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What to work on to win a Nobel prize?
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What to work on to win a Nobel prize?
Beta	decay	has	been	an	excellent	choice	for	a	century!

1903

1896-	Becquerel	discovers	spontaneous	radioac,vity	of		
uranium,	iden,fied	 	with	the	electron	

1898-	Curie-Sklodowska,	Curie	discover	polonium	and	radium
β

1899-	Rutherford	systema,zed	 	rays,	iden,fied	 	with	He-4α, β, γ α
1908

1934-	F.&I.	Joliot-Curie	discovered	 	decay	with	 	-	positronβ+ β+

1935

1956-	Lee	&	Yang	proposed	parity	non	conserva,on	in	 -decay,		
confirmed	by	Wu	experiment

β
1957

1961-	Glashow	proposed	electroweak	unifica,on		
1967-	Weinberg	&	Salam	implemented	Higgs	mechanism	
1973-	Neutral	weak	current	discovered	at	CERN 1979

1973-	Kobayashi,	Maskawa:	3-flavor	quark	mixing	matrix
2008

3



That was the bright side…
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Niepce	de	Saint-Victor:	observed	radioac,vity	in	1857	cited	in	
Becquerel-father’s	book

1930:	Pauli	postulated	existence	of	neutrinos	
1934:	Fermi	formulated	the	contact	theory	of	beta	decay

Cox,	McIlwraith,	Kurrelmeier	(1928);	Chase	(1929-30)	
“Apparent	evidence	of	polariza,on	in	a	beam	of	beta	rays”

1938:	Klein	predicted	MW ∼ 4πα 2/GF ∼ 100 GeV

1957:	Wu’s	experiment	was	crucial	to	prove	Lee-Yang’s	
conjecture,	but	Chien-Shiung	Wu	was	not	awarded	the	NP

1963-	Cabibbo:	proposed	2-flavor	quark	mixing		
to	reconcile	 ,	 ,	K	decay	ratesμ β



Precision Era: V-A + Radiative Corrections
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V	-	A	theory	(Sudarshan&Marshak	and	Gell-Mann&Feynman	1957);	S-PS	not	excluded



Precision Era: V-A + Radiative Corrections

Radia,ve	correc,ons	to	muon	decay:	important	evidence	for	V-A	theory	
RC	to	muon	decay	-	UV	finite	for	V-A	but	divergent	for	S-PS

τμ = 2196980.3(2.2)ps Gμ = 1.1663788(7) × 10−5GeV−2Muon	life,me —>	Fermi	constant
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V	-	A	theory	(Sudarshan&Marshak	and	Gell-Mann&Feynman	1957);	S-PS	not	excluded

But:	RC	to	neutron	decay	-	UV	divergent	even	in	V-A	theory!	
Kinoshita,	Sirlin,	Behrends,	…

1-loop	RC	to	spectrum:

UV cut-off
ΔP0d3p = α

2π
P0d3p [6 ln Λ

Mp
+ finite]
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But:	RC	to	neutron	decay	-	UV	divergent	even	in	V-A	theory!	
Kinoshita,	Sirlin,	Behrends,	…

1-loop	RC	to	spectrum:

UV cut-off
ΔP0d3p = α

2π
P0d3p [6 ln Λ

Mp
+ finite]

Is	weak	interac,on	universal	for	leptons	and	hadrons?	

1967:	Sirlin	applied	current	algebra:		
										general	UV	behavior	of	 	decay	rate	at	1-loop	β
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where fabc(a, b, c = 1 . . . 8) are the SU(3) structure constants, determines the normalization of the hadronic currents.
SU(3)flavor also led to the fundamental concept of quarks (Gell-Mann, 1964b; Zweig, 1964) and the quark model of
hadrons.

F. Radiative Corrections to β Decay in the V -A Theory

When the CVC hypothesis was formulated, it was natural to suspect that the ≈ 1% difference between GV and Gµ

was due to electromagnetic corrections. Here, we have in mind electromagnetic corrections not contained in Fermi’s
Coulomb-function which is automatically included in the theory of β-decay. However, when the O(α) corrections to
the decay probability of neutron β-decay were calculated by Berman (1958) and Kinoshita and Sirlin (1959a) in the
V -A theory (cf. Eq.(30)), a striking result was found: contrary to the case of muon decay, the O(α) corrections to
β-decay were logarithmically divergent! In particular, the detailed expression found by Kinoshita and Sirlin (1959a)
for the O(α) corrections to the electron or positron spectrum is given by

∆Pd3p =
α

2π
P 0d3p
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where p and E are the momentum and energy of the electron or positron, Em is the end-point energy, β = p/E, mp

the proton mass, Λ the ultraviolet cutoff, and

P 0d3p =
8G2

V

(2π)4
(Em − E)2d3p (43)

is the uncorrected spectrum. In deriving Eq.(41), strong interactions have been neglected, so these results represent
the corrections to the β-decay of “bare nucleons” devoid of hadronic structure. Very small contributions of O(E/mp)
have been also neglected.
The reason why the corrections to β decay are divergent in the V -A theory while those for muon decay are finite,

can be understood in two ways:

i) In contrast to the muon decay case, starting with the interaction Lagrangian of Eq.(30) appropriate to β-decay,
it is not possible to bring the two charged particles into the same covariant while retaining only V and A
interactions. Thus, the analogy with QED discussed in Section II.A is lost in the case of β-decay and the
corrections are divergent.

ii) Using a current algebra formulation, it can be shown that in the V -A theory the divergent part of the corrections
to Fermi transitions is of the form

α

2π
P 0d3p 3[1 + 2Q̄] ln(Λ/M) , (44)

where Q̄ is the average charge of the underlying hadronic fields in the process and M a relevant mass. In the
case of Eq.(30), the underlying fields are the neutron and proton so that Q̄ = 1/2 and the divergent part is
(α/2π)P 0d3p 6 ln(Λ/M), in agreement with Eq.(41). In the case of muon decay, the roles of p and n are played
by νµ and µ−, so that Q̄ = −1/2 and Eq.(44) vanishes, consistent with the fact that the corrections to muon
decay are finite in the V -A theory. It is interesting to note that in the corrections proportional to |MF |2, where
MF is the Fermi matrix element, the terms 3 ln(Λ/M) and 6Q̄ ln(Λ/M) in Eq.(44) arise from the vector and
axial vector currents, respectively. Similarly, in Eq.(41) 3 ln(Λ/mp) + g(E,Em) is the contribution from the
vector current while the remaining 3 ln(Λ/mp) + 9/4 emerges from the axial vector current. Thus, although the
axial vector current does not contribute to the Fermi matrix element at the tree-level, it plays a very important
role in O(α).

The finding that the radiative corrections to β-decay in the V -A theory are divergent, while those to muon-decay
are convergent, created a serious theoretical problem since both processes are fundamental observables. Originally,
Feynman, Berman, Kinoshita and Sirlin thought that this conundrum was due to the fact that strong interactions had
been ignored in the calculations of the β-decay corrections. In fact, it was easy to imagine that strong interactions

	average	charge	of	fields	involved:	 	but	Q̄ : 1 + 2Q̄μ,νμ
= 0 1 + 2Q̄n,p = 2

Finiteness	of	RC	to	muon	decay	was	accidental!
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where fabc(a, b, c = 1 . . . 8) are the SU(3) structure constants, determines the normalization of the hadronic currents.
SU(3)flavor also led to the fundamental concept of quarks (Gell-Mann, 1964b; Zweig, 1964) and the quark model of
hadrons.

F. Radiative Corrections to β Decay in the V -A Theory

When the CVC hypothesis was formulated, it was natural to suspect that the ≈ 1% difference between GV and Gµ

was due to electromagnetic corrections. Here, we have in mind electromagnetic corrections not contained in Fermi’s
Coulomb-function which is automatically included in the theory of β-decay. However, when the O(α) corrections to
the decay probability of neutron β-decay were calculated by Berman (1958) and Kinoshita and Sirlin (1959a) in the
V -A theory (cf. Eq.(30)), a striking result was found: contrary to the case of muon decay, the O(α) corrections to
β-decay were logarithmically divergent! In particular, the detailed expression found by Kinoshita and Sirlin (1959a)
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where p and E are the momentum and energy of the electron or positron, Em is the end-point energy, β = p/E, mp

the proton mass, Λ the ultraviolet cutoff, and

P 0d3p =
8G2
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(2π)4
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is the uncorrected spectrum. In deriving Eq.(41), strong interactions have been neglected, so these results represent
the corrections to the β-decay of “bare nucleons” devoid of hadronic structure. Very small contributions of O(E/mp)
have been also neglected.
The reason why the corrections to β decay are divergent in the V -A theory while those for muon decay are finite,

can be understood in two ways:

i) In contrast to the muon decay case, starting with the interaction Lagrangian of Eq.(30) appropriate to β-decay,
it is not possible to bring the two charged particles into the same covariant while retaining only V and A
interactions. Thus, the analogy with QED discussed in Section II.A is lost in the case of β-decay and the
corrections are divergent.

ii) Using a current algebra formulation, it can be shown that in the V -A theory the divergent part of the corrections
to Fermi transitions is of the form

α

2π
P 0d3p 3[1 + 2Q̄] ln(Λ/M) , (44)

where Q̄ is the average charge of the underlying hadronic fields in the process and M a relevant mass. In the
case of Eq.(30), the underlying fields are the neutron and proton so that Q̄ = 1/2 and the divergent part is
(α/2π)P 0d3p 6 ln(Λ/M), in agreement with Eq.(41). In the case of muon decay, the roles of p and n are played
by νµ and µ−, so that Q̄ = −1/2 and Eq.(44) vanishes, consistent with the fact that the corrections to muon
decay are finite in the V -A theory. It is interesting to note that in the corrections proportional to |MF |2, where
MF is the Fermi matrix element, the terms 3 ln(Λ/M) and 6Q̄ ln(Λ/M) in Eq.(44) arise from the vector and
axial vector currents, respectively. Similarly, in Eq.(41) 3 ln(Λ/mp) + g(E,Em) is the contribution from the
vector current while the remaining 3 ln(Λ/mp) + 9/4 emerges from the axial vector current. Thus, although the
axial vector current does not contribute to the Fermi matrix element at the tree-level, it plays a very important
role in O(α).

The finding that the radiative corrections to β-decay in the V -A theory are divergent, while those to muon-decay
are convergent, created a serious theoretical problem since both processes are fundamental observables. Originally,
Feynman, Berman, Kinoshita and Sirlin thought that this conundrum was due to the fact that strong interactions had
been ignored in the calculations of the β-decay corrections. In fact, it was easy to imagine that strong interactions

	average	charge	of	fields	involved:	 	but	Q̄ : 1 + 2Q̄μ,νμ
= 0 1 + 2Q̄n,p = 2

Finiteness	of	RC	to	muon	decay	was	accidental!

Eventually,	massive	W-boson	renders	RC	to	beta	decay	UV-finite
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Before	RC	were	included:	
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log(MZ /Mp) GV ∼ 0.95Gμ

ΔS = 1

|GΔS=0
V | = cos θCGμ

|GΔS=1
V | = sin θCGμ

Cabibbo:	strength	shared	between	2	genera,ons	

Cabibbo	unitarity:	cos2 θC + sin2 θC = 1

CKM	unitarity	-	completeness	of	the	SM:		 	
Top	row	unitarity	constraint:	

VV† = 1
|Vud |2 + |Vus |2 + |Vub |2 = 1

Kobayashi	&	Maskawa:	3	flavors	+	CP	viola,on	—	CKM	matrix	V



Detailed understanding of  decays  
largely shaped the Standard Model

β
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Cabibbo Angle Anomaly:  
Status and BSM interpretation



Status of Cabibbo unitarity 
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|Vud |2 + |Vus |2 + |Vub |2 = 0.9985(6)Vud
(4)Vus

∼ 10−5∼ 0.95 ∼ 0.05

 and  determinations  
inconsistent with the SM 
Vud Vus

Superallowed nuclear β : |Vud | = 0.9737 (3)

K → πℓν : |Vus | = 0.2233(5)

At	variance	with	kaon	decays	+	Cabibbo	unitarity

Unitarity → |Vud | = 1 − |Vus |2 = 0.9747(1)
K → μν
π → μν

: |Vus /Vud | = 0.2311(5)

Unitarity → |Vud | = [1 + |Vus /Vud |2 ]−1/2 = 0.9743(1)} PDG [S = 2.5] : |Vus | = 0.2243(8)

Unitarity → |Vud | = 0.9745(2)

|Vud | = 0.9743 (9)But	consistent	with	the	free	neutron	decay:
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CAA summary - 3 anomalies!

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Status of first-row unitarity

29

= −0.00176(56) −3.1σ

= −0.00098(58) −1.7σ

= −0.0174(73) −2.4σ

3 observables: |Vus|Kℓ3, |Vus/Vud|Kμ2, Vud
2 quantities to determine: Vus, Vud

3 ways to test unitarity

Kμ2 result shows better agreement with unitarity than Kℓ3 result 
when  |Vud| obtained from beta decays:

= −0.0164(63) −2.6σ

Δ(3)CKM uses no information from β decays:

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Status of first-row unitarity

29

= −0.00176(56) −3.1σ

= −0.00098(58) −1.7σ

= −0.0174(73) −2.4σ

3 observables: |Vus|Kℓ3, |Vus/Vud|Kμ2, Vud
2 quantities to determine: Vus, Vud

3 ways to test unitarity

Kμ2 result shows better agreement with unitarity than Kℓ3 result 
when  |Vud| obtained from beta decays:

= −0.0164(63) −2.6σ

Δ(3)CKM uses no information from β decays:

Can	it	be	a	signal	of	BSM?



Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Constraints on right-handed currents

30

• In SM, W couples only to LH chiral fermion states
• New physics with couplings to RH currents could explain          

both unitarity deficit and Kℓ3-Kμ2 difference
• Define ϵR = admixture of RH currents in non-strange sector

  ϵR + ΔϵR = admixture of RH currents in strange sector

From current fit:
ϵR = −0.69(27)×10−3 (2.5σ)
ΔϵR = −3.9(1.6)×10−3 (2.4σ)
ϵR = ΔϵR = 0 excluded at 3.1σ

Cirigliano et al.
PLB 838 (2023)

CAA in presence of RH currents

11

Review	the	“ ”	that	defines	the	significane	of	the	Cabibbo	angle	anomaly!σ



Vus from world data



Vus from kaon decays – M. Moulson – ELECTRO 2022 – Mainz Institute for Theoretical Physics, 28 October 2022

Vus/Vud and Kℓ2 decays

27

Inputs from theory:

δEM Long-distance EM corrections

δSU(2) Strong isospin breaking
fK/fπ→ fK±/fπ±

fK/fπ Ratio of decay constants
Cancellation of lattice-scale 
uncertainties from ratio
NB: Most lattice results already 
corrected for SU(2)-breaking: fK±/fπ±

Inputs from experiment:

From K± BR fit:
BR(K±

µ2(γ)) = 0.6358(11)
τK± = 12.384(15) ns

From PDG:
BR(π±

µ2(γ)) = 0.9999
τπ± = 26.033(5) ns

Vus / Vud from /Kμ2 = K → μν πμ2 = π → μν

13 * slides stolen from M. Moulson CKM’23

[KLOE,	CNTR]



Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Vus/Vud and Kℓ2 decays

20

Giusti et al. 
PRL 120 (2018)

First lattice calculation of EM corrections to Pl2 decays
• Ensembles from ETM
• Nf = 2+1+1  Twisted-mass Wilson fermions

δSU(2) + δEM = −0.0122(16)
• Uncertainty from quenched QED included (0.0006)

Compare to ChPT result from Cirigliano, Neufeld ’11:
δSU(2) + δEM = −0.0112(21)

Di Carlo et al. 
PRD 100 (2019)

Update, extended description, and systematics of Giusti et al.
δSU(2) + δEM = −0.0126(14)

|Vus/Vud| × fK/fπ = 0.27679(28)BR(20)corr 

New development: QCD + QED on the Lattice

14



Y. Aoki et al. FLAG Review 2021 2111.09849

fermions (mildly stout-smeared) and the tree-level Symanzik action for the gluons. Four
values of the lattice spacing (0.06 � 0.08 fm) have been simulated with pion masses down
to ⇠ 220 MeV and values of the lattice size in the range 2.0 � 2.8 fm. The decay constants
are evaluated using an expansion around the symmetric SU(3) point mu = md = ms =
(mu +md +ms)phys/3.

Note that for Nf = 2 + 1 MILC 10 and HPQCD/UKQCD 07 are based on staggered
fermions, BMW 10, BMW 16 and QCDSF/UKQCD 16 have used improved Wilson fermions
and RBC/UKQCD 14B’s result is based on the domain-wall formulation. In contrast to
RBC/UKQCD 14B and BMW 16, the other simulations are for unphysical values of the
light-quark masses (corresponding to smallest pion masses in the range 220 � 260 MeV in
the case of MILC 10, HPQCD/UKQCD 07, and QCDSF/UKQCD 16) and therefore slightly
more sophisticated extrapolations needed to be controlled. Various ansätze for the mass and
cuto↵ dependence comprising SU(2) and SU(3) �PT or simply polynomials were used and
compared in order to estimate the model dependence. While BMW 10, RBC/UKQCD 14B,
and QCDSF/UKQCD 16 are entirely independent computations, subsets of the MILC gauge
ensembles used by MILC 10 and HPQCD/UKQCD 07 are the same. MILC 10 is certainly
based on a larger and more advanced set of gauge configurations than HPQCD/UKQCD 07.
This allows them for a more reliable estimation of systematic e↵ects. In this situation we
consider both statistical and systematic uncertainties to be correlated.

For Nf = 2 no new result enters the corresponding FLAG average with respect to the
previous edition of the FLAG review [1], which therefore remains the ETM 09 result, which
has simulated twisted-mass fermions down to (charged) pion masses equal to 260 MeV.

Before determining the average for fK±/f⇡± , which should be used for applications to
Standard Model phenomenology, we apply the strong-isospin correction individually to all
those results that have been published only in the isospin-symmetric limit, i.e., BMW 10,
HPQCD/UKQCD 07 and RBC/UKQCD 14B at Nf = 2+1 and ETM 09 at Nf = 2. To this
end, as in the previous editions of the FLAG reviews [1, 56, 127], we make use of NLO SU(3)
�PT [14, 59], which predicts

fK±

f⇡±
=

fK
f⇡

q
1 + �SU(2) , (80)

where [14]

�SU(2) ⇡
p
3 ✏SU(2)

h
�

4
3 (fK/f⇡ � 1) + 2

3(4⇡)2f2
0

⇣
M2

K �M2
⇡ �M2

⇡ ln
M2

K
M2

⇡

⌘i
. (81)

We use as input ✏SU(2) =
p
3/(4R) with the FLAG result for R of Eq. (55), F0 = f0/

p
2 =

80 (20) MeV, M⇡ = 135 MeV and MK = 495 MeV (we decided to choose a conservative
uncertainty on f0 in order to reflect the magnitude of potential higher-order corrections).
The results are reported in Tab. 17, where in the last column the last error is due to the
isospin correction (the remaining errors are quoted in the same order as in the original data).

For Nf = 2 and Nf = 2 + 1 + 1 dedicated studies of the strong-isospin correction in
lattice QCD do exist. The updated Nf = 2 result of the RM123-SOTON collaboration [48]
amounts to �SU(2) = �0.0080(4) and we use this result for the isospin correction of the
ETM 09 result. Note that the above RM123-SOTON value for the strong-isospin correction
is incompatible with the results based on SU(3) �PT, �SU(2) = �0.004(1) (see Tab. 17).
Moreover, for Nf = 2 + 1 + 1 HPQCD [101], FNAL/MILC [97] and ETM [128] estimate a
value for �SU(2) equal to �0.0054(14), �0.0052(9) and �0.0073(6), respectively. Note that
the RM123-SOTON and ETM results are obtained using the insertion of the isovector scalar
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Isospin	breaking

fK/fπ on the lattice and result for Vus/Vud
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fK /fπ = 1.1978(22)

fK /fπ = 1.1946(34)

Some	laCce	groups	include	strong	isospin	breaking,	others	work	in	isospin	limit
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fermions (mildly stout-smeared) and the tree-level Symanzik action for the gluons. Four
values of the lattice spacing (0.06 � 0.08 fm) have been simulated with pion masses down
to ⇠ 220 MeV and values of the lattice size in the range 2.0 � 2.8 fm. The decay constants
are evaluated using an expansion around the symmetric SU(3) point mu = md = ms =
(mu +md +ms)phys/3.

Note that for Nf = 2 + 1 MILC 10 and HPQCD/UKQCD 07 are based on staggered
fermions, BMW 10, BMW 16 and QCDSF/UKQCD 16 have used improved Wilson fermions
and RBC/UKQCD 14B’s result is based on the domain-wall formulation. In contrast to
RBC/UKQCD 14B and BMW 16, the other simulations are for unphysical values of the
light-quark masses (corresponding to smallest pion masses in the range 220 � 260 MeV in
the case of MILC 10, HPQCD/UKQCD 07, and QCDSF/UKQCD 16) and therefore slightly
more sophisticated extrapolations needed to be controlled. Various ansätze for the mass and
cuto↵ dependence comprising SU(2) and SU(3) �PT or simply polynomials were used and
compared in order to estimate the model dependence. While BMW 10, RBC/UKQCD 14B,
and QCDSF/UKQCD 16 are entirely independent computations, subsets of the MILC gauge
ensembles used by MILC 10 and HPQCD/UKQCD 07 are the same. MILC 10 is certainly
based on a larger and more advanced set of gauge configurations than HPQCD/UKQCD 07.
This allows them for a more reliable estimation of systematic e↵ects. In this situation we
consider both statistical and systematic uncertainties to be correlated.

For Nf = 2 no new result enters the corresponding FLAG average with respect to the
previous edition of the FLAG review [1], which therefore remains the ETM 09 result, which
has simulated twisted-mass fermions down to (charged) pion masses equal to 260 MeV.

Before determining the average for fK±/f⇡± , which should be used for applications to
Standard Model phenomenology, we apply the strong-isospin correction individually to all
those results that have been published only in the isospin-symmetric limit, i.e., BMW 10,
HPQCD/UKQCD 07 and RBC/UKQCD 14B at Nf = 2+1 and ETM 09 at Nf = 2. To this
end, as in the previous editions of the FLAG reviews [1, 56, 127], we make use of NLO SU(3)
�PT [14, 59], which predicts

fK±

f⇡±
=

fK
f⇡

q
1 + �SU(2) , (80)

where [14]

�SU(2) ⇡
p
3 ✏SU(2)

h
�

4
3 (fK/f⇡ � 1) + 2

3(4⇡)2f2
0

⇣
M2

K �M2
⇡ �M2

⇡ ln
M2

K
M2

⇡

⌘i
. (81)

We use as input ✏SU(2) =
p
3/(4R) with the FLAG result for R of Eq. (55), F0 = f0/

p
2 =

80 (20) MeV, M⇡ = 135 MeV and MK = 495 MeV (we decided to choose a conservative
uncertainty on f0 in order to reflect the magnitude of potential higher-order corrections).
The results are reported in Tab. 17, where in the last column the last error is due to the
isospin correction (the remaining errors are quoted in the same order as in the original data).

For Nf = 2 and Nf = 2 + 1 + 1 dedicated studies of the strong-isospin correction in
lattice QCD do exist. The updated Nf = 2 result of the RM123-SOTON collaboration [48]
amounts to �SU(2) = �0.0080(4) and we use this result for the isospin correction of the
ETM 09 result. Note that the above RM123-SOTON value for the strong-isospin correction
is incompatible with the results based on SU(3) �PT, �SU(2) = �0.004(1) (see Tab. 17).
Moreover, for Nf = 2 + 1 + 1 HPQCD [101], FNAL/MILC [97] and ETM [128] estimate a
value for �SU(2) equal to �0.0054(14), �0.0052(9) and �0.0073(6), respectively. Note that
the RM123-SOTON and ETM results are obtained using the insertion of the isovector scalar

12 Updated Feb. 2023

ISB	from	 PTχ
Y. Aoki et al. FLAG Review 2021 2111.09849

Figure 9: Comparison of lattice results for fK±/f⇡± . This ratio is obtained in pure QCD
including the SU(2) isospin-breaking correction (see Sec. 4.3). The black squares and grey
bands indicate our averages in Eqs. (82) – (84).

fK±/f⇡± is based on the same set of ensembles bar the ones at the finest lattice spacings
(namely, only a = 0.09 � 0.15 fm, scale set with f⇡+ and relative scale set with the Wilson
flow [125, 126]) supplemented by some simulation points with heavier quark masses. HPQCD
employs a global fit based on continuum NLO SU(3) �PT for the decay constants supple-
mented by a model for higher-order terms including discretization and finite-volume e↵ects
(61 parameters for 39 data points supplemented by Bayesian priors). Their final result is
fK±/f⇡± = 1.1916(15)stat(12)a2(1)FV (10), where the errors are statistical, due to the con-
tinuum extrapolation, due to finite-volume e↵ects and the last error contains the combined
uncertainties from the chiral extrapolation, the scale-setting uncertainty, the experimental
input in terms of f⇡+ and from the uncertainty in mu/md.

Because CalLat 20, FNAL/MILC 17 and HPQCD 13A partly share their gauge ensembles,
we assume a 100% correlation among their statistical errors. A 100% correlation on the total
systematic uncertainty is also assumed between FNAL/MILC 17 and HPQCD 13A with the
HISQ valence quarks.

For Nf = 2 + 1 the results BMW 16 and QCDSF/UKQCD 16 are eligible to enter the
FLAG average. BMW 16 has analyzed the decay constants evaluated for 47 gauge ensembles
generated using tree-level clover-improved fermions with two HEX-smearings and the tree-
level Symanzik-improved gauge action. The ensembles correspond to five values of the lattice
spacing (0.05�0.12 fm, scale set by ⌦ mass), to pion masses in the range 130�680 MeV and
to values of the lattice size from 1.7 to 5.6 fm, obtaining a good control over the interpolation
to the physical mass point and the extrapolation to the continuum and infinite volume limits.

QCDSF/UKQCD 16 has used the nonperturbatively O(a)-improved clover action for the
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LQCD	 :			(Nf = 2 + 1 + 1)
fK±/fπ± = 1.1934(19)

LQCD	 :			(Nf = 2 + 1)
fK±/fπ± = 1.1917(37)

|Vus |
|Vud |

= 0.23108(23)exp(42)lat(16)ISB

(51)tot = 0.22 %



Vus from Kℓ3 = K → πeν, πμν
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Determination of Vus from Kℓ3 data

4

Inputs from theory:
f+K

0π−(0) Hadronic matrix element 
(form factor) at zero 
momentum transfer (t = 0)

ΔKSU(2) Form-factor correction for 
SU(2) breaking

ΔKℓEM Form-factor correction for 
long-distance EM effects

with K  {K+, K0};  ℓ  {e, μ}, and:
CK2 1/2 for K+, 1 for K0
SEW Universal SD EW correction (1.0232)

Inputs from experiment:
Γ(Kℓ3(γ)) Rates with well-determined 

treatment of radiative decays:
• Branching ratios: KS, KL, K±

• Kaon lifetimes

IKℓ({λ}Kℓ) Integral of form factor over 
phase space: λs parameterize 
evolution in t

• Ke3: Only λ+ (or λ+′, λ+″)
• Kμ3: Need λ+ and λ0

16



Fit to  branching ratios of , , Kℓ3 KS KL K±

17
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Fit to KS rate data (2022)

6

Parameter Value
BR(π+π−(γ)) 69.20(5)%
BR(π0π0) 30.69(5)%
BR(Ke3) 7.15(6) × 10−4

BR(Kμ3) 4.56(20) × 10−4

τS 89.58(4) ns

7 input measurements:
KLOE ’06 BR π0π0/π+π−

NA48 Γ(KS → πeν)/Γ(KL → πeν), τS
KLOE ’11 τS
KTeV ’11 τS
KLOE-2 ’22 BR πeν/π+π−    New!
KLOE-2 ’20 BR πμν/π+π−

2 possible constraints: 
• Σ BR = 1
• BR(Ke3)/BR(Kμ3) = 0.6640(17)

From ratio of phase-space 
integrals from current fit to 
dispersive Kℓ3 form factor 
parameters

Only sum constraint used for fit 

χ2/ndf = 0.36/3 (Prob = 95%)

Little correlation for Ke3 Kμ3 from fit

10-20% correlations with π0π0/π+π−

Input measurements          
essentially unchanged
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Fit to KL rate data (2010)

7

Parameter Value S

BR(Ke3) 0.4056(9) 1.3
BR(Kμ3) 0.2704(10) 1.5
BR(3π0) 0.1952(9) 1.2
BR(π+π−π0) 0.1254(6) 1.3
BR(π+π−(γIB)) 1.967(7) × 10−3 1.1
BR(π+π−γ) 4.15(9) × 10−5 1.6
BR(π+π−γDE) 2.84(8) × 10−5 1.3
BR(2π0) 8.65(4) × 10−4 1.4
BR(γγ) 5.47(4) × 10−4 1.1
τL 51.16(21) ns 1.1

21 input measurements:
5 KTeV ratios
NA48 BR(Ke3/2 track)
4 KLOE BRs

with dependence on τL
KLOE, NA48 BR(π+π−/Kℓ3)
KLOE, NA48 BR(γγ/3π0)
BR(2π0/π+π−) from KS fit, Re ε′/ε
KLOE τL from 3π0 
Vosburgh ’72 τL
KTeV BR(π+π−γ/π+π−(γ))
E731, 2 KTeV BR(π+π−γDE/π+π−γ)

1 constraint: Σ BR = 1
χ2/ndf = 19.8/12 (Prob = 7.0%)

Essentially same result as 2010 fit
Current PDG (since ’09): 37.4/17 (0.30%)
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Fit to K± rate data (2014)
Parameter Value S

BR(μν) 63.58(11)% 1.1
BR(ππ0) 20.64(7)% 1.1
BR(πππ) 5.56(4)% 1.0
BR(Ke3) 5.088(27)% 1.2
BR(Kμ3) 3.366(30)% 1.9
BR(ππ0π0) 1.764(25)% 1.0
τ± 12.384(15) ns 1.2

17 input measurements:
3 old τ values in PDG
KLOE τ
KLOE BR μν, ππ0

KLOE BR Ke3, Kμ3
with dependence on τ

NA48/2 BR Ke3/ππ0, Kμ3/ππ0

E865 BR Ke3/KDal
3 old BR ππ0/μν
KEK-246 Kμ3/Ke3
KLOE BR πππ, ππ0π0

(Bisi ’65 BR ππ0π0/πππ removed)

1 constraint: Σ BR = 1

χ2/ndf = 25.5/11 (Prob = 0.78%)
compare PDG ’16: 53/28 (0.26%)

9

Much more selective than PDG fit 
PDG ’16: 35 inputs, 8 parameters 

With ISTRA+ ’14 BR(K−
e3/π−π0)

• BR(Ke3) = 5.083(27)%
• Negligible changes in other 

parameters, fit quality

Compared	to	Kl2:	

Many	decay	channels		

mul,ple	consistency	checks	possible



 transition form factorsK − π
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K(P) π(p)

ℓ

ν

Kℓ3 form factors

11

Ke3 decays: Only vector form factor:

t = (P − p)2Hadronic matrix element:

For Vus, need integral over phase space of squared matrix element:
Parameterize form factors and fit distributions in t (or related variables)

Kμ3 decays: Also need scalar form factor:

Parameterizations based on systematic expansions
Notes:

Many parameters: λ+′, λ+″, λ0′, λ0″
Large correlations, unstable fits
Higher-order terms ignored

Taylor expansion:
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ℓ

ν

Kℓ3 form factors

11

Ke3 decays: Only vector form factor:

t = (P − p)2Hadronic matrix element:

For Vus, need integral over phase space of squared matrix element:
Parameterize form factors and fit distributions in t (or related variables)

Kμ3 decays: Also need scalar form factor:

Parameterizations based on systematic expansions
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Large correlations, unstable fits
Higher-order terms ignored
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Kℓ3 form-factor parameterizations

12

Notes:
Allows tests of ChPT & low-
energy dynamics
H(t), G(t) evaluated from Kπ 
scattering data and given as 
polynomials
Bernard et al., PRD 80 (2009)

Parameterizations incorporating physical constraints

Dispersion relations:

Pole dominance: Notes:
What does MS correspond to?

Uncertainties from representations H(t), G(t) of Kπ phase-shift data 
contribute to fit results for Λ+, ln C
− Small compared to other uncertainties for single measurements (so far)

2010 FlaviaNet analysis used average of FF parameters from dispersive fits
− Parameterization uncertainties beginning to dominate averages for Λ+, ln C 

To	extract	Vus:	need	a	phase-space	integral	over	the	form	factor	
Parametrize	FFs	—>	best	op,on:	dispersion	representa,on	
Perform	a	fit	to	Dalitz	plot
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Dispersive parameters for Kℓ3 form factors

13

Λ+  103 = 25.55 ± 0.38
ln C = 0.1992(78)

ρ(Λ+, ln C) = −0.110
χ2/ndf = 7.5/7 (38%)

Λ+  103

ln
 C

KTeV KLOE ISTRA+ NA48/2

Integrals
Mode Update 2010
K0e3 0.15470(15) 0.15476(18)
K+e3 0.15915(15) 0.15922(18)
K0μ3 0.10247(15) 0.10253(16)
K+μ3 0.10553(16) 0.10559(17)

Only tiny changes in central values

2010 fitKℓ3 avgs from

68%CL contours

NA48 Ke3 data included in fits but not shown

Current

Dispersive	+	ChPT	parametriza,on		
Bernard	et	al.	‘09

H,G:	obtained	from	K-π	phase	shixs	
	-	free	parametersΛ+, ln C



Long-distance EM correction
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Long-distance EM corrections
Mode-dependent corrections ΔEMKℓ to phase-space integrals IKℓ from 
EM-induced Dalitz plot modifications
• Values depend on acceptance for events with additional real photon(s)
• All recent measurements assumed fully inclusive

FlaviaNet analysis and updates used Cirigliano et al. ’08 
• Comprehensive analysis at fixed order e2p2

15

Seng et al.
JHEP 07 (2022)

Calculation of complete EW RC using hybrid current algebra and 
ChPT with resummation of largest terms to all chiral orders
• Reduced uncertainties at O(e2p4)
• Lattice evaluation of QCD contributions to γW box diagrams
• Conventional value of SEW subtracted from results for use with 

standard formula for Vus

Cirigliano et al. ’08 Seng et al. ’21

ΔEM(K0e3) [%] 0.50 ± 0.11 0.580 ± 0.016
ΔEM(K+e3) [%] 0.05 ± 0.12 0.105 ± 0.023
ΔEM(K+μ3) [%] 0.70 ± 0.11 0.770 ± 0.019
ΔEM(K0μ3) [%] 0.01 ± 0.12 0.025 ± 0.027

Seng, Galviz, Meißner 1910.13208; Seng, Galviz, MG, Meißner 2103.04843; Seng, Galviz, MG, Meißner 2203.05217; 
Feng, MG, Jin, Ma, Seng 2003.09798; Ma, Feng, MG, Jin, Seng 2102.12048



 from world data|Vus | f+(0)
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|Vus| f+(0) from world data: 2022 update

16

% err BR τ Δ Int

KLe3 0.2162(5) 0.23 0.09 0.20 0.02 0.05

KLμ3 0.2165(6) 0.26 0.15 0.18 0.02 0.07

KSe3 0.2169(8) 0.39 0.38 0.02 0.02 0.05

KSμ3 0.2125(47) 2.2 2.2 0.02 0.02 0.08

K±e3 0.2169(6) 0.30 0.27 0.06 0.11 0.05

K±μ3 0.2168(10) 0.47 0.45 0.06 0.11 0.08

Approx. contrib. to % err from:|Vus| f+(0)

Average: |Vus| f+(0) = 0.21656(35)      χ2/ndf = 1.89/5 (86%)
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Evaluations of f+(0)

17

ChPT, etc.

Nf = 2

Nf = 2+1+1

PACS 19
JLQCD 17

RBC/UKQCD 15A
RBC/UKQCD 13
FNAL/MILC 12I

JLQCD 12
JLQCD 11

RBC/UKQCD 10
RBC/UKQCD 07

ETM 10D
ETM 09A

0.95 0.97 0.99

Kastner 08
Cirigliano 05
Jamin 04
Bijnens 03
L&R 84

Nf = 2+1

FLAG ’19
Web update

Dec ’20 FNAL/MILC 18
ETM 16

FNAL/MILC 13E
FNAL//MILC 13C

FLAG ’21 averages:

Nf = 2+1+1  f+(0) = 0.9698(17)
Uncorrelated average of:

FNAL/MILC 18: HISQ, 5sp, mπ → 135 MeV, 
new ensembles added to FNAL/MILC 13E
ETM 16: TwMW, 3sp, mπ → 210 MeV, full q2 
dependence of f+, f0

Nf = 2+1  f+(0) = 0.9677(27)
Uncorrelated average of:

FNAL/MILC 12I: HISQ, mπ ~ 300 MeV
RBC/UKQCD 15A: DWF, mπ → 139 MeV
JLQCD 17 not included because only single 
lattice spacing used

ChPT   f+(0) = 0.970(8)
Ecker 15, Chiral Dynamics 15: 
Calculation from Bijnens 03,
with new LECs from Bijnens, Ecker 14

 on the lattice and extraction of f+(0) |Vus |

|Vus | = 0.22330(35)exp(39)lat(8)IB
(53)tot = 0.24 %
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Summary on |Vus |
High-precision	world	data	on	leptonic	and	semileptonic	decay	channels	

Theore,cal	evalua,on	of	form	factors,	decay	constants,	radia,ve	correc,ons	as	important	as	data	

Past	~5	years:	ChPT	is	officially	superseded	by	laCce;	LQCD	results	very	consistent!	

Great	consistency	among	semileptonic	channels	

	channel:	first	ever	QCD+QED	calcula,on	on	the	laCceKμ2
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Status of first-row unitarity

29

= −0.00176(56) −3.1σ

= −0.00098(58) −1.7σ

= −0.0174(73) −2.4σ

3 observables: |Vus|Kℓ3, |Vus/Vud|Kμ2, Vud
2 quantities to determine: Vus, Vud

3 ways to test unitarity

Kμ2 result shows better agreement with unitarity than Kℓ3 result 
when  |Vud| obtained from beta decays:

= −0.0164(63) −2.6σ

Δ(3)CKM uses no information from β decays:

Unitarity → |VKℓ3
ud | = 1 − |VKℓ3

us |2 = 0.9747(1)

Unitarity → |VKμ2
ud | = [1 + | (Vus /Vud)Kμ2 |2 ]−1/2 = 0.9743(1)

	-	 	discrepancy	confirmed		
Cabibbo	anomaly	even	w/o	info	on	Vud!	
Upcoming	exp.	Belle	II,	NA62,	K0T0

Kμ2 Kℓ3

4 67. Vud, Vus the Cabibbo Angle, and CKM Unitarity

Table 67.1: |Vus|f+(0) from K¸3, based on ref. [18, 48]

Decay Mode |Vus|f+(0)
K±e3 0.2169(6)
K±µ3 0.2168(10)
KLe3 0.2162(5)
KLµ3 0.2165(6)
KSe3 0.2169(8)
KSµ3 0.2125(47)
Average (including correlation e�ects [18,48]) 0.21656(35)

A value of Vus can also be obtained from a comparison of the radiative inclusive decay rates for
K æ µ‹(“) and fi æ µ‹(“) combined with a lattice gauge theory calculation of fK+/ffi+ via

|Vus|fK+

|Vud|ffi+
= 0.23871(20)

5
≈ (K æ µ‹(“))
≈ (fi æ µ‹(“))

6 1
2

(67.14)

with the small error coming from electroweak radiative corrections [52–54]; these corrections were
confirmed by direct lattice calculation of the kaon and pion leptonic decay rates [53,54].

A recent fit [14,18] gives

|Vus|fK+

|Vud|ffi+
= 0.27679(28)BR(20)corr. (67.15)

Employing the FLAG [51] lattice QCD averages for the isospin broken decay constants
fK+

ffi+
= 1.1978(22) Nf = 2 + 1 + 1 (67.16)

leading to
|Vus|

|Vud|
= 0.23108(51) (Nf = 2 + 1 + 1, Kµ2 decays). (67.17)

Actually we can average the Cabibbo angle determinations from kaons: from K¸3 decays in eqs.
67.11, 67.12 and from Kµ2 in eqs. 67.15, 67.16 with Nf = 2 + 1 + 1. Assuming 20% correlation
between (|Vus/Vud|fK/ffi) and (fK/ffi) we obtain

Vus = 0.22431(85) S = 2.5. (67.18)

The result shown in Eq. 67.18 is what we use when we consider the first row test of CKM unitarity.
The quoted uncertainty includes a scale factor of 2.5 to account for the discrepancies between the
values of Vus obtained from K¸3 and Kµ2 decays.

This is the current status of the Cabibbo Angle determination from the kaon sector, and theo-
retical and experimental progress is expected to clarify the situation soon.

It should be mentioned that hyperon decay fits suggest [55]

|Vus| = 0.2250(27) (Hyperon Decays) (67.19)

modulo SU(3) breaking e�ects that could shift that value up or down. We note that a representative
e�ort [56] that incorporates SU(3) breaking found Vus = 0.226(5). Strangeness changing tau decays,
averaging both inclusive and exclusive measurements, give [57,58]

|Vus| = 0.2207(14) (Tau Decays) , (67.20)

31st May, 2024

Hyperon	and	tau	decays:	not	precise	enough	or	inconsistent	—	Belle	II,	Super	Tau-Charm	Factory?
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Actually we can average the Cabibbo angle determinations from kaons: from K¸3 decays in eqs.
67.11, 67.12 and from Kµ2 in eqs. 67.15, 67.16 with Nf = 2 + 1 + 1. Assuming 20% correlation
between (|Vus/Vud|fK/ffi) and (fK/ffi) we obtain

Vus = 0.22431(85) S = 2.5. (67.18)

The result shown in Eq. 67.18 is what we use when we consider the first row test of CKM unitarity.
The quoted uncertainty includes a scale factor of 2.5 to account for the discrepancies between the
values of Vus obtained from K¸3 and Kµ2 decays.

This is the current status of the Cabibbo Angle determination from the kaon sector, and theo-
retical and experimental progress is expected to clarify the situation soon.

It should be mentioned that hyperon decay fits suggest [55]

|Vus| = 0.2250(27) (Hyperon Decays) (67.19)

modulo SU(3) breaking e�ects that could shift that value up or down. We note that a representative
e�ort [56] that incorporates SU(3) breaking found Vus = 0.226(5). Strangeness changing tau decays,
averaging both inclusive and exclusive measurements, give [57,58]

|Vus| = 0.2207(14) (Tau Decays) , (67.20)

31st May, 2024

|VHyp
ud | = 0.9743(6) |V τ

ud | = 0.9753(3)



Vud from world data 
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Vud from neutron decay
|Vud |2 = 5024.7 s

τn(1 + 3gA2)(1+ΔV
R)Neutron	decay:	2	measurements	needed

PERKEO-III B. Märkisch et al, Phys.Rev.Lett. 122 (2019) 24, 242501

Experiment:	factor	3-5	uncertain,es	improvement;	discrepancies	in	 	and	τn gA

UCN  F. M. Gonzalez et al. Phys. Rev. Lett. 127 (2021) 162501τ

aSPECT M. Beck et al, Phys. Rev. C101 (2020) 5, 055506; 2308.16170

BL1 (NIST) Yue et al, PRL 111 (2013) 222501

gA = − 1.27641(56)
gA = − 1.2677(28)

3.4σ

τn = 877.75(28)+16
−12

τn = 887.7(2.3)
4σ

RC	 :	bo|leneck	since	40	years	

Since	2018:	DR+data+pQCD+EFT+LQCD	
	uncertainty:	factor	2	reduc,on

ΔV
R

ΔV
R

C-Y Seng et al., PRL 2018; PRD 2019 
A. Czarnecki, B. Marciano, A. Sirlin, PRD 2018 
K. Shiells et al, PRD 2021; L. Hayen PRD 2021 
P-X Ma, X. Feng, MG, L-C Jin, et al 2308.16755

Pre-2018:	 	Marciano,	Sirlin	PRL	2006	
Post-2018:	 	MG,	Seng	Universe	2023

ΔV
R = 0.02361(38)

ΔV
R = 0.02479(21)

|V free n
ud | = 0.9740 (2)τn

(3)gA
(1)RC[4]total

Single	best	measurements	onlyPDG	average
|V free n

ud | = 0.9743 (3)τn
(8)gA

(1)RC[9]total

https://arxiv.org/abs/2308.16755
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|Vπℓ3
ud | = 0.9739 (27)exp (1)RC

Pion	decay	 :	theore,cally	cleanest,	experimentally	toughπ+ → π0e+νe

|Vud |2 = 0.9799
(1+δ)

Γπℓ3
0.3988(23) s−1

Future exp: 1 o.o.m. (PIONEER @ PSI)

RC	to	semileptonic	pion	decay 	uncertainty:	factor	3	reduc,onδ

ChPT:		 		Cirigliano	et	al,	2003;	Passera	et	al,	2011	
DR	+	LQCD	+	ChPT:	 	Feng	et	al,	2020;	Yoo	et	al,	2023

δ = − 0.0334(10)LEC(3)HO
δ = 0.0332(1)γW(3)HO

Vud from semileptonic pion decay

Talk	by	Saul	Cuen-Rochin	on	Monday



 from superallowed  nuclear decaysVud 0+ − 0+

26

1. Transi,ons	within	JP=0+	isotriplets	(T=1)	
2. Elementary	process:	p—>ne+ 	
3. Only	conserved	vector	current	
4. 15	measured	to	be|er	than	0.2%	
5. Internal	consistency	as	a	check	
6. SU(2)	good	—>	correc,ons	~small

ν

7

“Superallowed” beta decays of I=1, Jp=0+ nuclei

Provides the best measurement 
of V

ud
 :

➢ 23 measured transitions
➢ 15 with ft-precision better 

than 0.23% 

Hardy and Towner, 2020 PRC
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x	values:	same	within	~2%	but	not	exactly!	
Reason:	SU(2)	slightly	broken	
a. RC	(e.m.	interac,on	does	not	conserve	isospin)	
b. Nuclear	WF	are	not	SU(2)	symmetric		
						(proton	and	neutron	distribu,on	not	the	same)

Exp.:	f	-	phase	space	(Q	value)		
t	-	par,al	half-life	(t1/2,	branching	ra,o)
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Vud extraction: Universal RC and Universal Ft

27

To	obtain	Vud	—>	absorb	all	decay-specific	correc,ons	into	universal	Ft

ft(1 + RC + ISB) = ℱt(1 + ΔV
R) = ft(1 + δ′ R)(1 − δC + δNS)(1 + ΔV

R)

QED Isospin-breaking Nuclear	structure Universal	RC~	Measured
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Average	of	14	decays Hardy,	Towner	1972	-	2020

|Vud |2 = 2984.43s
ℱt(1+ΔV

R)

|V0+−0+
ud | = 0.9737 (1)exp, nucl (3)NS (1)RC[3]total

Pre-2018:	ℱt = 3072.1 ± 0.7 s

PDG	2024:	ℱt = 3072 ± 2 s



Are all SM contributions under control?



Radiative Corrections to beta decay: 
Overall Setup



RC to beta decay: overall setup

30

Tree-level	amplitude

Electron	carries	away	energy	E	<	Q-value	of	a	decay

i = n, A(0+) f = p, A′ (0+)

e±

νe(ν̄e) ∼ Vud

Radia,ve	correc,ons	to	tree-level	amplitude ∼ α/2π ≈ 10−3

Precision	goal	for	Vud	extrac,on 1 × 10−4

α
2π ( E

Λ , ln E
Λ , …)E-dep	RC:

Nuclear	scale

Λhad = 300 MeV
Hadronic	scale

MZ, MW ∼ 90 GeV
Weak	boson	scale

me ≈ 0.5 MeV

Qif = Mi − Mf = 1 − 10 MeV
Electron	mass

Decay	Q-value	(endpoint	energy)

Λnuc = 10 − 30 MeV

Λ

Energy	scales	Λ
Universal	

Nuclear	structure	dependent		
(QCD)

Nucleus-specific

Nuclear	structure	independent		
(QED)



RC to beta decay: separating scales

31

Generically:	only	IR	and	UV	extremes	feature	large	logarithms!	
Works	by	Sirlin	(1930-2022)	and	collaborators:	all	large	logs	under	control

IR: Fermi function (Dirac-Coulomb problem) + Sirlin function (soft Bremsstrahlung)

9

W

γ ,Zb =

ν

e

h 'h

W

W

γ , ,WZb =

ν

e

h 'h

Z

ν

e

h 'h

W W

ν

e

h 'h

Z

Contributions of these diagrams are either exactly known (by CA) or depend only on UV 
physics which can be computed perturbatively

Radiative Corrections: Modern Treatment

W,Z	-	loops	
UV	structure	of	SM

Inner	RC:		
energy-	and	model-independent

UV: large EW logs + pQCD corrections

-box: sensitive to all scalesγW

10

γ

ν

e

n p

W

( ) ( ) ν
νν

π
π

NW

W

m
qT

q

q
qm

mqd
c

),(
)2(

Re8Re
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22

22
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2

4

4
2

m.d
−−

−
= ∫

Nm
qp ⋅

=ν

( ) ),(
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})0()({
)2(

2
34

4

QT
m

qpi
nJxJTpe

qd

N
AWem

xiq ν
ν

ε
π

βα
µναβ

νµ =∫
⋅

The only piece that depends on physics at hadronic scale is the V*A term in the Wγ−box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment

New	method	for	compu,ng	EW	boxes:	dispersion	theory	
Combine	exp.	data	with	pQCD,	laCce,	EFT,	ab-ini,o	nuclear

UV-sensi,ve	 -box	on	free	neutron	 :	Sirlin,	Marciano,	Czarnecki	1967	-	2006		γW ΔV
R

g2
V = |Vud |2 [1 + α

2π {3 ln MZ

Mp
+ ln MZ

MW
+ ãg} + δHO

QED + 2 □γW ]
Nuclear	structure:	 	

All	non-enhanced	terms	 	—	only	need	to	~10%

δNS = 2( □Nucl
γW − □free n

γW )

∼ α/2π ∼ 10−3



Unified Formalism for  and  

Dispersion Theory of the -box

ΔV
R δNS

γW

Λhad = 300 MeV

Electron mass

Λnuc = 10 − 30 MeV

Λ
MZ, MW ∼ 90 GeV

IR

UV

Fermi function, corrections to beta spectrum

Universal correction ΔV
R

Nuclear structure δC, δNS
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diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment

3

FIG. 1: The �W -box diagram relevant for the �
� neutron decay.

III. DISPERSION REPRESENTATION OF THE ”INNER” �W -BOX CORRECTION TO gV .

The �W -box correction is shown in Fig. 1, and is defined as

T�W =
p
2e2GFVud

Z
d4q

(2⇡)4
ūe�µ(k/� q/+me)�⌫(1� �5)v⌫

q2[(k � q)2 �m2
e]

M2
W

q2 �M2
W

T �W
µ⌫ , (6)

where k is the outgoing momentum of the electron. The forward generalized Compton tensor for the �� decay process
W+n ! �p (W�p ! �n for the �+ process relevant for nuclei) represented by the lower blob in Fig. 1 is given by

Tµ⌫
�W =

Z
dxeiqxhp|T [Jµ

em(x)J⌫
W (0)]|ni (7)

with the following definitions of the electromagnetic and charged weak current:

Jµ
em =

2

3
ū�µu�

1

3
d̄�µd

Jµ
W = ūL�

µdL. (8)

Notice that the definition of Tµ⌫
�W above follows that in Ref. [6], which has a di↵erence of factor i comparing to more

common definitions in the analysis of deep-inelastic processes.
As the box diagram contains only one heavy boson propagator, it receives contribution from the loop momentum

q of all scales, ranging from infrared (i.e. q ⇠ me) to ultraviolet. The infrared-singular piece in T�W , together with
the electron and proton wavefunction renormalization as well as the real-photon bremsstrahlung diagrams, give rise
to the Fermi function F (�) and the outer-corrections �(1,2) which are known analytically. In the meantime, most
parts of the inner corrections from T�W to gV are either exactly known due to current algebra or depend only on
physics at high-scale and so are perturbatively calculable. The only piece that depends on the physics at the hadron
scale involves the vector-axial vector correlator in Tµ⌫

�W . Following a notation similar to that in Ref. [2], we define its
correction to the tree-level W -exchange amplitude as:

TW + TV A
�W = �

p
2GFVud

�
1 +⇤V A

�W

�
ūep/(1� �5)v⌫ , (9)

and so its connection to the older notation in [5] is just ⇤V A
�W = (↵/2⇡) (Re c)V A

�W . The explicit expression of ⇤V A
�W is

given by:

⇤V A
�W = 4⇡↵Re

Z
d4q

(2⇡)4
M2

W

M2
W +Q2

Q2 + ⌫2

Q4

T3(⌫, Q2)

M⌫
(10)

where Q2 = �q2, ⌫ = p · q/M with M the average nucleon mass, and T3(⌫, Q2) the parity-odd spin-independent
invariant amplitude of the forward Compton tensor Tµ⌫

�W defined through:

Tµ⌫
�W =

✓
�gµ⌫ +

qµq⌫

q2

◆
T1 +

1

(p · q)

✓
p�

(p · q)

q2
q

◆µ ✓
p�

(p · q)

q2
q

◆⌫

T2 +
i✏µ⌫↵�p↵q�
2(p · q)

T3. (11)

Notice that since ⇤V A
�W is insensitive to physics at the scale q ⇠ me, we have set me, k ! 0 as well as mn = mp = M

to arrive Eq. (10). Furthermore, the fact that the electromagnetic current comes as a mixture of an isoscalar and
isovector permits a decomposition of the forward amplitude in two isospin channels,

T3 = T (0)
3 + T (3)

3 . (12)

Q2 = -q2 
ν = (pq)/M

Marciano	&	Sirlin	used	loop	techniques:

5

FIG. 3: Idealized structure of virtual photoabsorption on the nucleon (upper panel) and nuclei (lower panel). Plot taken from
the web but we’d need to make one ourselves.

Caution: We need to put back the superscript V A to ⇤�W because ⇤�W 6= ⇤V A
�W !! (i.e. V ⇥ A is NOT the only

non-zero piece in �W box diagram)
Compared to the old result by MS

⇤V A
�W =

↵

8⇡

Z 1

0

dQ2M2
W

M2
W +Q2

F (Q2), (17)

which only explicitly considered Q2 as a dynamical variable, our result allows for a greater detalization as we provide
a dispersion representation of that function,

F (Q2) =

Z 1

0
d⌫

8(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2). (18)

This is the first essentially new result of our work. Armed with this new dispersive representation we can address
model dependence of the box graph calculation on a qualitatively new level. In doing so we can also rely on experi-
mental data: while F �W

3 (⌫, Q2) itself is not directly observable, its weak isospin partners F �Z
3 (⌫, Q2), FZZ

3 (⌫, Q2) and
FWW
3 (⌫, Q2) enter observables in inclusive electron and neutrino scattering.

IV. PHYSICS INPUT INTO THE DISPERSION RELATION FOR F
�W
3

It is informative to take a look at the general structure of the virtual photoabsorption spectrum displayed in Fig.
3. For a fixed value of Q2 one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak
at Q2/(2M) (broadened by radiative corrections); nucleon resonances and non-resonant pion production starting
from the pion threshold [Q2 + (M +m⇡)2 �M2]/(2M) and up to roughly 2.5 GeV above the threshold; high-energy
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As discussed in Ref. [5], the Standard Model prediction for
the PV asymmetry in the forward regime can be expressed as

APV = GF t

4
√

2παem

[
(1 + #ρ + #e)(1 − 4 sin2 θ̂W (0) + #′

e)

+ !WW + !ZZ + !γZ

]
+ . . . , (12)

where θ̂W (0) is the running weak mixing angle in the MS
scheme at zero momentum transfer [7]. The correction #ρ is
a universal radiative correction to the relative normalization
of the neutral and charged current amplitudes; the #e and #′

e

give, respectively, nonuniversal corrections to the axial vector
Zee and γ ee couplings; the !V V for V = W,Z, γ give the
nonuniversal box graph corrections; and the “+ · · · ” indicate
terms that vanish with higher powers of t in the forward limit,
such as those arising from the magnetic and strange quark form
factors and the two-photon dispersion correction, !γ γ . The
weak charge of the proton, considered as a static property, is
given by the quantity in the squark brackets in the zero-energy
limit.

Within the radiative corrections, the TBE effects are
separated explicitly. This is done because the TBE corrections,
unlike other corrections in the above equation, are in general
ν and t dependent. In particular, the ν (or ε) dependence of
the γ γ -box is believed to be responsible for the discrepancy
between the Rosenbluth and polarization transfer data for
G

γ
E/G

γ
M [18]. It should be noted that in the exact forward

direction !γ γ vanishes as a consequence of electromagnetic
gauge invariance.

The WW and ZZ-box diagrams were first considered in [8]
and subsequently investigated in Refs. [5,19]. The contribution
from !WW in particular is relatively large. Both corrections
are ν independent at any hadronic energy scale because they
are dominated by exchange of hard momenta in the loop
∼MW,MZ . Higher-order perturbative QCD corrections to
!WW and !ZZ were computed in Ref. [5], and the overall
theoretical uncertainty associated with these contributions is
well below the expected uncertainty of the Q-Weak experi-
ment.

In contrast to !WW and !ZZ , !γZ receives substantial
contributions from loop momenta at all scales. For the electron
energy-independent contribution, this situation leads to the
presence of a large logarithm ln MZ/)had, where )had is a
typical hadronic scale [5,8,19]. Because the asymmetry must
be independent of the latter, !γZ includes also a “low-energy
constant” CγZ()had) whose hadronic scale dependence com-
pensates for that appearing in the logarithm. An analogous Wγ
box correction enters the vector current contribution to neutron
and nuclear β decay. Importantly for the PV asymmetry, these
energy-independent γZ box contributions are suppressed by
1 − 4 sin2 θW , thereby suppressing the associated theoretical
uncertainty.

In Ref. [11], the γZ-box contribution was reexamined in
the framework of dispersion relations and it was found that
it possesses a considerable energy dependence, so that at
energies in the GeV range its value can differ significantly from
that found at zero energy. Moreover, the energy-dependent
correction contains a term that is not 1 − 4 sin2 θW suppressed,
so the theoretical uncertainty associated with hadronic-scale

contributions is potentially more significant. This energy de-
pendence comes through contributions from hadronic energy
range inside the loop that cannot be calculated reliably using
perturbative techniques.

At present, a complete first-principles computation is not
feasible, forcing one to rely on hadronic modeling. For a proper
interpretation of the PV asymmetry, it is thus important to
investigate the theoretical hadronic model uncertainty. The
remainder of the paper is devoted to this task. In so doing, we
attempt to reduce this model uncertainty by relating–wherever
possible–contributions from hadronic intermediate states to
experimental PC electroproduction data through the use of a
dispersion relation and isospin rotation. As a corollary, we also
identify future experimental measurements, such as those of
the PV inelastic asymmetry in the regime of moderate Q2 and
W , that could be helpful in reducing the theoretical uncertainty.

III. DISPERSION CORRECTIONS

To calculate the real part of the γZ direct and crossed
box diagrams shown in Fig. 1, we follow [11] and adopt a
dispersion relation formalism. We start with the calculation
of the imaginary part of the direct box (the crossed box
contribution to the real part will be calculated using crossing),

ImTγZ = −GF√
2

e2

(2π )3

∫
d3k⃗1

2E1

lµν · W
µν
γZ

Q2
(
1 + Q2/M2

Z

) , (13)

where Q2 = −(k − k1)2 denotes the virtuality of the ex-
changed photon and Z (in the forward direction they carry
exactly the same Q2), and we explicitly set the intermediate
electron on shell. In the center of mass of the (initial) electron
and proton, one has E1 = s−W 2

2
√

s
, with s the full c.m. energy

squared and W the invariant mass of the intermediate hadronic
state. Note that for on-shell intermediate states, the exchanged
bosons are always spacelike.

The leptonic tensor is given by

lµν = ū(k′)γνk/1γµ

(
ge

V + ge
Aγ5

)
u(k). (14)

We next turn to the lower part of the diagrams in Fig. 1. The
blobs stand for an inclusive sum over all possible hadronic
intermediate states, starting from the ground state (i.e., the
nucleon itself) and on to a sum over the whole nucleon
photoabsorption spectrum. The case of the elastic hadronic
intermediate state was considered in Ref. [20]. Here we
concentrate on the inelastic contribution. Such contributions
arise from the absorption of a photon (weak boson). In
electrodynamics, for a given material, the relation between

FIG. 1. Direct and crossed diagrams for γZ exchange. Dashed
lines correspond to an exchange of a Z boson, and wavy lines to
an exchange of a photon. The blob stands for an inclusive sum over
intermediate hadronic states.
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8

Consequently, upon neglecting the terms ⇠ M2/Q2 and allowing x⇡ ! 1 we obtain

⇤V,DIS
�W ⇡

3↵

2⇡

Z 1

⇤2

dQ2M2
W

Q2(Q2 +M2
W )

Z x⇡

0
dx

eu + ed
8

(d(x)� ū(x)). (28)

Note that the neglected kinematically suppressed terms have no impact on the final result. Assuming further a
symmetric sea in the nucleon, ū = d̄, the integral over x simply gives the number of valence d-quarks inside the
neutron,

R 1
0 dx(d(x)� d̄(x)) = 2, and we obtain the large logarithm term already obtained by MS:

⇤DIS
�W ⇡

3↵

2⇡

eu + ed
4

ln
M2

W

⇤2
=

↵

4⇡
ln

MW

⇤
, (29)

An important result from Ref. [2] was to realize that all pQCD corrections to this leading logarithm term are identical
to those entering Bjorken sum rule. These corrections modify the leading log (LL) result for the M&S function F (Q2),

FLL(Q2) =
1

Q2
! F pQCD =

1

Q2

2

41� ↵MS
s

⇡
� C2

 
↵MS
s

⇡

!2

� C3

 
↵MS
s

⇡

!3
3

5 , (30)

with C2 = 4.583 � 0.333NF and C3 = 41.440 � 7.607NF + 0.177N2
F , NF standing for the number of e↵ective quark

flavors, and ↵MS
s (Q2) denotes the running strong coupling constant in the modified minimal subtraction scheme.

Numerically, the pQCD corrections reduce the large log ln(MZ/⇤) ⇡ 4.11 by roughly 8 %, Ag = �0.34 [2].
The first moment of the structure function F3 is also known as Gross-Llewellyn-Smith (GLS) sum rule. It is directly

accessible in neutrino and antineutrino deep inelastic scattering:

d2�⌫(⌫̄)

dxdy
=

G2
FME

⇡


xy2F1 +

✓
1� y �

Mxy

2E

◆
F2 ± x

✓
y �

y2

2

◆
F3

�
, (31)

with +(�) referring to neutrino (antineutrino) scattering. Therefore, a measurement of the di↵erence of the neutrino
and antineutrino cross sections gives F3 which arises as an interference between the axial and vector currents of the
W . GLS sum rule has been extensively studied in the literature. Fig. 5 displays the comparison of a compilation of
world data on GLS sum rule above Q2 = 2 GeV2 together with the pQCD prediction. Note that it di↵ers from the
pQCD running of Bjorken sum rule in Eq. (30) just in one coe�cient at ↵3

s.

C. Inelastic contributions beyond DIS

In the remaining piece of the Q2-integral we can once again neglect the Q2-dependence of the W -propagator, and
it becomes

⇤lowQ2

�W =
↵

⇡

Z ⇤2

0
dQ2

Z 1

⌫⇡

d⌫

(⌫ + q)2
⌫ + 2q

M⌫
F (0)
3 . (32)

This contribution should be compared to the integral over what M&S called an interpolating contribution

⇤V A (0)
�W =

↵

8⇡

Z ⇤2

Q2
0

dQ2F INT(Q2), (33)

where the lower limit of integration was chosen to be Q2
0 = (0.823GeV)2. The respective function under the integral

was taken in the VDM-motivated form,

F INT(Q2) = �
1.490

Q2 +m2
⇢

+
6.855

Q2 +m2
A

�
4.414

Q2 +m2
⇢0
, (34)

with m⇢ = 0.776 GeV, mA = 1.230 GeV and m⇢0 = 1.465 GeV, and numerical coe�cients were obtained by imposing
three constraints:

I F INT(⇤2) = FDIS(⇤2)

II F INT((0.823GeV)2) = FBorn((0.823GeV)2)

III F INT(0) = 0. (35)

Interpolate	between	them
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Single-nucleon radiative correction

Superallowed 0+ → 0+ :  

Experiment + nuclear corrections Single-nucleon radiative correction (RC)

Uncertainty halved but central value shifted!

Major source of theory uncertainty: “gW-box diagram”

Estimate by Marciano and Sirlin, state-of-the-art result
from 2006 to 2018:

Year 2018: new evaluation with dispersion relation (DR) :

CYS, Gorchtein, Patel and
Ramsey-Musolf, 2018 PRL

Confirmed later by independent studies: Czarnecki, Marciano and Sirlin, 2019 PRD
Hayen, 2020
Shiells, Blunden and Melnitchouk, 2020
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Generalized	Compton	tensor		
,me-ordered	product	—	complicated!

Commutator	(Im	part)	-	only	on-shell		
hadronic	states	—	related	to	data

∫ dxeiqx⟨Hf(p) | [Jμ
em(x), Jν,±

W (0)] |Hi(p)⟩∫ dxeiqx⟨Hf(p) |T{Jμ
em(x)Jν,±

W (0)} |Hi(p)⟩

Model-dependent	part	or	RC:	 -boxγW

to ensure the conservation of the axial current in the chiral limit. The B-terms in Eq.(8)

remove the poles in T̄ ⌫ and D at q̄ ! q. Finally, we split the �W -box diagram, i.e. the

second diagram in Fig.1, into two terms:

�M�W = �Ma
�W + �Mb

�W , (12)

the (b) term carries an ✏-tensor from the lepton structure while the (a) term does not.

Now we can discuss the remaining terms in Eq.(3). First, a partial cancellation occurs

when combining �F µ
2pt and �Ma

�W , resulting in an analytically-calculable piece (which is

already included in the first two terms in Eq.(3)) and a “residual integral” that cannot be

simply reduced to something proportional to M0:

�
�M2 + �Ma

�W

�
int

= �
GFVude2

p
2

L�

Z
d4k

(2⇡)4
1

(pe � k)2 �m2
e

1

k2 �m2
�

⇥

⇢
2pe · kk�

k2 �m2
�

T µ
µ + 2peµT

µ�
� (pn � pp)µT

�µ + i��

�
, (13)

where

�µ
⌘

Z
d4xeik·xhp|T [Jµ

em(x)@ · JW (0)]|ni (14)

is similar to T µ⌫ except that the charged current is replaced by its total derivative. They

satisfy the following Ward identities:

kµT
µ⌫ = iF ⌫ , (k � q)⌫T

µ⌫ = iF µ
� i�µ . (15)

The next non-trivial integral is the part of the �W -box diagram with an ✏-tensor:

�Mb
�W = �i

GFVude2
p
2

L�

Z
d4k

(2⇡)4
m2

W

m2
W � k2

✏µ⌫↵�k↵
[(pe � k)2 �m2

e]k
2
Tµ⌫ . (16)

SR allows us to identify these two integrals, together with the three-point function in Eq.(8),

as the only non-trivial quantities in the O(↵) virtual RC.

Finally, in order to ensure the IR-finiteness of the total decay rate [27–31], it is necessary

to include the bremsstrahlung process which emits an extra photon, as depicted in Fig.2.

The amplitude reads:

Mbrems = �
GFVude
p
2

1

2pe · k

�
�2pe · "

⇤gµ⌫ � kµ"⇤⌫ + k⌫"⇤µ + i✏µ⌫↵�k↵"
⇤
�

 
FµL⌫

+
iGFVude

p
2

"⇤µL⌫Tµ⌫ , (17)

where "⇤µ is the polarization vector of the outgoing photon.

7
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Universal RC from dispersion relations

Figure 4: (Color online) Blue curve: The Wick rotation contour of the ⌫-integral. Red lines and

dots: Cuts and poles at ⌫ = ⌫ 0. Green dot: The pole ⌫ = Ee + |~pe � ~q|� i". Purple dots: Possible

positions of the pole ⌫ = Ee � |~pe � ~q|+ i".

combining the Wick and residue contributions we obtain

Re⇤b,even
�W (Ee) =

↵

2⇡Ee

1

Mf+(0)

Z 1

0

dQ2 M2
W

M2
W +Q2

Z 1

⌫thr

d⌫ 0

⌫ 0 F3,�(⌫
0, Q2)

⇥

⇢
ln

����
Ee + Emin

Ee � Emin

����+
⌫ 0

2Ee
ln

����1�
E2

e

E2
min

����

�

Re⇤b,odd
�W (Ee) = �

↵

2⇡Ee

1

Mf+(0)

Z 1

0

dQ2 M2
W

M2
W +Q2

Z 1

⌫thr

d⌫ 0

⌫ 0 F3,+(⌫
0, Q2)

⇥

⇢
ln

����1�
E2

e

E2
min

����+
⌫ 0

2Ee
ln

����
Ee + Emin

Ee � Emin

�����
⌫ 0

Emin

�
, (41)

where Emin ⌘ (⌫ 0 +
p
⌫ 02 +Q2)/2. One finds that the even piece is associated to F3,� and

the odd piece to F3,+. Finally, a small-Ee expansion gives:
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e )

(42)

which recovers Eq.(10) in Ref.[73] upon correcting the typos in the latter. Notice that

we removed the factor M2
W/(M2

W + Q2) in ⇤b,odd
�W because the integral does not probe the

Q2
⇠ M2

W region.

Next we study ⇤a
�W , with Eq.(26) as the starting point. Rather than giving the dispersive

representation of T1,± and T2,± with the full Ee-dependence, we retain only the O(Ee) terms

16

Cauchy	theorem	(dispersion	rela,on)	+	some	algebra

Structure	func,ons	are	measurable	or	may	be	related	to	data
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dots: Cuts and poles at ⌫ = ⌫ 0. Green dot: The pole ⌫ = Ee + |~pe � ~q|� i". Purple dots: Possible

positions of the pole ⌫ = Ee � |~pe � ~q|+ i".

combining the Wick and residue contributions we obtain
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where Emin ⌘ (⌫ 0 +
p
⌫ 02 +Q2)/2. One finds that the even piece is associated to F3,� and

the odd piece to F3,+. Finally, a small-Ee expansion gives:
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which recovers Eq.(10) in Ref.[73] upon correcting the typos in the latter. Notice that

we removed the factor M2
W/(M2

W + Q2) in ⇤b,odd
�W because the integral does not probe the

Q2
⇠ M2

W region.

Next we study ⇤a
�W , with Eq.(26) as the starting point. Rather than giving the dispersive

representation of T1,± and T2,± with the full Ee-dependence, we retain only the O(Ee) terms
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Cauchy	theorem	(dispersion	rela,on)	+	some	algebra

Structure	func,ons	are	measurable	or	may	be	related	to	data

5

FIG. 3: Idealized structure of virtual photoabsorption on the nucleon (upper panel) and nuclei (lower panel). Plot taken from
the web but we’d need to make one ourselves.

Caution: We need to put back the superscript V A to ⇤�W because ⇤�W 6= ⇤V A
�W !! (i.e. V ⇥ A is NOT the only

non-zero piece in �W box diagram)
Compared to the old result by MS

⇤V A
�W =

↵

8⇡

Z 1

0

dQ2M2
W

M2
W +Q2

F (Q2), (17)

which only explicitly considered Q2 as a dynamical variable, our result allows for a greater detalization as we provide
a dispersion representation of that function,

F (Q2) =

Z 1

0
d⌫

8(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2). (18)

This is the first essentially new result of our work. Armed with this new dispersive representation we can address
model dependence of the box graph calculation on a qualitatively new level. In doing so we can also rely on experi-
mental data: while F �W

3 (⌫, Q2) itself is not directly observable, its weak isospin partners F �Z
3 (⌫, Q2), FZZ

3 (⌫, Q2) and
FWW
3 (⌫, Q2) enter observables in inclusive electron and neutrino scattering.

IV. PHYSICS INPUT INTO THE DISPERSION RELATION FOR F
�W
3

It is informative to take a look at the general structure of the virtual photoabsorption spectrum displayed in Fig.
3. For a fixed value of Q2 one clearly sees three major structures as one goes from low to high energy ⌫: elastic peak
at Q2/(2M) (broadened by radiative corrections); nucleon resonances and non-resonant pion production starting
from the pion threshold [Q2 + (M +m⇡)2 �M2]/(2M) and up to roughly 2.5 GeV above the threshold; high-energy
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Input into dispersion integral -  dataν/ν̄
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Isospin	symmetry:	Mixed	CC-NC	 	SF	(no	data)	<—>	Purely	CC	WW	SF	(inclusive	neutrino	data)γW



Input into dispersion integral -  dataν/ν̄

37

Isospin	symmetry:	Mixed	CC-NC	 	SF	(no	data)	<—>	Purely	CC	WW	SF	(inclusive	neutrino	data)γW

6

Single-nucleon radiative correction

Major limitating factor in the DR treatment:  low quality of the neutrino data in the most 
interesting region: Q2 ~ 1GeV2

Neutrino scattering data Free neutron gW box

Better-quality data may come from the Deep Underground Neutrino Experiment (DUNE),
which is however not in reach in the near future.

The next major breakthrough has to come from first-principles calculations!

Marciano,	Sirlin	2006:	 	—>	ΔV
R = 0.02361(38) |Vud | = 0.97420(10)Ft(18)RC

DR	(Seng	et	al.	2018):	 	—>	ΔV
R = 0.02467(22) |Vud | = 0.97370(10)Ft(10)RC
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6

Single-nucleon radiative correction

Major limitating factor in the DR treatment:  low quality of the neutrino data in the most 
interesting region: Q2 ~ 1GeV2

Neutrino scattering data Free neutron gW box

Better-quality data may come from the Deep Underground Neutrino Experiment (DUNE),
which is however not in reach in the near future.

The next major breakthrough has to come from first-principles calculations!
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R = 0.02361(38) |Vud | = 0.97420(10)Ft(18)RC
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Shix	upwards	by	3 	+	reduc,on	of	uncertainty	by	factor	2σ

Confirmed	by	laCce	QCD:	
LQCD	on	pion	+	pheno:	

LQCD	on	neutron:

Seng,	MG,	Feng,	Jin,	2003.11264ΔV
R = 0.02477(24)LQCDπ+pheno Yoo	et	all,	2305.03198

ΔV
R = 0.02439(19)LQCDn Ma,	Feng,	MG	et	al	2308.16755



Effec,ve	Field	Theory:	explicit	separa,on	of	scales	+	RGE	running	between	
SM	—>	LEFT	(no	H,t,Z,W)	—>	ChPT	—>	NR	QED	
Formal	consistency	built	in,	RGE,	transparent	error	es,ma,on	(naturalness)	
Precision	limited	by	matching	(LEC)	and	HO	—	relies	on	inputs	(e.g.	 -box	from	DR)	
To	improve:	need	to	go	to	higher	order	—	new	LECs,	s,ll	tractable?	
At	present:	order	 	—	realis,c	to	go	beyond?

γW

O(α, ααs, α2)

EFT: scale separation for free n

  
[no logs]

𝒪(α)  𝒪(me /mN)
 

Extract from  
Experiment

λ = gA/gV

Matrix element 

1 MeV ℒ = − 2GFVud gV(me) ēLγμνL N̄vμτ+N
pn

eνe

 
Enhanced
π2,1/βvector 

coupling

Cirigliano	et	al,	2306.03138
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Total	RC:	 	

Total	RC	from	DR:

1 + ΔTOT = 1.07761(27) %

1 + ΔTOT = 1.07735(27) %
Good	agreement	within	errors!



Nuclear-Structure RC δNS



History of : -box on nucleiδNS γW
	and	W	on	same	nucleon	—>	already	in	 :	drop!γ ΔV

R

Jaus,	Rasche	1990

Towner	1994
Nucleons	are	bound	—	free-nucleon	RC	modified:	δA

NS

	and	W	on	dis,nct	nucleons	—>	only	in	nuclei:	γ δB
NS

Jaus,	Rasche	1990;	Hardy,	Towner	1992-2020

40



History of : -box on nucleiδNS γW
	and	W	on	same	nucleon	—>	already	in	 :	drop!γ ΔV
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Towner	1994
Nucleons	are	bound	—	free-nucleon	RC	modified:	δA

NS

	and	W	on	dis,nct	nucleons	—>	only	in	nuclei:	γ δB
NS

Jaus,	Rasche	1990;	Hardy,	Towner	1992-2020

40

Seng	et	al.	2018:	con,nuum	contribu,on	(quasielas,c	nucleon	knockout)	
—	can	check	the	 	calcula,on	explicitly	in	dispersion	theory		in	Fermi	gas	modelδA

NS

MG	2019:	energy	dependence	non	negligible:	ℱt = ft(1 + δA
NS + δE−dep

NS + …)



History of : -box on nucleiδNS γW
	and	W	on	same	nucleon	—>	already	in	 :	drop!γ ΔV

R

Jaus,	Rasche	1990

Towner	1994
Nucleons	are	bound	—	free-nucleon	RC	modified:	δA

NS

	and	W	on	dis,nct	nucleons	—>	only	in	nuclei:	γ δB
NS

Jaus,	Rasche	1990;	Hardy,	Towner	1992-2020

40

Seng	et	al.	2018:	con,nuum	contribu,on	(quasielas,c	nucleon	knockout)	
—	can	check	the	 	calcula,on	explicitly	in	dispersion	theory		in	Fermi	gas	modelδA

NS

MG	2019:	energy	dependence	non	negligible:	ℱt = ft(1 + δA
NS + δE−dep

NS + …)

δℱt = − (3.5±1.0)s + (1.6±0.5)s
δℱt = − (1.8 ± 0.4)s + (0 ± 0)s

New estimate:

Old estimate:

Two	effects	cancel	but	introduce	100%	uncertainty:	ℱt = (3072.1 ± 0.7)s → ℱt = (3072 ± 2)s
Has	to	be	checked	in	modern	ab-ini,o	nuclear	theory



Dispersion theory of  with ab-initio inputδNS

41

Low-momentum	part	of	the	loop:	account	for	nucleon	d.o.f.	only	
Ab-ini,o	methods:		
NN	interac,on	from	chiral	EFT:	systema,cally	improvable,	self	consistent	
Solve	many-body	QM	problem	with	poten,al	derived	from	 EFTχ

A.	Ekström	et	al,	2212.11064

https://arxiv.org/abs/2212.11064
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First	case	study:	 	in	No-Core	Shell	Model	(NCSM)10C → 10B

M. Gennari et al, 2405.19281
δNS = − 0.406(39) % δNS = − 0.347(35) %

δNS = − 0.400(50) %
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More	to	come	in	the	near	future!

Low-momentum	part	of	the	loop:	account	for	nucleon	d.o.f.	only	
Ab-ini,o	methods:		
NN	interac,on	from	chiral	EFT:	systema,cally	improvable,	self	consistent	
Solve	many-body	QM	problem	with	poten,al	derived	from	 EFTχ

A.	Ekström	et	al,	2212.11064

https://arxiv.org/abs/2212.11064


Nuclear Corrections

Λhad = 300 MeV

Electron mass

Λnuc = 10 − 30 MeV

Λ
MZ, MW ∼ 90 GeV

IR

UV

Fermi function, 
corrections to beta spectrum

Universal correction ΔV
R

Nuclear structure δC, δNS



QED: Corrections to Decay Spectrum

Recoil	correc,on

Atomic	screening	and	overlap	correc,onsShape	factor:	spaIal	distribuIon	of	decay	

Fermi	func,on:	e+	in	Coulomb	field	of	daughter	nucleus

f = m−5
e ∫

E0

me

dEe | ⃗pe |Ee(E0 − Ee)2F(Ee)C(Ee)Q(Ee)R(Ee)r(Ee)

Unperturbed	beta	spectrum

43

Only	the	outer	protons	can	decay:		
all	neutron	states	in	the	core	occupied	

Photon	probes	the	en,re	nuclear	charge

g

e+

n

r
ch
(r)

r
cw
(r)

Seng, 2212.02681
MG, Seng 2311.16755

Tradi,onally:	assumed	that	decay	probability	is		
equally	distributed	across	the	en,re	nucleus

Recent	development:		
isospin	symmetry	+	known	charge	distribu,ons

RelaIve	shiP	in	f-values	downwards	of	0.01-0.1%	
Non-negligible	given	the	precision	goal	0.01%



Isospin breaking in nuclear WF:  
Tree-level effect — ISB “large”

δC

Λhad = 300 MeV

Electron mass

Λnuc = 10 − 30 MeV

Λ
MZ, MW ∼ 90 GeV

IR

UV

Fermi function

Universal correction ΔV
R

Nuclear structure δC, δNS



Isospin symmetry breaking in superallowed -decayβ

45

MF = ⟨ f |τ+ | i⟩
Tree-level	Fermi	matrix	element

	—	Isospin	operator	
	—	members	of	T=1	isotriplet

τ+

| i⟩, | f ⟩
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If	isospin	symmetry	were	exact,	 	

Isospin	symmetry	is	broken	in	nuclear	states		
(e.g.	Coulomb,	nucleon	mass	difference,	…)	

In	presence	of	isospin	symmetry	breaking	(ISB):	

MF → M0 = 2

|MF |2 = |M0 |2 (1 − δC)
MacDonald	1958

δC ∼ 0.17% − 1.6%!
J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

ISB	correc,on	almost	singlehandedly	aligns	x-values!	

Crucial	for	 	extrac,onVud
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standard deviations. Is there any way the |Vud | value in Eq. (10)
could possibly be shifted to this value? It can be seen in
Eq. (8) that |Vud |2 is inversely proportional to both F t and
(1 + !V

R). For F t to account for such a shift, it would have to
decrease by six standard deviations. That is unlikely enough
but, because all 14 measured transitions agree with one another
and with CVC, all 14 would have to undergo the same shift, a
virtual impossibility. The only other possibility is a shift in the
nucleus-independent radiative correction, !V

R, which would
have to be reduced from 2.36(4)% to 2.24%. This is a change
equal to three times the stated uncertainty which, while not
impossible, is rather unlikely.

(4) f+(0), fK/fπ correct, Kℓ3, Kℓ2 correct, unitarity
not satisfied. With |Vus | determined from Kℓ3 decays and
|Vus |/|Vud | from Kℓ2 decays, each with the Nf = 2 + 1 + 1
lattice coupling constants, a value of |Vud | can be obtained from
their ratio. The result, |Vud | = 0.9670(44), has a somewhat
larger error bar than other determinations from kaon physics
because no constraint to satisfy unitarity has been imposed.
Nevertheless, the result is two of its standard deviations away
from the nuclear β-decay value for |Vud | and the unitarity
sum is likewise not satisfied, with |Vu|2 = 0.985(9) and a
deficit, !CKM = −0.015(9), of 1.8 standard deviations. For
the β-decay value of |Vud | to be shifted into agreement with
this kaon-derived value would require the nucleus-independent
radiative correction !V

R to be increased from 2.36(4)% to
3.88%, 40 times its stated uncertainty. Surely this can be ruled
out.

One must conclude that there is no definitive answer for
|Vus | as of now since the two approaches to its measurement
from kaon decay are not completely consistent with one
another. On balance, though, the result for |Vus |/|Vud | obtained
from Kℓ2 and pion decays seems the most reliable because it
shows the greatest consistency as the lattice calculations have
improved, which reinforces the idea that systematic errors are
reduced when a ratio is used. If we then accept the Nf =
2 + 1 + 1 result on line 4 of Table XIII and combine it with
our result for |Vud | from Eq. (10), we get |Vus | = 0.2248(6)
and a unitary sum of |Vu|2 = 0.999 56(49).

D. Scalar currents

1. Fundamental scalar current

The standard model prescribes the weak interaction to be
an equal mix of vector (V ) and axial-vector (A) interactions
that maximizes parity violation. Searches for physics beyond
the standard model therefore seek evidence that parity is
not maximally violated (owing to the presence of right-hand
currents) or that the interaction is not pure V − A (owing to the
presence of scalar or tensor currents). The data in this survey
allow us to contribute to the search for a scalar interaction
because, if present, it would have a measurable effect on
superallowed 0+ → 0+ β transitions.

A scalar interaction would generate an additional term [5]
to the shape-correction function, which forms part of the
integrand of the statistical rate function, f , an integral over
the β-decay phase space. The additional term takes the form
(1 + bF γ1/W ), where W is the total electron energy in electron

Z of daughter
2010 30 400

3070

3080

3090

3060

FIG. 7. Corrected F t values from Table IX plotted as a function
of the charge on the daughter nucleus, Z. The curved lines represent
the approximate loci the F t values would follow if a scalar current
existed with bF = ±0.004.

rest-mass units, and γ1 =
√

[1 − (αZ)2]. The strength of the
scalar interaction is contained in the unknown constant, bF ,
which is called the Fierz interference term [218]. Thus, the
impact of a scalar interaction on the F t values would be to
introduce a dependence on ⟨1/W ⟩, the average inverse decay
energy of each β+ transition. No longer would the F t values
be constant over the whole range of nuclei but they would
instead exhibit a smooth dependence on ⟨1/W ⟩. Since ⟨1/W ⟩
is largest for the lightest nuclei, and decreases monotonically
with increasing Z and A, the largest deviation of F t from
constancy would occur for the cases of 10C and 14O.

We have reevaluated the statistical rate function, f , for
each transition using a shape-correction function that includes
the presence of the scalar interaction via a Fierz interference
term, bF , which we treat as an adjustable parameter. We then
obtained a value of bF that minimized the χ2 in a least-squares
fit to the expression F t = constant. The result we obtained is

bF = −0.0028 ± 0.0026, (17)

a marginally larger result than the value from our last survey [6]
but with the same uncertainty. Note that the uncertainty quoted
here is one standard deviation (68% CL), as obtained from the
fit. In Fig. 7 we illustrate the sensitivity of this analysis by
plotting the measured F t values together with the loci of F t
values that would be expected if bF = ±0.004. There is no
statistically compelling evidence for bF to be nonzero.1

The result in Eq. (17) can also be expressed in terms of
the coupling constants that Jackson, Treiman, and Wyld [218]
introduced to write a general form for the weak-interaction
Hamiltonian. Since we are dealing only with Fermi superal-
lowed transitions, we can restrict ourselves to scalar and vector
couplings, for which the Hamiltonian becomes

HS+V = (ψpψn)
(
CSφeφνe

+ C ′
Sφeγ5φνe

)

+ (ψpγµψn)
[
CV φeγµ(1 + γ5)φνe

]
, (18)

in the notation and metric of Ref. [218]. We have taken the
vector current to be maximally parity violating, as indicated

1It is interesting to note that if we were to derive an averageF t value
from the data while allowing bF to vary freely, the corresponding
value for |Vud | would become 0.9745(4), a result quite consistent
with the one we quote in Eq. (10), but with an uncertainty nearly
twice as large.
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Figure 14: (Left) 90% CL constraints on ✏S,T at µ = 2 GeV from �-decay data, cf. Eq. (87), with ��2 = 4.61, (black ellipse), from the
analysis of pp ! e + MET + X at the 8-TeV LHC (20 fb�1) [12] (blue ellipse), and from radiative pion decay, cf. Eq. (118) [23] (orange
band). The green band shows the 90% CL bound (��2 = 2.71) using only superallowed Fermi decays. (Right) Same figure but using projected
�-decay data, cf. Eq. (100) (black) and projected LHC bounds from pp ! e+MET+X searches with 14 TeV and 300 fb�1 [23] (blue).

Requiring that the leading logarithmic part of the 2-loop correction is not larger than current bounds on the neutrino
mass, the following bounds were found [13]

|✏̃L| . 10�2
, (129)

|✏̃S ± ✏̃P | . 2⇥ 10�3
, (130)

|✏̃T | . 0.5⇥ 10�3
, (131)

where µ = 1 TeV was used as the initial running scale. The bounds on scalar and tensor interactions are about 3 times
stronger than those derived from LHC data in Eqs. (121)-(122) and orders of magnitude stronger than those from � decay,
cf. Section 4.5. The bound on the pseudoscalar coupling is also 3 times stronger than the LHC one, but still weaker than
that from pion decay, cf. Eq. (114). Finally, the neutrino-mass considerations above o↵er a valuable alternative probe for
the ✏̃L coupling, which can also be accessed through CKM unitarity, but with slightly less accuracy, cf. Eq. (79).

5.5. Electric dipole moments

It can be shown that in the SMEFT framework, the same dimension-6 e↵ective operators generating CP-violating
e↵ects in � decay would also generate at tree- or one-loop-level a non-zero nuclear and neutron Electric Dipole Moment
(EDM) [473]. As a result one can translate the stringent EDM bounds [474] in indirect limits on the �-decay CP-
violating coe�cients, such as D or R, which are two orders of magnitudes stronger than their direct limits from �-decay
measurements [13]. This takes into account the calculation of Ref. [475] that relaxed the EDM bound by an order of
magnitude with respect to Ref. [473].

In principle, these indirect bounds can be avoided through a fine-tuned cancellation with additional dimension-6
operators contributing to the EDMs, or using dimension-8 operators. The precise realization in specific models is however
nontrivial, as shown for instance for leptoquark models, where the connection with EDMs is still present, although the
indirect bounds can be relaxed in this case [473]. Finally, the EDM bounds can be avoided abandoning altogether the
SMEFT framework, introducing for example light new particles. Thus, current measurements of CP-violating coe�cients
in � decay can be considered as probes of the SMEFT framework itself, or at least its simpler realizations where large
fine-tunings are not considered. A recent and detailed review of the connection between EDMs and �-decay measurements
is presented in Ref. [13].

6. Conclusions

We have reviewed the role of precision measurements in nuclear and neutron � decay, as useful tools to improve our
understanding of fundamental interactions. Transitions with small nuclear-structure uncertainties (or none in neutron
decay) are used to learn about QCD, to extract the values of fundamental SM parameters such as Vud, and to search for
new physics.

First, we have introduced the theoretical formalism that describes � decay at the elementary level with special attention
to the latest developments, such as the precise calculations of the hadronic charges in the lattice, or the SMEFT framework
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to the significance of the δ′
R uncertainty for each transition.

In each case, we take the height of that bar to correspond to
one-third the size of the Z2α3 term in the expression for δ′

R

(see Sec. III A 1).
From Fig. 3, it can be seen that for seven of the nine

transitions plotted there—all but those from 10C and 14O—the
contributions from their three experimental uncertainties are
substantially smaller than the corresponding contributions
from the theoretical uncertainty due to the combined nuclear-
structure-dependent corrections, (δC − δNS). The same can be
said for the transitions from 62Ga and 74Rb, which appear
among the TZ = 0 cases illustrated in Fig. 4, although for these
two cases the theoretical uncertainties are 3–10 times larger
than they are for the lighter nuclei because of nuclear-model
ambiguities.

There is good reason for these nine cases to have particu-
larly small experimental uncertainties. They are all transitions
from TZ = 0 parent nuclei, which populate even-even daugh-
ters in which there are no, or very few, 1+ states at low enough
energy to be available for competing Gamow-Teller decays.
Thus, the branching ratios for the superallowed transitions
are all >99% and have very small associated uncertainties,
the largest being for the decays of 54Co and 74Rb, which
both have a 3 × 10−4 fractional uncertainty. In both cases,
this is because they are predicted to have Gamow-Teller
branches that are too weak to have been observed but numerous
enough that their total strength is not negligible. To account
for such competition, one must first make a sensitive search
for weak branches and then resort to an estimate of the
strength of the branches that could have been missed at the
level of experimental sensitivity achieved. Such estimates are
currently based on shell-model calculations, as first suggested
in Ref. [93], and obviously they introduce some additional
uncertainty.

The presence of numerous weak Gamow-Teller branches
becomes an increasingly significant issue for the heavier-mass
nuclei, which have increasingly large QEC values. For cases
with A ! 62, they present a major experimental challenge
if they are to be fully characterized. To date this has been
accomplished for the decays of 62Ga [36,66] and 74Rb [55] but
at considerable effort. It remains to be seen if the same level of
precision will ultimately be achievable for 66As and 70Br, the
two other cases in the bottom panel of Fig. 4, or for the even
heavier TZ = 0 parents that extend beyond 74Rb up to 98In.

The decays of 10C, 14O, and all the transitions depicted
in the top panel of Fig. 4 originate from TZ = −1 parent
nuclei and populate odd-odd daughters in which there are low-
lying 1+ states strongly fed by Gamow-Teller decay. These
branches are of comparable intensity to the superallowed
one so they—or the superallowed branch itself—must be
measured directly with high relative precision, a very difficult
proposition. The outcome is branching-ratio uncertainties that
exceed all the other contributions to theF t-value uncertainties,
experimental or theoretical, for these cases. (Measurements of
weak competing branches in the TZ = 0 cases discussed in
the previous paragraph require high sensitivity but not high
relative precision because the total Gamow-Teller branching
is more than a factor of 100 weaker than the superallowed
branch for all of them.) Advances in experimental techniques

for measuring branching ratios have improved the situation in
recent years [94,141] and will improve it even more within the
next few years. Nevertheless, it is unlikely that these cases will
ever equal the overall level of precision already achieved for
the TZ = 0 parent decays. Their value lies instead in testing the
calculated corrections for isospin-symmetry breaking [141], as
described in Sec. IV C.

IV. ISOSPIN-SYMMETRY BREAKING

Our own isospin-symmetry-breaking calculations, which
take a semiphenomenological approach based on the shell-
model together with Woods-Saxon radial functions (denoted
SM-WS), have been discussed in Sec. III A 2. The results
obtained there for δC are listed in the last column of Table X
and are repeated for comparison purposes in the second column
of Table XI. Those are not the only calculations of δC . There
are a number of others that have appeared in the literature, of
which we outline some more recent entries here.

A. Other δC calculations

SM-HF. Ormand and Brown [199] were the first to suggest
that the calculation of the radial overlap—i.e., the δC2 com-
ponent of δC—might be better served if a mean-field Hartree-
Fock potential were used rather than the phenomenological
Woods-Saxon potential. The most recent calculation of this
type is by Hardy and Towner [6] and their results are listed

TABLE XI. Recent δC calculations (in percent units) based
on models labeled SM-WS (shell-model, Woods-Saxon), SM-HF
(shell-model, Hartree-Fock), RPA (random phase approximation),
IVMR (isovector monopole resonance), and DFT (density functional
theory). Also given is the χ 2/ν, χ 2 per degree of freedom, from the
confidence test discussed in the text.

RPA

SM-WS SM-HF PKO1 DD-ME2 PC-F1 IVMRa DFT

Tz = −1
10C 0.175 0.225 0.082 0.150 0.109 0.147 0.650
14O 0.330 0.310 0.114 0.197 0.150 0.303
22Mg 0.380 0.260 0.301
34Ar 0.695 0.540 0.268 0.376 0.379
38Ca 0.765 0.620 0.313 0.441 0.347
Tz = 0
26mAl 0.310 0.440 0.139 0.198 0.159 0.370
34Cl 0.650 0.695 0.234 0.307 0.316
38mK 0.670 0.745 0.278 0.371 0.294 0.434
42Sc 0.665 0.640 0.333 0.448 0.345 0.770
46V 0.620 0.600 0.580
50Mn 0.645 0.610 0.550
54Co 0.770 0.685 0.319 0.393 0.339 0.638
62Ga 1.475 1.205 0.882
74Rb 1.615 1.405 1.088 1.258 0.668 1.770
χ 2/ν 1.4 6.4 4.9 3.7 6.1 4.3b

aRodin [205] also computes δC = 0.992% for both 66As and 70Br.
bThe result for 62Ga has not been included in the least-squares fit from
which this value for χ 2/ν has been obtained.
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FIG. 1. Isospin-symmetry breaking correction δC obtained from
different models: shell model with WS radial wave functions (SM-
WS) [2,4,5], shell model with HF wave functions (SM-HF) [6,7],
J (T )-projected HF theory with two different Skyrme functionals (SV-
DFT and SHZ2-DFT) [9], relativistic RPA (RHF-RPA and RH-RPA)
[10], isovector monopole resonance theory (IVMR) [11], and the
Damgaard model [12].

added to a relativistic Hartree or Hartree-Fock (HF) calculation
was used by Liang et al. [10]. In addition, Auerbach [11] uses a
model where the main isospin-symmetry-breaking effects are
attributed to the isovector monopole resonance. The last two
results are again systematically lower than the shell-model or
J (T )-projected HF values. For completeness, we show also an
earlier estimation of the correction using perturbation theory
on the basis of individual harmonic-oscillator wave functions
by Damgaard [12]. It is clear that all these calculations have a
significant spread in the obtained values of δC , thus raising the
question of credibility of the results.

The values for δC tabulated by Towner and Hardy in Ref. [1]
excellently support both the CVC hypothesis over the full range
of Z values and the top-row unitarity of the CKM matrix.
However, this agreement is not sufficient to reject the other
calculations, since these aspects of the standard model have
to be confirmed experimentally. The validity of CVC does not
constrain the absolute F t value. The disagreement between
model predictions and the importance of the issue motivated
us to reexamine this correction in a consistent approach based
on the nuclear shell model.

Within the shell model, the eigenproblem is solved by con-
struction and diagonalization of the Hamiltonian matrix using
a Slater determinant spherical harmonic-oscillator basis. The
eigenstates are thus given in terms of linear combinations of
many-body basis states. In order to describe isospin-symmetry
breaking effects, the many-body Hamiltonian should contain
Coulomb and charge-dependent terms of nuclear origin. If
the eigenproblem is solved in a sufficiently large A-body
basis of many harmonic-oscillator shells, the eigenvectors
can be used to compute a realistic Fermi matrix elements,
as, for example, has been done for 10C in the no-core shell
model with 3N forces included [13]. However, for heavier
nuclei, calculations are feasible only in restricted model spaces,
containing one or two harmonic-oscillator shells beyond a
closed-shell core. Effective isospin-nonconserving interaction
introduces the isospin-symmetry breaking in the mixing of

various harmonic-oscillator configurations within the model
space. In addition, calculation of transition matrix elements
involves radial integrals which should be computed using real-
istic spherically symmetric proton and neutron wave functions,
obtained from a finite-range potential with a Coulomb term.
The protons in a parent nucleus are less bound than the neutrons
in a daughter nucleus because of the Coulomb repulsion. Since
the model space is restricted to a single oscillator shell, in
practice the only way to deal with the problem is to replace the
harmonic-oscillator radial wave functions by single-particle
wave functions obtained from a realistic spherically symmetric
mean-field potential. This accounts for the isospin-symmetry
breaking effects beyond the valence space. Thus, there are
two sources of the deviation of the Fermi matrix element
from its model-independent value: one is from the effective
charge-dependent Hamiltonian and the other is from the radial
mismatch of proton and neutron single-particle wave functions.
It will be shown below that, within the first-order perturbation
theory, the correction δC can be expressed as a sum of two
terms corresponding to the two sources of isospin-symmetry
breaking mentioned above.

The present study focuses on the radial mismatch between
proton and neutron single-particle wave functions, which
represents the main contribution to the nuclear structure
correction to the Fermi matrix element. Currently, two types
of a mean-field potential are considered in this respect. The
first one is the phenomenological WS potential including a
central, a spin-orbit, and an electrostatic repulsion term. A
series of calculations using this potential has been carried
out by Towner and Hardy [2,4]. These authors adjusted case-
by-case the depth of the volume term or added an additional
surface-peak term to reproduce experimental proton and neu-
tron separation energies. In addition, they adjusted the length
parameter of the central term to fix the charge radii of the
parent nuclei. The second type of a mean-field potential is
that obtained from self-consistent HF calculations using a
zero-range Skyrme force, as was first proposed by Ormand
and Brown in 1985 [14] and refined in the subsequent papers
[6,7].

The results obtained from both types of mean-field potential
are equivalently in good agreement with the CVC hypothesis;
however, the δC values from Skyrme-HF calculations are con-
sistently smaller than those obtained from the WS calculations.
This discrepancy was thought to be due to the insufficiency of
the Slater approximation for treating the Coulomb exchange
term. Towner and Hardy highlighted that the asymptotic
limit of the Coulomb potential in the Slater approximation is
overestimated by one unit of Z. To retain this property, they
proposed a modified HF protocol [5], namely they performed
a single calculation for the nucleus with (A − 1) nucleons
and (Z − 1) protons and then used the proton and the neutron
eigenfunctions from the same calculation to compute the radial
overlap integrals. Their result leads to a significant increase of
the corresponding correction to the Fermi matrix element and
provides a better agreement with the values obtained with WS
radial wave functions. However, we warn that such a method
is rooted in Koopman’s theorem, which is not fully respected
by the HF calculations, in particular with a density-dependent
effective interaction.
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In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = ⟨ f |τ̂+|i⟩, with 
τ̂+ the isospin-raising operator, and the states |i⟩, | f ⟩ normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z⟩ where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = ⟨g; 1, T z, f |τ̂+|g; 1, T z,i⟩ =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

M⃗(1) =
A∑

i=1

r2
i
⃗̂T (i) (3)

where ⃗̂T (i) is the isospin operator of the nucleon i, and r⃗i its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

⟨ f (p f )| Jλ†
W (0)|i(pi)⟩ = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2⟨ f |M(1)

+1|i⟩
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

⟨φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ⟩, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

⟨φ|M(1)
0 |φ⟩ = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
⟨g; 1, 1|M(1)

+1|g; 1, 0⟩ = −⟨g; 1, 1|M(1)
0 |g; 1, 1⟩. Hence, the following 

combined experimental observable

'M(1)
A ≡ ⟨ f |M(1)

+1|i⟩ + ⟨ f |M(1)
0 | f ⟩ (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 

2
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ΔM(1)
A ≡ − ⟨r2

CW⟩ + ( N1
2 ⟨r2

n,1⟩ − Z1
2 ⟨r2

p,1⟩)
	used	for	x-value	in	isospin	limitΔM(1)

B = 0

Neutron	radius:	measurable	with	PV	e-	sca|ering!

N. Cargioli, MG et al, 2407.09743

Upcoming	exp.	program	at	Mainz	(MREX)		
Neutron	skins	of	stable	daughters	(e.g.	Mg-26,	Ca-42,	Fe-54)		
PV	asymmetry	on	C-12	for	a	sub-%	measurement	of	 		
Unexpected	connec,ons	via	neutron	skins:		
ISB	for	precision	tests	vs.	EoS	of	neutron-rich	ma|er

Rn

⃗e− e−

Af Af

γZ APV = − GFQ2

4 2πα

QW

Z
FNW(Q2)
FCh(Q2)

Z-boson	couples	to	neutrons,	photon	-	to	protons;	
PV	asymmetry	at	low	Q2	sensi,ve	to	the	difference	 	-	neutron	skin	
Extensive	studies	in	neutron	rich	nuclei	(PREX,	CREX)	—>	input	to	physics	of	neutron	stars

⟨r2
n,1⟩ − ⟨r2

p,1⟩

RNW ≈ Rn

https://arxiv.org/abs/2407.09743


Summary & Outlook
Cabibbo	Angle	Anomaly	at	2-3 	

Future	experiments:		

Neutron:	UCN ,	 SPECT	( );	PERC,	Nab	( )	
Compe,,ve!	But:	resolve	exis,ng	discrepancies	(e.g.	“beam-bo|le”	life,me)	

Kaon	decays:	NA62,	BELLE	II	 	(+	LaCce	effort!)	
Pion:	 	PIONEER	@	PSI	( BR:	0.3%—>0.03%)	but	2033+	

Nuclear	uncertain,es	under	scru,ny:	 	in	ab-ini,o	and	EFT	
	&	 	for	15	decays	from	 	to	 	—	Community	effort	required!	

Nuclear	charge	radii	across	superallowed	isotriplets	
Stable:	µ-atoms	@	PSI,	radii	of	unstable	nuclei	@	ISOLDE,	TRIUMF	

Neutron	skins	of	stable	daughters	with	PVES	@	MESA	
Interplay	with	the	nuclear	EoS	program:	neutron	skin	via	symmetry	energy	vs.	ISB	

BSM:	Cabibbo	anomaly(ies)	and	superallowed	dataset	consistency

σ

τ τ δτn : 0.4 → 0.1s δgA : 4 → 1 × 10−4

Kℓ3 vs Kμ2
π+ → π0e+ν δ

δNS
δC δNS

10C 74Rb
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Status of Cabibbo Unitarity



-box from DR + Lattice QCD inputγW

52

Currently available neutrino data at low  - low quality; 
Look for alternative input — compute Nachtmann moment  on the lattice

Q2

M(0)
3

First direct LQCD computation π− → π0e−νe Feng,	MG,	Jin,	Ma,	Seng	2003.09798

9

At low Q2 (< 2 GeV2): direct lattice computation of the generalized Compton tensor

First lattice QCD calculation

Lattice setup:
Five lattice QCD gauge ensembles
at the physical pion mass, generated 
by RBC and UKQCD Collaborations using
2+1 flavor domain wall fermion.

Blue: DSDR  
Red : Iwasaki

Quark contraction diagrams

5 LQCD gauge ensembles at physical pion mass 
Generated by RBC and UKQCD collaborations  
w. 2+1 flavor domain wall fermion

10

First lattice QCD calculation

(integral range, 64I)

Estimate of major systematic effects:
● Lattice discretization effect: Estimated using the discrepancy between DSDR and Iwasaki
● pQCD calculation: Estimated from the difference between 3-loop and 4-loop results
● Higher-twist effects at large Q2: Estimated from lattice calculation of type (A) diagrams  

Final result:

1% precision!

(before cont. extrapolation) (after cont. extrapolation)

Match onto pQCD at Q2 ∼ 2 GeV2

Yoo	et	all,	2305.03198

Independent calculation by Los Alamos group

□VA, π
γW = 2.830(11)stat(26)sys

□VA, π
γW = 2.810(26)stat+sys



First lattice QCD calculation of -boxγW

Significant reduction of the uncertainty! δ : 0.0334(10)LEC(3)HO → 0.0332(1)γW(3)HO

53

Direct impact for pion decay π+ → π0e+νe |Vud |2 = 0.9799
(1+δ)

Γπℓ3
0.3988(23) s−1

Cirigliano, Knecht, Neufeld and Pichl, EPJC 2003 Previous calculation of   — in ChPTδ

Indirectly constrains the free neutron -box 
— requires some phenomenology  
Based on Regge universality & factorization

γW

12

Implications of the study

2. On free neutron and superallowed nuclear decays:

The “asymptotic” contribution is extracted 
from the pion lattice curve; result consistent

 with 2018 but much more solid

2018

2020 pQCD

It provides an independent assessment 
of the single-nucleon RC:

CYS, Feng, Gorchtein and Jin,
2020 PRD

Seng,	MG,	Feng,	Jin,	2003.11264

Independent confirmation

ΔV
R = 0.02467(22)DR → 0.02477(24)LQCD+DR



Much more challenging than pion:  

Numerically heavier 
Excited state contamination requires longer time 
Large contribution from low Q  absent for pion∼ gA μV

First LQCD calculation of -box on the neutronγW

Supplementary Information – S1

SUPPLEMENTARY MATERIAL

Quark contractions for nucleon 4-point correlation
functions

The connected insertions encompass 10 distinct con-
traction types, as illustrated in Fig. S 1. Notably, types
(b) and (d) do not contribute to the axial-vector and vec-
tor �W -box diagrams. This is because the quark current
associated with the W boson, altering the isospin, cannot
be inserted between isospin-0 diquark blocks.

⊗

⊗

(a)

⊗

⊗
(b)

⊗ ⊗

(c)

⊗ ⊗

(d)

⊗

⊗
(e)

⊗

⊗
(f)

⊗⊗

(g)

⊗
⊗

(h)

⊗
⊗

(i)

⊗ ⊗
(j)

Figure S 1. 8 out of the 10 quark contraction types are per-
tinent to the neutron �W -box diagrams. The symbols of ⊗
indicate the insertions of the vector or axial-vector current.

Demonstration of Eq. (10)

Here we demonstrate that once the ground-state dom-
inance is satisfied at �t� ≥ tg, the spatial summation of the
hadronic function H(t, �x) can be written in terms of gA,

µp and µn. We start with the expression

✏µ⌫↵0Q↵H̃V A
µ⌫ (t ≥ tg, �Q)

= ✏µ⌫↵0Q↵ � d
3�xe−i �Q⋅�xHV A

µ⌫ (t ≥ tg, �x)

= ✏µ⌫↵0Q↵
e
(mN−E �Q)t
2E �Q

×

1

2
Tr �mN(1 + �0)Vµ �E �Q�0 − i �Q ⋅ �� +mN�A⌫� ,

(S 1)

where

Vµ = �µF1(Q2) −
�µ�Q�

2mN
F2(Q2),

A⌫ = �⌫�5GA(Q2) + Q⌫

2mN
�5G̃P (Q2). (S 2)

In the small � �Q� limit, the above expression can be sim-
plified as

lim� �Q�→0
✏µ⌫↵0Q↵H̃V A

µ⌫ (t ≥ tg, �Q)

= − i
4
✏µ⌫↵0Q↵Q�GM(Q2)GA(Q2)Tr[�0�µ���⌫�5]

+O(� �Q�3)
= 2i� �Q�2GM(0)GA(0) +O(� �Q�3), (S 3)

where GA(0) = gA. GM(Q2) = F1(Q2) + F2(Q2) is the
magnetic form factor. For t ≥ tg, we have GM(0) = µp.
For t ≤ −tg, the expression is similar as Eq. (S 3), albeit
with GM(0) = µn. We thus have

lim� �Q�→0
✏µ⌫↵0Q↵ �H̃V A

µ⌫ (tg, �Q) + H̃V A
µ⌫ (−tg, �Q)�

= 2i� �Q�2gA(µp + µn) +O(� �Q�3) (S 4)

On the other hand, we have

✏µ⌫↵0Q↵H̃V A
µ⌫ (t ≥ tg, �Q)

= ✏µ⌫↵0 � d
3�xe−i �Q⋅�x(−i@↵)HV A

µ⌫ (t ≥ tg, �x)

= ✏µ⌫↵0 � d
3�x j0(� �Q���x�)(−i@↵)HV A

µ⌫ (t ≥ tg, �x)

= −i� d
3�x j1(�Q���x�)

��x�
� �Q�H(t ≥ tg, �x) (S 5)

In the small �Q limit, it yields

lim� �Q�→0
✏µ⌫↵0Q↵ �H̃V A

µ⌫ (tg, �Q) + H̃V A
µ⌫ (−tg, �Q)�

= −2i� d
3�x �
�Q�2

3
H̄(tg, �x) +O(� �Q�3). (S 6)

Combining Eqs. (S 3) and (S 6), we obtain

� d
3�x H̄(tg, �x) = −3gA(µp + µn). (S 7)

In our calculation, we find that the lattice results for the
24D, 32Dfine ensembles, and the continuum extrapola-
tion are all consistent with the PDG value, as depicted
in Table S I.
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Ma,	Feng,	MG	et	al	2308.16755

ΔV
R = 0.02439(19)LQCD vs 0.02467(22)DR

3

a more e�cient control over statistical uncertainties. We
refer to the calculation ofMLD

n using Eq. (8) and Eq. (11)
as the “direct” and “substitution” methods, respectively.

We introduce a four-momentum squared scale Q
2
cut

which separates the Q
2 integral into two regimes,

�V A
�W = �

V A,≤Q2
cut

�W + �V A,>Q2
cut

�W (13)

= ��
Q2

cut

0

dQ
2

Q2
+�

∞
Q2

cut

dQ
2

Q2
� m

2
W

m
2
W +Q2

Mn(Q2).

For �V A,≤Q2
cut

�W we use lattice results as inputs. Con-

versely, for �V A,>Q2
cut

�W , we utilize the perturbative QCD
and employ the leading twist contribution from the
operator product expansion [23–25]. Further details can
be found in Ref. [18]. A common representative value
for the scale of Q

2
cut is 2 GeV2. It is also feasible to

vary this value to investigate potential systematic e↵ects.

Numerical analysis: We use two lattice QCD gauge
ensembles at the physical pion mass, generated by RBC
and UKQCD Collaborations using 2 + 1-flavor domain
wall fermion [26]. The ensemble parameters are out-
lined in Table I. Both ensemble utilize Iwasaki + DSDR
action. For each configuration we produce 1024 point-
source and 1024 smeared-source propagators at ran-
dom spatial-temporal locations and calculate the corre-
lation function � p(tf)Jem

µ (x)JW,A
⌫ (y) †

n(ti)� with tf =
max{tx, ty} + �tf and ti = min{tx, ty} − �ti using the
random sparsening-field technique [27, 28]. Local vector
and axial vector current operators are contracted with
the renormalization factors quoted from Ref. [29]. We
calculate all the connected insertions, discarding discon-
nected insertions which vanish under the flavor SU(3)
limit.

Ensemble m⇡ [MeV] L T a
−1 [GeV] Nconf

24D 142.6(3) 24 64 1.023(2) 207
32D-fine 143.6(9) 32 64 1.378(5) 69

Table I. Ensembles used in this work. For each ensemble we
list the pion mass m⇡, the spatial and temporal extents, L
and T , the inverse of lattice spacing a

−1 [30], the number of
configurations used, Nconf.

To demonstrate the necessity of using the IVR method
in our calculation, we use the ensemble 24D as an exam-
ple and present in Fig. 2 the results of MSD

n (Q2
, ts) as

a function of Q2 for di↵erent values of ts. Notably, even
when increasing ts to 1.17 fm while maintaining �ti+�tf

fixed at 0.77 fm (resulting in a total source-sink separa-
tion of nearly 2 fm), significant temporal truncation ef-
fects persist. To incorporate the LD contribution, the
appropriate values for tg and ts must be determined.

We calculate the LD contribution to �V A,≤2GeV2

�W using

M
LD
n (Q2

, ts, tg) as inputs, labelling the relevant part of

Figure 2. SD and LD contributions to Mn(Q2) as a function
of Q2 with various choices of ts for 24D. �ti+�tf is set at 0.77
fm. The error band denoted as “SD+LD” is the lattice result
which incorporates the reconstruction of the LD contributions
using IVR.

Figure 3. The ratio defined in Eq. (14) as a function of ts.
Here, we employ 24D as an illustrative example. �ti +�tf is
fixed at 0.77 fm.

the box contribution as �V A,≤2GeV2

�W (ts, tg). For small
tg values, a visible contamination from excited states
is anticipated. To extend this analysis, we calculate

�V A,≤2GeV2

�W (ts, ts) with tg = ts for various ts values and
construct a ratio

Ratio =
�V A,≤2GeV2

�W (ts, tg)

�V A,≤2GeV2

�W (ts, ts)
, (14)

2

lier works by Marciano and Sirlin [11, 12] to more re-
cent dispersive analyses by Seng et al [6, 13]. The latter,
in particular, improved the nonperturbative contribution
for loop momentum square Q2 ≤ 2 GeV2 and unveiled the
tension with the first-row CKM unitarity, which was also
observed in several follow-up works [14–17]. In the mean-
time, while the radiative correction to the axial charge gA
does not directly a↵ect the �Vud� extraction, it is neces-
sary for comparing the experimentally measured gA with
that computed using lattice QCD. The study of �V V

�W has
so far included estimations inspired by the holographic
QCD model [17] and dispersion relations [10].

Lattice QCD o↵ers a direct nonperturbative approach
to compute the box correction �V A

�W , especially for Q2 ≤ 2
GeV2. First lattice calculations of �V A

�W were successfully
conducted in the pion [18] and kaon channel [19, 20], and
have recently been confirmed by an independent lattice
calculation [21]. The data reported in [18] were also used
for a joint lattice QCD - dispersion relation analysis [15].
This letter extends this calculation to the neutron decay
channel, which entails a direct computation of the
nucleon four-point function at the physical pion mass.
We also briefly discuss our numerical result of �V V

�W , and
its implication to the radiative correction to axial charge.

Methodology: The notations used in this work align
with those used in [18]. We define the hadronic function
H

V A
µ⌫ within Euclidean space

HV A
µ⌫ (t, �x) ≡ �Hf(P )�T �Jem

µ (t, �x)JW,A
⌫ (0)� �Hi(P )�, (3)

where Hi�f represents the neutron and proton state, re-
spectively. The computation of box contribution �V A

�W
involves a momentum integral

�V A
�W =

3↵e

2⇡ �
dQ

2

Q2

m
2
W

m
2
W +Q2

Mn(Q2). (4)

Mn(Q2) is a weighted integral of the hadronic function
H(t, �x) = ✏µ⌫↵0x↵HV A

µ⌫ (t, �x), defined as

Mn(Q2) = −1
6

�
Q2

mN
� d

4
x!(t, �x)H(t, �x), (5)

with mW and mN the masses of the W -boson and the
nucleon. The weighting function is

!(t, �x) = �
⇡
2

−⇡
2

cos3 ✓ d✓

⇡

j1 �� �Q���x��
��x�

cos (Q0t) , (6)

where � �Q� =
�
Q2 cos ✓, Q0 =

�
Q2 sin ✓ and jn(x) are the

spherical Bessel functions.
To evaluate Mn(Q2) as prescribed in Eq. (5), it is

necessary to extend the temporal integration range suf-
ficiently to reduce truncation e↵ects. However, as the
time separation between the two currents increases, the
lattice data tend to exhibit greater noise-to-signal ratio.

Here we employ the infinite volume reconstruction (IVR)
method [22] to incorporate the long-distance (LD) con-
tribution arising from the region where �t� > ts. Here, ts
is the time slice at which the short-distance (SD) and
LD contributions are separated. The IVR method, in
addition to eliminating the power-law suppressed finite
volume error, can also reduce the lattice statistical error
in the long distance region. To elaborate, we divide the
integral into SD contribution, weighted by !(t, �x), and
LD contribution, weighted by !̃(t, �x)

Mn(Q2) =MSD
n (Q2

, ts) +MLD
n (Q2

, ts, tg) (7)

with

M
SD
n (Q2

, ts) = −
1

6

�
Q2

mN
�

ts

−ts dt� d
3�x!(t, �x)H(t, �x),

M
LD
n (Q2

, ts, tg) = −
1

6

�
Q2

mN
� d

3�x !̃(ts, �x)H̄(tg, �x), (8)

and

!̃(ts, �x) =2�
⇡
2

−⇡
2

cos3 ✓d✓

⇡

j1 �� �Q���x��
��x�

×

Re� e
−iQ0ts

E �Q −mN + iQ0
� e−(E �Q−mN )(ts−tg). (9)

Here, H̄(t, �x) = [H(t, �x) +H(−t, �x)]�2, E �Q =
�

m
2
N + �Q2

and tg is chosen to be large enough to ensure the ground-
intermediate-state dominance. Once tg is fixed, ts can be
varied to further verify the ground-state dominance. In
the final results, it is natural to choose ts = tg.
Due to the factor 1�Q2 in Eq. (4), we observe that
�V A
�W encounters a notably increased noise originating

from Mn(Q2) at small Q2 region. To mitigate this noise,
we can use the model-independent relation

� d
3�x H̄(tg, �x) = −3gA(µp + µn) (10)

to substitute M
LD
n (Q2

, ts, tg) with

M
LD
n = −1

6

�
Q2

mN
� d

3�x [!̃(ts, �x) − !̃0] H̄(tg, �x)

+ 1

2

�
Q2

mN
!̃0gA(µp + µn). (11)

Above, µp and µn are the proton and neutron magnetic
moments, respectively. Furthermore, !̃0 is defined as

!̃0 = 2�
⇡
2

−⇡
2

cos3 ✓d✓

⇡

� �Q�
3

Re
�
�

1
Q2

2mN
+ iQ0

�
�

= 1

3

2
√
1 + ⌧ +

√
⌧

(
√
1 + ⌧ +

√
⌧)2

, with ⌧ = Q
2

4m2
N

. (12)

Importantly, the convergence of the integral with !̃−!̃0 at
Q

2 → 0 is considerably faster than that with !̃, enabling

The result slightly lower than DR; 
Finer lattice calculations underway

3

a more e�cient control over statistical uncertainties. We
refer to the calculation ofMLD

n using Eq. (8) and Eq. (11)
as the “direct” and “substitution” methods, respectively.

We introduce a four-momentum squared scale Q
2
cut

which separates the Q
2 integral into two regimes,

�V A
�W = �

V A,≤Q2
cut

�W + �V A,>Q2
cut

�W (13)

= ��
Q2

cut

0

dQ
2

Q2
+�

∞
Q2

cut

dQ
2

Q2
� m

2
W

m
2
W +Q2

Mn(Q2).

For �V A,≤Q2
cut

�W we use lattice results as inputs. Con-

versely, for �V A,>Q2
cut

�W , we utilize the perturbative QCD
and employ the leading twist contribution from the
operator product expansion [23–25]. Further details can
be found in Ref. [18]. A common representative value
for the scale of Q

2
cut is 2 GeV2. It is also feasible to

vary this value to investigate potential systematic e↵ects.

Numerical analysis: We use two lattice QCD gauge
ensembles at the physical pion mass, generated by RBC
and UKQCD Collaborations using 2 + 1-flavor domain
wall fermion [26]. The ensemble parameters are out-
lined in Table I. Both ensemble utilize Iwasaki + DSDR
action. For each configuration we produce 1024 point-
source and 1024 smeared-source propagators at ran-
dom spatial-temporal locations and calculate the corre-
lation function � p(tf)Jem

µ (x)JW,A
⌫ (y) †

n(ti)� with tf =
max{tx, ty} + �tf and ti = min{tx, ty} − �ti using the
random sparsening-field technique [27, 28]. Local vector
and axial vector current operators are contracted with
the renormalization factors quoted from Ref. [29]. We
calculate all the connected insertions, discarding discon-
nected insertions which vanish under the flavor SU(3)
limit.

Ensemble m⇡ [MeV] L T a
−1 [GeV] Nconf

24D 142.6(3) 24 64 1.023(2) 207
32D-fine 143.6(9) 32 64 1.378(5) 69

Table I. Ensembles used in this work. For each ensemble we
list the pion mass m⇡, the spatial and temporal extents, L
and T , the inverse of lattice spacing a

−1 [30], the number of
configurations used, Nconf.

To demonstrate the necessity of using the IVR method
in our calculation, we use the ensemble 24D as an exam-
ple and present in Fig. 2 the results of MSD

n (Q2
, ts) as

a function of Q2 for di↵erent values of ts. Notably, even
when increasing ts to 1.17 fm while maintaining �ti+�tf

fixed at 0.77 fm (resulting in a total source-sink separa-
tion of nearly 2 fm), significant temporal truncation ef-
fects persist. To incorporate the LD contribution, the
appropriate values for tg and ts must be determined.

We calculate the LD contribution to �V A,≤2GeV2

�W using

M
LD
n (Q2

, ts, tg) as inputs, labelling the relevant part of

Figure 2. SD and LD contributions to Mn(Q2) as a function
of Q2 with various choices of ts for 24D. �ti+�tf is set at 0.77
fm. The error band denoted as “SD+LD” is the lattice result
which incorporates the reconstruction of the LD contributions
using IVR.

Figure 3. The ratio defined in Eq. (14) as a function of ts.
Here, we employ 24D as an illustrative example. �ti +�tf is
fixed at 0.77 fm.

the box contribution as �V A,≤2GeV2

�W (ts, tg). For small
tg values, a visible contamination from excited states
is anticipated. To extend this analysis, we calculate

�V A,≤2GeV2

�W (ts, ts) with tg = ts for various ts values and
construct a ratio

Ratio =
�V A,≤2GeV2

�W (ts, tg)

�V A,≤2GeV2

�W (ts, ts)
, (14)

Split into long/short distance separated by ts

RBC/UKQCD 2+1 domain wall fermion
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Abstract

We present a review of absolute root-mean-square charge radii of stable nuclei up to Z = 32, which includes a previously

overlooked uncertainty in the combined analysis of muonic x-ray and electron scattering experiments. From these refer-

ence radii and isotope shift measurements, we obtain those of 12 mirror pairs with a traceable and realistic uncertainty

budget. The di↵erence in radii between mirror nuclei is found to be proportional to the isospin asymmetry, confirming

recent calculations by Novario et al. [PRL 130, 032501]. From the fitted proportionality constant and its uncertainty, the

radii of 73 previously unknown mirror partners are predicted. These are useful e.g. for benchmarking atomic and nuclear

theory, calibrating entire chains, and as an input to nuclear beta-decay calculations. The radii of (T = 1, Tz = 0) nuclei

are interpolated assuming negligible isospin symmetry breaking. This completes a model-independent, high-precision

extraction of the charge and weak radii of all nuclei involved in the testing of the unitarity of the CKM matrix.

1. Overview
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Fig. 1: Overview of nuclei relevant to this work, indicated by element name and mass number. Reevaluated reference radii are given in

Table 2. The radii of the neon chain are re-estimated in this work and given in Table 3. Radii which are an input to the mirror fit are given in

Table 4. Radii measured via isotope shifts are given in Table 5, with those estimated from the mirror shift given in italics. The recalibrated

sodium chain is in table 6. Charge and weak radii estimated from the isotriplet relation are given in Table 7.
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Fig. 5: Linear fit to the mirror shift. Data-points are the individual shifts from Tab. 4. The dark shaded region is the 68% confidence

interval of the fitted slope given in Eq. 6. The light shaded region is the 68% confidence interval calculated from first principles [31].

previous sections. Nevertheless, with the reference radii given in Table 2, �r2 from the literature (the references are

given in Table 5), and the re-calibrated neon di↵erential radii given in Table 3, we have all the ingredients to test the

linear theoretical prediction experimentally.

The relevant data is given in Table 4. We excluded the pair 21Na-21Ne, as its uncertainty is too large to be of use.

We also did not include the pairs with Cl isotopes, as their radii were determined from electron scattering experiments

which are of limited reliability. The result of a one parameter analytical fit to the weighted mirror shifts is shown in

Figure 5. It has a reduced Chi-square of 11.5/11 = 1.04 indicating that a such a fit is not inconsistent with the data.

The resulting mirror shift parametrization is

�I = rN,Z(I)� rZ,N (I) = 1.382(34)⇥ I fm. (6)

The structure of this work enables to remove certain ingredients from the analysis to test their e↵ect. We find that

nearly half of the uncertainty given in Eq. 6 stems from that of the charge distributions, previously overlooked in the

literature. Omitting it would result in a reduced �2 of 2.3. The second-largest contributor is the uncertainty in the

di↵erential radii, as extracted from optical isotope shift measurements. It originates mostly from the atomic factors and

not the statistical accuracy of the optical measurements (see e.g. [32]).

The empirically determined slope of Eq. 8, agrees with the band spanning nuclear theory calculations �I = (1.574⇥

I)± 0.021 fm [31], also shown in Figure 5. To extend the comparison between experiment and theory, it would thus be

very interesting to add experimental data at high asymmetry 0.12 < I for which no precise data is currently available.

The pair which weight is the largest in the fit is 36Ca�36S, which combines high experimental accuracy with a large

7

Experimental input:  

reference radii from muonic atoms; 
measured isotope shifts

Linear fit to known radii in isotriplets (red) 
predictions for unknown radii 

Compare to ab-initio theory estimate (blue)
Navario et al, Phys.Rev.Lett 130 
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linear theoretical prediction experimentally.

The relevant data is given in Table 4. We excluded the pair 21Na-21Ne, as its uncertainty is too large to be of use.

We also did not include the pairs with Cl isotopes, as their radii were determined from electron scattering experiments

which are of limited reliability. The result of a one parameter analytical fit to the weighted mirror shifts is shown in

Figure 5. It has a reduced Chi-square of 11.5/11 = 1.04 indicating that a such a fit is not inconsistent with the data.

The resulting mirror shift parametrization is

�I = rN,Z(I)� rZ,N (I) = 1.382(34)⇥ I fm. (6)

The structure of this work enables to remove certain ingredients from the analysis to test their e↵ect. We find that

nearly half of the uncertainty given in Eq. 6 stems from that of the charge distributions, previously overlooked in the

literature. Omitting it would result in a reduced �2 of 2.3. The second-largest contributor is the uncertainty in the

di↵erential radii, as extracted from optical isotope shift measurements. It originates mostly from the atomic factors and

not the statistical accuracy of the optical measurements (see e.g. [32]).

The empirically determined slope of Eq. 8, agrees with the band spanning nuclear theory calculations �I = (1.574⇥

I)± 0.021 fm [31], also shown in Figure 5. To extend the comparison between experiment and theory, it would thus be

very interesting to add experimental data at high asymmetry 0.12 < I for which no precise data is currently available.

The pair which weight is the largest in the fit is 36Ca�36S, which combines high experimental accuracy with a large
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Fig. 6: Testing for isospin symmetry breaking by comparing measured (exp) and semi-empirical (SE) radii. See Eq. 10 and Table 7.

Recently, the role of nuclear charge radii in calculating f has been put to the spotlight [36], pointing that their role,

and the e↵ect in their uncertainty is much larger than previously considered. Moreover, it has been recognized that radii

may constrain the isospin symmetry breaking correction �C as well [37]. Work on a fully data-driven analysis of the

ft-values of superallwoed decays has pointed the need to complete the determinations of charge radii of all members of

each isotriplet [36].

Here, the empirical mirror relation, already gives rise to reliable radii estimation of all nuclei with Tz = �1 which

are involved in the determination of Vud (see table 5). However, some Tz = 0 nuclei play a key role as well [35], with

only a handful of their radii measured. To estimate the radii of these nuclei, we first denote the radii of triplet nuclei by

rTz with Tz = �1, 0,+1. The mirror then fit directly gives

r2�1 � r2+1 = �I(2r+1 +�I) (8)

with �I given in Eq. 6. This form is suitable for combining with equation 16 from [38], to obtain a semiempirical

isotriplet interpolation formula for the radius of Tz = 0 nuclei

r20,SE = r2+1 +
Z�1

2Z0
�I(2r+1 +�I). (9)

Using Eq. 9, can determine the radii of Tz = 0 nuclei directly, they are given in Tab. 7. Their uncertainty spans

0.1� 1.5% and is dominated by that of r+1. The least well-known triplet is that with A = 10, motivating an improved

determination of the radius of 10Be.

If all else is under control, and spin-orbit corrections within a triplet are neglected, then the di↵erence between

experimental and semi-empirical radii can help to search for, or constrain, isospin-symmetry-breaking (ISB) within the

isotriplets. Plugging Eq. 9 to Eq. 10 from Ref. [37] we obtain the compact expression

�M (1)
B = Z0(r

2
0,SE � r20,exp), (10)

which vanishes in the isospin-symmetric limit. The results are given in Table 7, and plotted in Fig. 6. The most

stringent constraint on ISB is with the A = 38 triplet, for which |�M (1)
B (38)|  1.5 fm2, comparing well with theoretical

9



 in ab-initio nuclear theoryδNS

Low-momentum part of the loop: account for nucleon d.o.f. only 
First case study:  in No-Core Shell Model (NCSM) 
Many-body problem in HO basis with separation  and up to 

10C → 10B
Ω N = Nmax + NPauli

27

Evaluate T
3
 using No Core Shell Model (NCSM)

➢ Utilizes discrete harmonic oscillator (HO) basis up to 
N=N

max
+N

Pauli

➢ HO basis allows separation of CM and internal DOFs
➢ Test of convergence is possible with increasing N

max

➢ W-independence as another consistency check
➢ Nuclear interactions from Chiral EFT:

 NN-N4LO+3N
lnl

 NN-N4LO+3N*
lnl

Entem, Machleidt and Nosyk, 2017 PRC;
Gysbers et al., 2019 Nature;
Kravvaris, Navrátil, Quaglioni, Hebborn and Hupin, 2023 PLB

28

Matrix element of the nuclear Green’s function evaluated 
with the Lanczos continued fraction method 

Step 1: Choose a initial vector

Step 2: Construct an n-vector basis through the following
             recursion

“Lanczos coefficients”:

Initial values:

Difficulty:
Inverting a 
large matrix!

Evaluate the m.e. of nuclear Green’s function

Lanczos continuous fraction method

57

M. Gennari, M. Drissi, MG, P. Navratil, C.-Y. Seng, arXiv: 2405.19281
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Numerical results

From “res,T
3
” From “res,T

3
”

➢ “res,T
3
” contribution is numerically the largest

➢ Different nuclear forces cause substantial re-distribution
between different contributions, but small change to the sum

Ab-initio : numerical resultsδNS

58

33

Fast convergence with increasing N
max

→ Intruder states are not an issue 

Check Ω-independence and convergence w.r.t. N
max 

:

Natural in EFT language; see Wouter Dekens’ talk

%

δNS = − 0.406(39) %

δNS = − 0.347(35) %
δNS = − 0.400(50) %

Final result for :10C → 10B

Compare to Hardy-Towner (old-fashion SM)

(2014)
(2020)

arXiv: 2405.19281

T = Tz = 0, JP = (1+)

T = 1, Tz = − 1, JP = (0+)
T = 1, Tz = 0, JP = (0+)

GT M1

Large negative contribution: low-lying 1+ level in 10B 
Large GT and M1 rates favor a two-step process



Nuclear Matrix Elements 
14O →14 N
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• Total: 

• For  gNN
V1,V2 = 1/(4mNF2

π)

• Magnetic/spin-orbit correspond to  
`traditional’   

• Similar result:  

δNS,B

δNS,B = − 1.96(50) ⋅ 10−3

δ(0)
NS = − (1.76+0.11±0.88) ⋅ 10−3

Towner ’94; Hardy, Towner ‘20

Ab-initio  in EFT:  
 with Variational Monte Carlo

δNS14O → 14N
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Compare to Hardy-Towner 2020:

V. Cirigliano et al, arXiv: 2405.18469

Uncertainty:  
assuming unknown  
counter term to be of 
 “natural size”

PT- EFT matchingχ χ
PT 

  
χ

100 MeV
EFT 
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NN

• Long-range diagrams proportional to 

• Lepton-energy:  corrections 

• NLO vertices:  corrections  

•  lead to contact interactions 

• Needed to absorb divergences induced by 

𝒪(me/mπ α) ∼ ϵπα

𝒪(mπ /mN α) ∼ ϵχα

gNN
V1,V2

Vmag

VE ∼
e2Ee,ν

� ⃗q �4 Vmag ∼ Vrecoil ∼ e2

mN

1
⃗q2

Vcontact ∼ e2gNN
V1,V2

e
νe

pn

NN

Vi

Integrate out 
pions,  γsoft,pot
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Promising avenue: all logs under control and are consistent 
Downside: EFT non-renormalizable —> unknown counter terms external to the theory 
Need extra input (dispersion theory; explicit modeling; fit to data)


