alpha\beta}p_{\alpha}q$

µναβ

ε

 $\frac{dQ^2M_W^2}{M_W^2+Q^2}F^{\rm DIS}(Q^2)=\frac{\alpha}{4\pi}$

10

 Λ

 $\ln \frac{M_W}{\Lambda}$

*M*arciano & Sirlin used loop techniques: Marciano & Sirlin used loop techniques: ∼*MW , MZ*. Higher-order perturbative QCD corrections to *Marciano & Sirlin used loop te* theoretical uncertainty associated with the set of \mathbf{u}

$$
\begin{array}{ll}\n\text{miques:} & (\text{Re}c)_{\text{m}d} = 8\pi^2 \text{Re} \int_{Q_2} d^4 q \, \text{Re}^2 \frac{m_W^2}{m_W^2} \frac{d^2}{d^2} \left(\frac{d^2}{d^2} \right)^2 \frac{d^2}{d^2} \left(\frac{d^2}{d^2} \right)^2 \left(\frac{d^2}{d^
$$

iq x $p T\{J_{m}^{\mu}(x) (J_{m}^{\nu}(0))\}$ $\}$ $n = \frac{1}{2} P_{\alpha} q_{\beta} T_{\nu}(y)$

 e^{em} $\left(\frac{\lambda}{l}\right)$ $\left(\frac{\lambda}{l}\right)$ $\left(\frac{\lambda}{l}\right)$ $\left(\frac{\lambda}{l}\right)$

 $dQ^2M_W^2$

 $\int^P \int \infty$

 Λ^2

 $\sqrt{ }$

Situation, the contribution contribution of the situation of \mathcal{C}

\n
$$
\text{Short distance } Q^2 >> F^{\text{DIS}}(Q^2) = \frac{1}{Q^2}
$$
\n

\n\n $\text{Short distance } Q^2 >> F^{\text{DIS}}(Q^2) = \frac{1}{Q^2}$ \n

\n\n $\text{Sport distance } Q^2 >> F^{\text{DIS}}(Q^2) = \frac{1}{Q^2}$ \n

\n\n $\text{Sny}^{\text{SVD}} = \frac{\int_{\gamma W} d^4 q \, e^{iq \cdot x}}{8 \pi} \int_{\Lambda^2}^{\infty} \frac{d^4 Q^2 M_W^2}{M_W^2 + Q^2} F^{\text{DIS}}(Q^2) = \frac{\alpha}{4 \pi} \ln \frac{M_W}{\Lambda}$ \n

Finite Q² - F^{DIS} $P¹¹¹³$ $\begin{array}{ccc} \textsf{Finite Q}^\textsf{2} \textsf{-} & & & F^{\textsf{DIS}}\ \textsf{pQCD}\textsf{ corrections:} & & & \end{array}$

$$
\text{Finite Q2 -}\n\text{pQCD corrections:} \qquad \qquad F^{\text{DIS}} = \frac{1}{Q^2} \rightarrow \frac{1}{Q^2} \left[1 - \frac{\alpha_s^{\overline{MS}}}{\pi} \right]
$$

mental data: while *F^W F WW* Long distance Q²<< - elastic box \mathbf{f} dispersion relations and it was found that \mathbf{f}

4

 \ddot{o} found at \ddot{o} energy. Moreover, the energy of \ddot{o} energy \ddot{o} MS 1987: asymptotic + pQCD + Born

 $\left[\begin{matrix} -R \end{matrix} \right]$ $2\pi \left[\begin{matrix} m \Lambda & 1 & 1 & g \ \end{matrix} \right]$ $\overline{z} = 2\sqrt{M}$ ΔV $\left| \Delta R \right|$ and $\left| \Delta R \right|$ a Δ_R^V γ^{V} = α 2π \int ln $\frac{M_W}{\Lambda}$ $\frac{d^2W}{dA} + A_g + 2C_B$ $\overline{}$ $~1$ -0.24 1.85

Problem: connecting short and long distances 3. For a fixed value of *Q*² one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak

W-box by Marciano & Sirlin C. Inelastic contributions beyond DIS In the remaining piece of the *Q*²-integral we can once again neglect the *Q*²-dependence of the *W*-propagator, and

MS 2006 update

Short distance:

\n
$$
F^{\text{DIS}} = \frac{1}{Q^2} \rightarrow \frac{1}{Q^2} \left[1 - \frac{\alpha_s^{MS}}{\pi} - C_2 \left(\frac{\alpha_s^{MS}}{\pi} \right)^2 - C_3 \left(\frac{\alpha_s^{MS}}{\pi} \right)^3 \right]
$$
\nGLS and Bjorken SR to N3LO

\n
$$
Q^2 > Q_2^2
$$
\nInterpolate between them

\nVector Dominance Model Ansatz

\n
$$
F^{\text{INT}}(Q^2) = -\frac{1.490}{Q^2 + m_\rho^2} + \frac{6.855}{Q^2 + m_A^2} - \frac{4.414}{Q^2 + m_\rho^2}
$$
\n
$$
Q^2 < Q_1^2
$$
\nLong distance: Born

\n
$$
F(Q^2) = F^B(Q^2)
$$
\n
$$
\left[\Delta_R^V \right]^{\gamma W} = \frac{\alpha}{2\pi} \left[\ln \frac{M_W}{\Delta} + A_g + 2C_B \right]
$$
\n
$$
\left[\Delta_R^V \right]^{\gamma W} = \frac{\alpha}{2\pi} \left[\ln \frac{M_W}{\Delta} + A_g + 2C_B \right]
$$
\n
$$
= \frac{1.490}{2\pi} \left[\ln \frac{M_W}{\Delta} + A_g + C^{Int} + 2C_B \right]
$$
\n
$$
= \frac{\alpha}{2\pi} \left[\ln \frac{M_W}{\Delta} + A_g + C^{Int} + 2C_B \right]
$$
\n
$$
= \frac{\alpha}{2\pi} \left[\ln \frac{M_W}{\Delta} + \frac{\alpha}{2\pi} \left[\ln \frac{M_W}{\
$$

Uncertainty reduced by a factor ~2

γW-box from dispersion relations Single-nucleon radiative correction radiative correction radiative correction radiative correction radiative c
Single-nucleon radiative correction radiative correction radiative correction radiative correction radiative c Single-nucleon radiative correction *k* from dispersion relations

Superallowed 0+ → 0+ : Model-dependent part or RC: *γW*-box The next non-trivial integral is the part of the *W*-box diagram with an ✏-tensor:

$$
\delta \mathfrak{M}^b_{\gamma W} = -i \frac{G_F V_{ud} e^2}{\sqrt{2}} L_{\lambda} \int \frac{d^4 k}{(2\pi)^4} \frac{m_W^2}{m_W^2 - k^2} \frac{\epsilon^{\mu\nu\alpha\lambda} k_{\alpha}}{[(p_e - k)^2 - m_e^2] k^2} T_{\mu\nu}
$$

Major source of theory uncertainty: "g**W-box diagram**"

Estimate by Marciano and Sirlin, state-of-the-art result

from 2006 to 2018:

Generalized Compton tensor $time-ordered$ product $-$ complicated!

 $\boldsymbol{1}$ $\frac{1}{2}$

p2

CYS, Gorchtein, Patel and Commutator (Im part) - only on-shell hadronic states — related to data to include the bremsstrahlung process which emits an extra photon, as depicted in Fig.2.

 $\int dx e^{iqx} \langle H_f(p) | [J_{em}^{\mu}(x), J_{W}^{\nu,\pm}(0)] | H_i$ $\int dx e^{iqx} \langle H_f(p) | T\{J_{em}^{\mu}(x)J_{W}^{\nu,\pm}(0)\} | H_i(p) \rangle$ $\int dx e^{iqx} \langle H_f(p) | [J_{em}^{\mu}(x), J_{W}^{\nu,\pm}(0)] | H_i(p) \rangle$ *^g^µ*⌫ *^k^µ*"⇤⌫ ⁺ *^k*⌫"⇤*^µ* ⁺ *ⁱ*✏ *^µ*⌫↵*k*↵"⇤ σ _{*l*} μ _{*l*}

γW-box from dispersion relations Single-nucleon radiative correction radiative correction radiative correction radiative correction radiative c
Single-nucleon radiative correction radiative correction radiative correction radiative correction radiative c Single-nucleon radiative correction *k* from dispersion relations

Superallowed 0+ → 0+ : Model-dependent part or RC: *γW*-box The next non-trivial integral is the part of the *W*-box diagram with an ✏-tensor:

$$
\delta \mathfrak{M}^b_{\gamma W} = -i \frac{G_F V_{ud} e^2}{\sqrt{2}} L_{\lambda} \int \frac{d^4 k}{(2\pi)^4} \frac{m_W^2}{m_W^2 - k^2} \frac{\epsilon^{\mu\nu\alpha\lambda} k_{\alpha}}{[(p_e - k)^2 - m_e^2] k^2} T_{\mu\nu}
$$

Major source of theory uncertainty: "g**W-box diagram**"

Estimate by Marciano and Sirlin, state-of-the-art result

from 2006 to 2018:

Generalized Compton tensor $time-ordered$ product $-$ complicated!

$$
\left| \, dx \, e^{iqx} \langle H_f(p) \, | \, T \{ J_{em}^{\mu}(x) J_W^{\nu, \pm}(0) \} \, | \, H_i(p) \rangle \right|
$$

alized (non-diagonal) Compton amplitudes In *Hayen, 2020* /
*o*mnton amn *f* Comple Generalized (non-diagonal) Compton amplitudes Matterference structure functions

 \overline{p} complex v-plane with singularities on the real axis - poles + cuts Amplitudes = analytic functions inside the contour C in the

Discontinuity ~ structure functions

CYS, Gorchtein, Patel and Commutator (Im part) - only on-shell hadronic states — related to data to include the bremsstrahlung process which emits an extra photon, as depicted in Fig.2.

$$
\int dx e^{iqx} \langle H_f(p) | T\{J_{em}^{\mu}(x)J_{W}^{\nu,+}(0)\} | H_i(p) \rangle \qquad \int dx e^{iqx} \langle H_f(p) | [J_{em}^{\mu}(x), J_{W}^{\nu,+}(0)] | H_i(p) \rangle
$$

ference structure functions

i^{*yW*}(*ν*, *Q*²) = $2πF_i^{\gamma W}(v, Q^2)$

Universal RC from dispersion relations

 Γ 3, Finally, theorem (dispersion relation) + some algebra Cauchy theorem (dispersion relation) + some algebra

$$
\Box_{\gamma W}^{b,e}(E_e) = \frac{\alpha}{\pi} \int_0^\infty dQ^2 \frac{M_W^2}{M_W^2 + Q^2} \int_{\nu_{\rm thr}}^\infty \frac{d\nu'}{\nu'} \frac{\nu' + 2\sqrt{\nu'^2 + Q^2}}{(\nu' + \sqrt{\nu'^2 + Q^2})^2} \frac{F_{3,-}(\nu', Q^2)}{M f_+(0)} + \mathcal{O}(E_e^2)
$$

$$
\Box_{\gamma W}^{b,o}(E_e) = \frac{2\alpha E_e}{3\pi} \int_0^\infty dQ^2 \int_{\nu_{\rm thr}}^\infty \frac{d\nu'}{\nu'} \frac{\nu' + 3\sqrt{\nu'^2 + Q^2}}{(\nu' + \sqrt{\nu'^2 + Q^2})^3} \frac{F_{3,+}(\nu', Q^2)}{M f_+(0)} + \mathcal{O}(E_e^3)
$$

Structure functions are measurable or may be related to data

Universal RC from dispersion relations

 Γ 3, Finally, theorem (dispersion relation) + some algebra Cauchy theorem (dispersion relation) + some algebra

$$
\Box_{\gamma W}^{b,e}(E_e) = \frac{\alpha}{\pi} \int_0^\infty dQ^2 \frac{M_W^2}{M_W^2 + Q^2} \int_{\nu_{\rm thr}}^\infty \frac{d\nu'}{\nu'} \frac{\nu' + 2\sqrt{\nu'^2 + Q^2}}{(\nu' + \sqrt{\nu'^2 + Q^2})^2} \frac{F_{3,-}(\nu', Q^2)}{M f_+(0)} + \mathcal{O}(E_e^2)
$$

$$
\Box_{\gamma W}^{b,o}(E_e) = \frac{2\alpha E_e}{3\pi} \int_0^\infty dQ^2 \int_{\nu_{\rm thr}}^\infty \frac{d\nu'}{\nu'} \frac{\nu' + 3\sqrt{\nu'^2 + Q^2}}{(\nu' + \sqrt{\nu'^2 + Q^2})^3} \frac{F_{3,+}(\nu', Q^2)}{M f_+(0)} + \mathcal{O}(E_e^3)
$$

Structure functions are measurable or may be related to data

Input into dispersion integral - $\nu/\bar{\nu}$ data

Isospin symmetry: Mixed CC-NC *γW* SF (no data) <—> Purely CC WW SF (inclusive neutrino data)

Input into dispersion integral - $\nu/\bar{\nu}$ data

Isospin symmetry: Mixed CC-NC *γW* SF (no data) <—> Purely CC WW SF (inclusive neutrino data)

 \mathcal{L} may come from the Deep United Neutrino Experiment (DUNE), \mathcal{R} DR (Seng et al. 2018): $\Delta_R^V = 0.02467(22) \rightarrow |V_{ud}| = 0.97370(10)_{Ft}(10)_{RC}$

Input into dispersion integral - $\nu/\bar{\nu}$ data

Isospin symmetry: Mixed CC-NC *γW* SF (no data) <—> Purely CC WW SF (inclusive neutrino data)

 \mathcal{L} may come from the Deep United Neutrino Experiment (DUNE), \mathcal{R} DR (Seng et al. 2018): $\Delta_R^V = 0.02467(22) \rightarrow |V_{ud}| = 0.97370(10)_{Ft}(10)_{RC}$

Shift upwards by 3σ + reduction of uncertainty by factor 2

Confirmed by lattice QCD: LQCD on pion + pheno:

LQCD on neutron:

 $\Delta_R^V = 0.02439(19)_{\text{LQCD}^{\text{n}}}$ **Ma, Feng, MG et al 2308.16755**

 $\Delta_R^V = 0.02477(24)_{LQCD^{\pi}+\text{pheno}}$ Seng, MG, Feng, Jin, 2003.11264

EFT: scale separation for free n

Cirigliano et al, 2306.03138

Effective Field Theory: explicit separation of scales + RGE running between $SM \rightarrow$ LEFT (no H,t,Z,W) \rightarrow ChPT \rightarrow NR QED Formal consistency built in, RGE, transparent error estimation (naturalness) Precision limited by matching (LEC) and HO — relies on inputs (e.g. $γW$ -box from DR) To improve: need to go to higher order $-$ new LECs, still tractable? At present: order $O(\alpha,\alpha\alpha_{\rm\scriptscriptstyle S},\alpha^2)$ — realistic to go beyond? re Field Theory: explicit separation of sca

—> LEFT (no H,t,Z,W) —> ChPT —> NR (α ²) – realistic to go α *a*²) – realistic to go bevond?

Total RC: $1 + \Delta_{\text{TOT}} = 1.07761(27)\,\%$

Good agreement within errors!

ν^e e

Total RC from DR: $1+\Delta_{\rm TOT}=1.07735(27)\,\%$

Nuclear-Structure RC $δ$ **_{NS}**

History of δ_{NS} : γW -box on nuclei

Jaus, Rasche 1990

 γ and W on same nucleon \Longrightarrow already in Δ^V_R : drop!

Towner 1994

Nucleons are bound — free-nucleon RC modified: δ^A_{NS}

 γ and W on distinct nucleons \Longrightarrow only in nuclei: δ^B_{NS} Jaus, Rasche 1990; Hardy, Towner 1992-2020

History of δ_{NS} : γW -box on nuclei

Jaus, Rasche 1990

 γ and W on same nucleon \Longrightarrow already in Δ^V_R : drop!

Towner 1994

Nucleons are bound — free-nucleon RC modified: δ^A_{NS}

 γ and W on distinct nucleons \Longrightarrow only in nuclei: δ^B_{NS} Jaus, Rasche 1990; Hardy, Towner 1992-2020

Seng et al. 2018: continuum contribution (quasielastic nucleon knockout) $-$ can check the δ^A_{NS} calculation explicitly in dispersion theory in Fermi gas model

MG 2019: energy dependence non negligible: $\mathcal{F}t = ft(1 + \delta_{NS}^A + \delta_{NS}^{E-dep} + ...)$

History of δ_{NS} : γW -box on nuclei

Jaus, Rasche 1990

 γ and W on same nucleon \Longrightarrow already in Δ^V_R : drop!

Towner 1994

Nucleons are bound — free-nucleon RC modified: δ^A_{NS}

 γ and W on distinct nucleons \Longrightarrow only in nuclei: δ^B_{NS} Jaus, Rasche 1990; Hardy, Towner 1992-2020

Seng et al. 2018: continuum contribution (quasielastic nucleon knockout) $-$ can check the δ^A_{NS} calculation explicitly in dispersion theory in Fermi gas model

MG 2019: energy dependence non negligible: $\mathcal{F}t = ft(1 + \delta_{NS}^A + \delta_{NS}^{E-dep} + ...)$

 $\delta \mathcal{F} t = - (3.5 \pm 1.0)s + (1.6 \pm 0.5)s$ $\delta \mathcal{F} t = - (1.8 \pm 0.4)s + (0 \pm 0)s$ New estimate: Old estimate:

Two effects cancel but introduce 100% uncertainty: $\mathcal{F}t = (3072.1 \pm 0.7)s \rightarrow \mathcal{F}t = (3072 \pm 2)s$ Has to be checked in modern ab-initio nuclear theory

Dispersion theory of δ_{NS} with ab-initio input

Low-momentum part of the loop: account for nucleon d.o.f. only

Ab-initio methods:

A. Ekström et al, [2212.11064](https://arxiv.org/abs/2212.11064)

NN interaction from chiral EFT: systematically improvable, self consistent

Solve many-body QM problem with potential derived from *χ*EFT

Dispersion theory of δ_{NS} with ab-initio input

Low-momentum part of the loop: account for nucleon d.o.f. only

Ab-initio methods:

NN interaction from chiral EFT: systematically improvable, self consistent

Solve many-body QM problem with potential derived from *χ*EFT

First case study: ${}^{10}C \rightarrow {}^{10}B$ in No-Core Shell Model (NCSM)

NCSM result for ${}^{10}C \rightarrow {}^{10}B$: Compare to Hardy-Towner

 $\delta_{\text{NS}} = -0.406(39)\%$

M. Gennari et al, **2405.19281**

$$
\delta_{\rm NS} = -0.347(35)\,\%
$$
 (2014)

$$
\delta_{\rm NS} = -0.400(50)\,\%
$$
 (2020)

A. Ekström et al, [2212.11064](https://arxiv.org/abs/2212.11064)

Nuclear Corrections

QED: Corrections to Decay Spectrum

$$
f = m_e^{-5} \int_{m_e}^{E_0} dE_e \sqrt{\vec{p}_e \left[E_e (E_0 - E_e)^2 \right] F(E_e) C(E_e) Q(E_e) R(E_e) r(E_e)}
$$

Unperturbed beta spectrum

Fermi function: e+ in Coulomb field of daughter nucleus

Shape factor: spatial distribution of decay Atomic screening and overlap corrections

Traditionally: assumed that decay probability is equally distributed across the entire nucleus

Recent development:

isospin symmetry $+$ known charge distributions

Only the outer protons can decay: all neutron states in the core occupied

Photon probes the entire nuclear charge

Relative shift in f-values downwards of 0.01-0.1% Non-negligible given the precision goal 0.01%

–
Y **e+** $\overline{\mathbf{v}}$ ρ_{ch} **(r)** $\rho_{\text{cw}}(\mathbf{r})$

> **Seng, 2212.02681 MG, Seng 2311.16755**

Recoil correction

Isospin breaking in nuclear WF: *δC* Tree-level effect — ISB "large"

Isospin symmetry breaking in superallowed *β*-decay **!!
 !"-**

Tree-level Fermi matrix element **-**

$$
M_F = \langle f | \tau^+ | i \rangle
$$

— Isospin operator *τ*+ $|i\rangle, |f\rangle$ – members of T=1 isotriplet $\ddot{}$

Isospin symmetry breaking in superallowed *β*-decay **!!
 !"-**Pouring in Supe

Tree-level Fermi matrix element **-**

 $M_F = \langle f | \tau^+ | i \rangle$

— Isospin operator *τ*+ $|i\rangle, |f\rangle$ – members of T=1 isotriplet $\ddot{}$ **^{**} $\langle i \rangle$ $\langle f \rangle$ <u>—</u> memhers of T=1 isotrinlet **THEL**

 \overline{M}_{-} If isospin symmetry were exact, $M_F \rightarrow M_0 = \sqrt{2}$ *-*If Isospin symmetry were exact*, i*v

aromb, nacieon mass c **Provided**
Provided and **Provided** \blacksquare (e.g. Coulomb, nucleon mass difference, ...) Isospin symmetry is broken in nuclear states

 $|\vec{M}|^2 - |M|^2(1 - \hat{s})$ $H^{11}F1 = H^{11}01$ $H^{10}C$ Ma In presence of isospin symmetry breaking (ISB): $|M_F|^2 = |M_0|$ ² (1 [−] *^δC*) MacDonald ¹⁹⁵⁸

ISB correction almost singlehandedly aligns ft-values! **0.**-**/1.**- **1**- **/0 handedly** align

$$
\delta_C \sim 0.17\% - 1.6\%
$$
!

Crucial for V_{ud} extraction Crucial for V_{ud} extraction

- *J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501*

BSM searches with superallowed beta decays

Induced scalar CC —> Fierz interference bF

$$
\mathcal{F}t^{SM} \to \mathcal{F}t^{SM} \left(1 + b_F \frac{m_e}{\langle E_e \rangle}\right)
$$

 $b_F = -0.0028(26)$ \sim consistent with 0

Independently of V_{ud} and CKM unitarity: internal consistency of the data base with SM! $\Lambda^{(3)}$ does not require other experimental ine the approximate loci the *Ft* values would follow if a scalar current Like $\Delta_{CKM}^{(3)}$ does not require other experimental inputs to make a statement on (B)SM CKM

existed with *bF* = ±0*.*004. Entangled with nuclear theory uncertainties $-$ a global effort of nuclear theory community needed

rest-mass units, and ^γ¹ ⁼ ! [1 − (α*Z*)2]*.* The strength of the S, T interaction flips helicity: Suppressed at high energy $\frac{0.005}{0.18}$

interaction a decay vs. LHC on S,T **Examplementarity now and in the future!** $\frac{1}{2}$ $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\$ Complementarity now and in the future!

Gonzalez-Alonso et al 1803.08732

-0.010

Nuclear model dependence of *δ^C* IVM (isolational density functional density of \mathcal{A} **theory** is the *also given in the z*

J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

 $\frac{2}{10}$ i.e. $\frac{2}{10}$ for $\frac{2}{10}$ in the least-squares fit fit from $\frac{2}{10}$ for $\frac{2}{10}$ HT: χ^2 as criterion to prefer SM-WS; V_{ud} and limits on BSM strongly depend on nuclear model on bonn strongly acpend on nacieal model

 $\overline{\mathsf{N}}$ \mathcal{L} , \mathcal{L} , \mathcal{L} , \mathcal{L} and \mathcal{L} \mathcal{L} and \mathcal{L} \mathcal{L} \mathcal{L} , \mathcal{L} *J* (*I* **T** (*I*) (*T*) (*I*) (*T*) Especially interesting for light nuclei accessible to different techniques! Nuclear community embarked on ab-initio δ_C calculations (NCSM, GFMC, CC, IMSRG)

Data-Driven $δ_C$ from nuclear radii *^A* ≡ ⟨*^f* [|]*M(*1*)*

ISB-sensitive combinations of radii can be constructed seng,

Seng, MG 2208.03037; 2304.03800; 2212.02681

$$
\Delta M_B^{(1)} \equiv \frac{1}{2} \left(Z_1 R_{p,1}^2 + Z_{-1} R_{p,-1}^2 \right) - Z_0 R_{p,0}^2 \qquad \Delta M_B^{(1)} = 0 \text{ used for ft-value in isospin limit}
$$

\n
$$
\Delta M_A^{(1)} \equiv - \langle r_{CW}^2 \rangle + \left(\frac{N_1}{2} \langle r_{n,1}^2 \rangle - \frac{Z_1}{2} \langle r_{p,1}^2 \rangle \right) \qquad \text{Neutron radius: measurable with PV e-scattering!}
$$

\n
$$
\overrightarrow{e^-}
$$

\n
$$
\overrightarrow{e^-}
$$

\n
$$
A_f^{PV} = -\frac{G_F Q^2}{4\sqrt{2} \pi \alpha} \frac{Q_W}{Z} \frac{F_{NW}(Q^2)}{F_{Ch}(Q^2)} \qquad R_{NW} \approx R_n
$$

stable nuclear isotopes, mainly from the atomic spectroscopy \mathcal{L} . The atomic spectroscopy \mathcal{L} Z-DOSOII COUPIES TO HEUTIONS, PHOTOIT - TO PHOTOIS, *Reproducional component correlation* and correlation are correlated and correlation and contract correlation and contract correlation and contract correlation and correl Z-boson couples to neutrons, photon - to protons;

PV asymmetry at low Q² sensitive to the difference $\langle r_{n,1}^2 \rangle - \langle r_{p,1}^2 \rangle$ - neutron skin Extensive studies in neutron rich nuclei (PREX, CREX) \rightarrow input to physics of neutron stars

Upcoming exp. program at Mainz (MREX) Neutron skins of stable daughters (e.g. Mg-26, Ca-42, Fe-54) PV asymmetry on C-12 for a sub-% measurement of R_n \blacksquare N nexpected connections via neutron skins: *R*_{ne} a vibrant is the subjected connections via neutron skins: experient composition in model of same. to school the scott of the scope of the properties of the neutron-ISB for precision tests vs. EoS of neutron-rich matter

N. Cargioli, MG et al, [2407.09743](https://arxiv.org/abs/2407.09743)

Summary & Outlook

Cabibbo Angle Anomaly at 2-3 *σ*

Future experiments:

Neutron: UCN τ , τ SPECT ($\delta \tau_n$: 0.4 \rightarrow 0.1*s*); PERC, Nab (δg_A : 4 \rightarrow 1 \times 10⁻⁴) Competitive! But: resolve existing discrepancies (e.g. "beam-bottle" lifetime) *Kaon decays: NA62, BELLE II* $K\ell 3$ *vs* $K\mu 2$ *(+ Lattice effort!) F*ion: $\pi^+ \to \pi^0 e^+ \nu$ PIONEER @ PSI (δ BR: 0.3%—>0.03%) but 2033+

Nuclear uncertainties under scrutiny: δ_{NS} in ab-initio and EFT δ_C & δ_{NS} for 15 decays from ^{10}C to ^{74}Rb — Community effort required!

Nuclear charge radii across superallowed isotriplets Stable: µ-atoms @ PSI, radii of unstable nuclei @ ISOLDE, TRIUMF Neutron skins of stable daughters with PVES @ MESA Interplay with the nuclear EoS program: neutron skin via symmetry energy vs. ISB

BSM: Cabibbo anomaly(ies) and superallowed dataset consistency

Backup

Status of Cabibbo Unitarity

γW-box from DR + Lattice QCD input $f +$ Lattice QCD

Currently available neutrino data at low \mathcal{Q}^2 - low quality; Look for alternative input — compute Nachtmann moment $M_3^{(0)}$ on the lattice 3

First direct LQCD computation $\pi^- \to \pi^0 e^- \nu_e$

Five lattice QCD gauge ensembles 5 LQCD gauge ensembles at physical pion mass by **RBC** and **UKQCD** Collaborations using Generated by RBC and UKQCD collaborations w. 2+1 flavor domain wall fermion

Match onto pQCD at $Q^2\thicksim 2\,\rm GeV^2$

Quark contraction diagrams

$$
\Box_{\gamma W}^{VA,\pi} = 2.830(11)_{\text{stat}}(26)_{\text{sys}}
$$

Independent calculation by Los Alamos group

Yoo et all, 2305.03198

$$
\Box_{\gamma W}^{VA,\pi} = 2.810(26)_{\text{stat+sys}}
$$
First lattice QCD calculation of *γW*-box

Direct impact for pion decay $\pi^+ \to \pi^0 e^+ \nu_e$ | V_{ud} |

Previous calculation of δ — in ChPT

Significant reduction of the uncertainty! *δ*

Indirectly constrains the free neutron
$$
\gamma W
$$
-box — requires some phenomenology
\nBased on Regge university & factorization

Independent confirmation

Seng, MG, Feng, Jin, 2003.11264 $\Delta_R^V = 0.02467(22)_{\text{DR}} \rightarrow 0.02477(24)_{\text{LQCD+DR}}$

$$
|V_{ud}|^2 = \frac{0.9799}{(1+\delta)} \frac{\Gamma_{\pi\ell 3}}{0.3988(23) \text{ s}^{-1}}
$$

Cirigliano, Knecht, Neufeld and Pichl, EPJC 2003

$$
\delta: \quad 0.0334(10)_{\text{LEC}}(3)_{\text{HO}} \to 0.0332(1)_{\gamma W}(3)_{\text{HO}}
$$

First LQCD calculation of γW -box on the neutron tho poutron associated with the *W* boson, altering the isospin, cannot $\ddot{}$ **EXECUCE CONTROVISION CONTROL** W_{α} is an α the reconstruction of the LD contributions of the LD contr VV -DO)

Much more challenging than pion: tribution arising from the region where ∣*t*∣ > *ts*. Here, *t^s* lined in Table I. Both ensemble utilize Iwasaki + DSDR

Numerically heavier Excited state contamination requires longer time Large contribution from low $Q \sim g_A \mu^V$ absent for pion is the time slice at which the short-distance (SD) and action. For each configuration we produce 1024 point-distance (SD) and action. For each configuration we produce 1024 point-distance 1024 point-distance 1024 point-dis redition dary noavide. Lattice continuum from low $\vee \sim g_A \mu$ absent \Box dome spatial comanimation required ionger the corresponding to V also and calculate the corresponding Λ Large contribution from low $Q \sim g_A \mu^r$ absei

integral into SD contribution, weighted by !(*t, x*⃗), and Split into long/short distance separated by ts random sparsening-field technique [27, 28]. Local vectors and the control vectors are controlled to the control
Local vectors and the control vectors are controlled to the control vectors and the control vectors are contro

$$
M_n(Q^2) = M_n^{\text{SD}}(Q^2, t_s) + M_n^{\text{LD}}(Q^2, t_s, t_g)
$$

RBC/UKQCD 2+1 domain wall fermion

Ensemble *m* [MeV] *L T* a^{-1} [GeV] *N* [√]*Q*² *ts* RBC/UKQCD 2+1 domain wall fermion

$$
\Delta_R^V = 0.02439(19)_{\text{LQCD}}
$$
 vs $0.02467(22)_{\text{DR}}$

 $\frac{1}{2}$ Phe result slightly lower than DR;
Finer letting esclaulations *the derivals* operation product expansion ϵ \mathcal{L} components in Ref. in Ref. \mathcal{L} yntry i∪wer triar
∙alculatione une cos³ ✓*d*✓ *j*¹ (∣*Q*⃗∣∣*x*⃗∣) The result slightly lower than DR; Ce CalCulation
∂ Finer lattice calculations underway

M a, Feng, MG et al 2308.16755 Figure 2. SD and LD contributions to *^Mⁿ*(*Q*²) as a function

Global fit to charge radii off mirror nuclei Global fit to charge radii off mirror nu

Linear fit to known radii in isotriplets (red) $\begin{bmatrix} 1 & 34(S, Ar) \end{bmatrix}$ predictions for unknown radii

Compare to ab-initio theory estimate (blue) $\frac{d^2(x, ca)}{dx^2 - 2x^2 + 4x + 4x + 4}$ **Navario et al, Phys.Rev.Lett 130** not the statistical accuracy of the optical measurements (see e.g. [32]).

B. Ohayon, 2409.08193

reference radii from muonic atoms;

Global fit to charge radii off mirror nuclei

B. Ohayon, 2409.08193

δ_{NS} in ab-initio nuclear theory

ari M Drissi MG P Navratil C -Y Seng arXiv[.] 2405.19281 M. Gennari, M. Drissi, MG, P. Navratil, C.-Y. Seng, arXiv: **2405.19281**

Low-momentum part of the loop: account for nucleon d.o.f. only Eov -momentum part of the loop, account for nucleon d.o.n. of
First case study: ${}^{10}C \rightarrow {}^{10}B$ in No-Core Shell Model (NCSM) Many-body problem in HO basis with separation Ω and up to $N = N_{max} + N_{Pauli}$ ➢ Utilizes discrete harmonic oscillator (HO) basis up to p. al
.. ν Ho basis allows separation of CM and internal DOFs and pasis with separation **sz** and up to $N = N_{max} + N_{Pauli}$

Numerical Results Ab-initio δ_{NS} : numerical results

Large negative contribution: low-lying 1+ level in ¹⁰B $\frac{1}{2}$ contains in take fails. a the step process Large GT and M1 rates favor a two-step process

Final result for ${}^{10}C \rightarrow {}^{10}B$: $T = T_z = 0, J^P = (1^+)$

 $T = 1, T_z = -1, J^P = (0^+)$

 $\delta_{\text{NS}} = -0.406(39)\,\%$

arXiv: **2405.19281**

 $T = 1, T_z = 0, J^P = (0⁺)$

Compare to Hardy-Towner (old-fashion SM)

 $\delta_{\text{NS}} = -0.347(35)\%$ (2014)

GT $\left|\right|$ M1

$$
\delta_{\rm NS} = -0.400(50)\,\% \tag{2020}
$$

