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Neutrinos Matter!

* We need to understand neutrinos if we want to understand our universe!

Neutrinos are everywhere!

SuperNova

Reactor

— They are invaluable
astronomical (and terrestrial)
messengers
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— Their behavior is beyond the
Standard Model
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Neutrino Oscillation Refresher

* The principle behind neutrino oscillations: lllustration of neutrino oscillation:
neutrino mixing _ ;
V)

‘voc> - EiU;i
/ \

How they interact How they propagate o
W, v, V) Wy, Uny U2) For example, as a rough approximation at short
—— e baselines, the I, “survival” probability is:
. frequency
where the Pontecorvo- amplitude l
Maki-Nakagawa-Sakata _ _ ., . AmZ L
(PMNS) matrix U is P(v, = V,)=1-sin"26,;sin 4;

parameterized in terms of
three mixing angles
(015, 053, 0;3) and one
CP-violating phase Op

(where the Amg = ml.2 - mj2 are the

so-called “mass splittings”)
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Precision

Open QueStiOnS From PDG 2024 |

. o . sin'(12) 0307 %0013 42%  Crently known
[
Neutrllno oscillation implies that neutrinos are Amd,  (753+0.18)x 107 eV 24% o a few
massive : 0.015 percent, but
sin”(823)  0.558X(1 32% need more
* Have many open questions: Ami,  (2.455+0.028)x 107 eV? 1.1%  Pprecision. Also,
. sin?(813)  0.0219 % 0.0007 329 oo olnis
— What are the values of the oscillation parameters?
. 2 2 «in2 2 <in2
sin“ 0,,, Am5, sin“ 6,,, Ams,, sin“ 0 2 2
12 2L 23 = y n Ngrmal — Invgrted T
Note: Am%l can be determined from the other two ordering (NO) LY oreerng (101
mass splittings if the mass ordering is known l : l
[ Vr
— Do neutrinos obey the CP symmetry 17| — 1 my2
. A —Say2
(IS ) — O)f) solar~7.5x107eV 5
CP atmospheric e e My
— i j - ~2.5%1073eV?
What is the ordezrlng of the neutrino masses © atmospheric
(i.e. sign of Am32)? My | e — ~2.5%10%eV?
5 solar~7.5x10eV? v 5
oy . m"— I 7
— Avre there additional neutrino states? : :
? ?
There are other questions but those require more than I ' I '
oscillation experiments to be answered 0 0

Credit: H. Murayama
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Rest of This Talk

« Short baseline experiments are at the forefront in helping us address some of these questions
* Some types of experiments have traditionally been more effective at probing certain sectors of

the PMNS matrix Rough values of L/E ideal
v, 1 0 0 cos 0, 0 sin@e ) (cosf, sinf, 0 (v for observing threg—ﬂayor
: neutrino oscillations:
V=10 cosby; sinbh, 0 1 0 —sinf;, cos@,, Of]|%2
Vp 0 —sinb,; cosby )| —sinf e 0 cos 6,5 0 0 1) \¥3 - 15 km / MeV for Amzz1
2
Atmospheric Reactor Solar - 900 m/ MeV for Am32
(+Accelerator) (+Accelerator) (+Reactor)

— The only way to probe three-neutrino (standard) oscillations at “short” baselines is with reactor experiments

First part of this talk-—/

Neutrino Energy Baseline
We'll call i ¢
reactor But anomalous (Am2 21 eVz)
baselines (Reactor 1-10 MeV few m to ~200 km ) — . ~
“short” for the Fp— Ay IRS—— P oscillation signatures can also be
purposes of ~ ACCEIerator - Stb-ueVio atew eV < 1,500 Km probed at short baselines with reactor,
this talk Atmospheric  sub-GeV to a few GeV < 12,000 km accelerator and source experiments

Solar 1-15 MeV 106 - 108 km y\_

Second part

of this talk

U CI University of
California, Irvine




Three-Neutrino Oscillations

with Reactor Experiments
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Reactor Antineutrinos

* Nuclear reactors are a flavor-pure, widely available, cost-effective, extremely intense and well-
understood source of electron antineutrinos:

144Nd

AN
O—»Neutron » H%pr P 4 (Number of Neutrons)
o, Electron » % /@O\;
‘s Anti-neutrino la 0\;
Gamma **'Ba ]ﬁo\; . .
& . Fission
144g, / o (some loss) 126
235 236 @ sl 235|) 238 @O/y

o—»+®—>®—> o—» —>o—»+@—>@—>
89Kl‘ \

O\‘ 238 i
89 + u . Decay
Krg@o—s .
K )
\ \ 239, 50 - mpe
oA
“Rb @O\‘ @ o . mFission
y. QN0 28 oo . mProton
¢ 'Np i mNeutron
sr & 0, e | - mStable Nuclide
| | x-. i) \ 239p 6l : Unknown
Credit: nobelprize.org oy @ @ T - L -

~ 1020 De/S/GW‘[h —~ (Number of Protons)
n—p+e +<I/ e’

— A1 GW_, core produces in one minute more neutrinos than the NuMI and BNB beams produce in a year

o U Cl University of
8 - i California, Irvine




Oscillation Probability

Muon and tau neutrinos from reactor electron antineutrino oscillations lack sufficient energy for
charged-current interactions

Therefore, reactor experiments focus on electron antineutrino disappearance:

Am3 L Am3 L Am3,L
P. . (L,E) =I1—sin®20,, cos* 0, sin? —=— — sin®20,, | cos? 8, , sin? —— + sin? @, sin® ——=
5,5, E) 12 13 AE 13 12 AE 12 AE

"y

Lo JUNO
— Access to 4/6 o - P
oscillation parameters: 0.8—9
0,5, 03, Ams3,,and = |2
2 2 06— ® Daya Bay
Armsy (Am3) - 82 Double Chooz
— Independent of 0_4—_§§ RENO
623 and 5CP : §
—  Physics goals drive 0.2-% - With 6,5 = 0
choice of baseline - - With 9, # 0
ol i 13. L] . .....KamLAND
10?2 10 1 10 Likm]

E[MeV]
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Antineutrino Detection

 The medium of choice for most reactor neutrino experiments has been scintillator (plastic or liquid)

* The primary detection channel is the Inverse Beta Decay (IBD) reaction:

AL P -~ Emitted spectrum
Y . e Cross-section
ns
—— Detected spectrum
_ P e Ky _
v, + p—e + n T A \/\/\/\/ @
P p AN 5
',...‘c' ’-.... '/ ,iq g /
: . w3l N
Prompt Delayed signal: n - & /
signal: e™ capture on nucleus (e.g. ps ‘\\ 8
Kinetic Hydrogen, Lithium, * nucleus
energy loss + Gadolinium) and \j\/\fd
annihilation subsequent gamma-ray Y
emiSSion \IIIIIIIIl llllll I

— Coincidence between prompt positron and delayed neutron signals allows for powerful background rejection

— Energy of positron preserves information about energy of incoming v,

E; ~ Ej oy +0.78 MeV

10 UCI University of
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KamLAND

1

The KamLAND experiment still provides us with the
most precise estimate of Am221 to date

KamLAND:

— 1 kton liquid scintillator (LS) detector

— Surrounded by ~50 nuclear reactors at an
average baseline of ~180 km

PRL 100, 119904 (2008)

& 100
5 80F == Selection efficiency
8 60F
.2 i
% 40: [ R R R
E —— KamLAND data
C - P no oscillation
250 :_ i best-fit osci.
S - | a3cmdenta1
2 o200 o4 m °C(o.n)'°0
- - : 7y, best-fit Geo V,
g - "1 —— best-fit osci. + BG
S 150 - : + best-fit Geo V,
2 C
2 100
[8a) L
501
%1 2 3 4 5 6 71 %

Ay,

in 10"%eV?

—
(6]

2
21

Am

—
o

AI""HI

n-z“

L Analysis

Lsin (G) ,)=0.316* 8835
|sin (G) ,)=0.306+0.013 Am
| sin?(©,,)=0.307+0.012 Am21=(7.50 019) 10%eV?

Global

:Solar data

(610095)10 SeV?

[ @
[ ~1.56 tension I

KamLAND

=(7.54918) 10°V® ' sin’(©,,)=0.0218+0.0007 ' it
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.092001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.221803

0,; Experiments

- A generation of three experiments designed to precisely measure 6,5 recently finished

collecting data

f Daya Bay
*

Farll'l IIIIII
4x20 t “
il]l

Neér
| 17.4 GWin

2x2x20t

Data taking: 2011 - 2020

Double Chooz

1ig

;{;Far

Near
8t

Data taking: 2011 - 2017
\ Notes: flags indicate location of experiment, not composition of collaboration

Near

I RENO

>
Nt

W

Data taking: 2011 - 2023

J

— < 2 km baseline, so only need “small” detectors (tens or hundreds of tons)

— Looking for small (<10%) disappearance, so key is keeping systematics under control

correlated detection efficiencies

Near/far relative comparison allows to essentially cancel uncertainties in flux prediction and

U CI University of
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0,; Experiments

* The three experiments use similar detection technologies:

water, ) , GALS
) _,: - -l ,:,';
N 1 [ O0000)|00dde
o A2 ok - g
O = 2 © f O =
= '. - c S D «
O 1 & =0 = d
£ 5 e ) o
2 |g s g z d
i D d
-g ’-T,l' ; O Q ;_.',’. 5 [ D O
o 12 ol § ) o
a 1P ol | AAAA _AAAA
] L o0oon eeece | B
il 0 =i
T L e Wk

(diagrams courtesy of S. Jetter)

* Three-zone detectors
- Surrounded by instrumented shields (water or liquid scintillator (LS)) that also veto muons
* LS doped with Gadolinium (GdLS) to enhance capture signal

. ) U CI University of
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0,, Mixing Angle

* These experiments can use neutron capture on Hydrogen (nH) and/or on Gadolinium (nGd)
to identify 1,’s, resulting in essentially independent measurements:

«10° PRL 130, 161802 (2023) 10 PRL 133, 151801 (2024)
. T T — T T [ T T T T T T T T T T T] — T 1 T T T LI — T L— T ]
[ ; ] RS S e e ]
: 5L ] Plot courtesy of H. Yu, shown in Z. Yu’s talk at Neutrino 2024) 012 : g g ]
250 10°F E . y - T ARSI SRS S F— N
; - ™ 1 Experiment Value Er e 9 i S o E
[ ﬁ s nGd e 0.0851=00024 2.8% 0 e A P i
- 200 10 7 +0.0050 % N :
> i = Li: 102 Daya Bay nH — 0.0759 =359 6.5% % 0.08 i _________________________ N 102 -
%’ i ’: :I_ ] nGd-+nH e 0.0833 £0.0022  2.6% 2 - 10 _
= 150F¢ 2 4 6 8 10 127 RENO nGd —_— 0.092044%%  6.5% E () T ——— e ) 6 8 12
5 i 1 2 - : : D .
8 F LH:‘ nH —— 0.082 =+0.013 15.9% jé; : i Nit?)scillation :
S 100 § 1  Double Chooz nGd+nH+nC —_——— 0.102 0012  11.8% m 004 __ """""""""""""" """"""""""""" ; iiscticfiietntal R
I nple: final NGd |  Reactor Average —— 0.0839£0.0021  2.5% N Examplefé latest : °Li-*He 3
I surement from. ] 0.02 [-nH-meastrement: g I Fast neutron "]
S0¢ DayaBay 1 mmenowa ° 0.08927483  15.9% [ :from Daya Bay - B Radiogenic neutron ]
=~ ] v, - ¢ : : Bl " Am-C -
L | 10 0.1008 *3i12  14.2% S S I —_— =
R R 0.06 007 008 009 010 011 0.12 3¢ : : : 3
B % sin? 203 Figure by Hongzhao Yu ng
g ¢ | =
R T I : 3
B% N #ﬁ'ﬁ% ' ! Current reactor measurement of 6,5 likely to >
z 09 3 7} ; 5 oD remain the world’s most precise for a long time

Prompt Energy [MeV]
Prompt energy [MeV]

— Excellent fit to three-neutrino framework
— Excellent agreement with accelerator and atmospheric experiments (also for | Am322 1)

. ' U CI University of
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https://agenda.infn.it/event/37867/contributions/233972/
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.161802
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.161802

Prospects: JUNO

* The Jiangmen Underground Neutrino Observatory (JUNO)
is a large multi-purpose experiment under construction in
China:

®_JUNO
;N
/ \

/ \
/ \

/ S i
/' ~52.5 km Taishan NPP .
/ v 2X4.6 GW,, 5 T R

4 \
Yangjiang NPP ' s .o TAO e e
6X2.9GW, @})6‘ ) oy A e
%& e smaller ~3 ton A e :
« v satellite Ti - s

g =\ |
detector A L '/‘ AT /
ey

\

8 reactors
26.6 GW,,,

- 53 km from two major nuclear power plants (8 reactors)

- 35 m diameter sphere with 20 ktons of liquid scintillator (LS)
surrounded by 35 kton water Cherenkov detector

15 E - UCI University of
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Energy Resolution

With 3% @ 1 MeV, JUNO will be the LS detector with the best energy resolution in history

Most obvious (although not sufficient) requirement for achieving the target energy
resolution: seeing enough photons.

- No approach can singlehandedly provide all the light needed. Have to attack the problem
from different angles:

use

KamLAND JUNO Relative Gain <— KamLAND
as reference
Total light level 250 p.e./MeV  >1200 p.e./ MeV 5 *+—— target
Photocathode 34% ~78% ~2 -+ lots of PMTs
coverage

Light yield 1.5 g/l PPO 2.5 g/l PPO A5 <

.. optimized LS
Attenuation length / R 15/16 m 20/35 m ~0.8 &

fficient
PMT QEXCE 20%x60% ~ 12% ~30% D R yiras

U CI University of
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JUNO’s Oscillation Physics

The energy resolution allows to extract a wealth of
information from the oscillated spectrum

This includes the neutrino mass ordering

Exploit interference effects in the fine structure of the
oscillated spectrum

30 sensitivity within ~7 years
Measurement is independent of 8,5 and p, and
does not rely on matter effects

- Complementary information to that of other
experiments

- Sensitivity can be boosted in combination with
other experiments (e.g. PRD 101, 032006
(2019), Sci Rep 12, 5393 (2022))

Principle: fitting with the wrong ordering yields
the wrong Am321 value. Therefore, external
constraints can help!

Events per 1 MeV

100

80

60
40

20

x103

L 6 years of data taking

- -

VAV

No oscillations
Only solar term
Normal ordering
Inverted ordering

0““1‘” 2‘”‘3””4””5””

Es, (MeV)

Reactor U, signal IBD event number (x103)

0 50 100 150

200

250

TN T T N T A

—— NO: stat.+all syst. -
— 10: stat.+all syst. -

- NO: stat. only

- 10: stat. only
TR I T

arXiv:2405.18008 (accepted by CPC)

I T SRR B
0 2 4 6 8 10 12
JUNO and TAO DAQ time

[ ]
14 16 18 20
[years]
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.032006
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.032006
https://www.nature.com/articles/s41598-022-09111-1
https://arxiv.org/pdf/2405.18008

JUNO’s Oscillation Physics

. JUNO will also measure sin? 8, Am221 and Am??1 to better than 0.5% in 6 years

100 days 6 years 20 years
0.22:— """""""""""""""""""""""""""""""""""""""""""""""""""" _ """" _ """""" 102 EJ ‘ toT T T ‘ T ‘i‘ T ‘_ ‘Stat‘: +‘sy‘st‘ o 1 _
021 bbbt e I &
— 018: — Fast Neutrons : ..................... i i o Am%l * Am%l : Q
‘T(%' 0.16: : : § w0t T I « sin’6y, ® Si02913? S
= P 19
%; 0.14: _% - &
= 0.12F R 17
~ - g 100 E o)
S 01 o F ERRNE
o T 15 2 25 3 35 v 10
£ 0.08 Visible Energy (MeV) E 1
5] : : : o = 2
Lﬁ 0.06 ................ — IBD Signal T g 10-1 . _QS
0.04 ......... %...... —— IBD + residual BG - g ! ] <
0.02 . .......................... I S
0 —_— T —T— 1072 \ ! \ R S \ N B
10 12 102 103 10% 10°
Visible Energy [MeV] JUNO Data Taking Time [days]
- Important input for the neutrino community:
- ) 2 2 )
Parameter sin“6y,  Amy, Amy,  sin" 03
- New era of precision for neutrino mass & mixing Current Precision®  4.2% 2 49 11% 309,
models JUNO 6 years 0.5% 0.3% 02%  12.1%
- Model independent tests of the three-neutrino * from PDG 2024
oscillation framework (Upvns unitarity tests ) . .
Roughly one order of magnitude improvement
- Narrow down parameter space for Ovff over existing precision for 3 parameters!

searches

U CI University of
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https://iopscience.iop.org/article/10.1088/1674-1137/ac8bc9

Other JUNO Physics

JUNO also has a rich
program in non-
oscillation physics,
which are outside the
scope of this talk

- Low threshold, excellent
energy resolution and
large size make it an
excellent ground to
study neutrinos from the
Sun, the Earth, the
atmosphere and
Supernovae

- Can also search for
new physics, such as
nucleon decay

\
SuperNava v

5k in 10's (10 kpc)
\ I
B Wimp !
\ |
(dark matter)
Solar v

O(10 —1000) /day

Reactor v
~ 60 — 80/day

y
/" Atmospheric v

10-20/day

Geo-v

~ 1 — 2/day

UCli

University of
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Prospects: SuperChooz

« The 0,; mixing angle will soon become the most 50
poorly known =
O, 0
* Proposal for next-generation “SuperChooz” >
experiment is under active study _50

( Positron )

L Hit.s.ﬁér Fibre

- Would use the LiquidO detection technology

radius (R) (plane x-y)

LiguidO detector concept: fill
volume with an opaque
scintillator and collect light
with a tight array of fibers

>

—

—

The opacity keeps the light near its
creation point, preserving valuable
topological information about the event

z-length (L)

1 10 100 TRV B S
Opaque Medium Transparent Medium S‘;
X[cm] X[cm] N
-20 20 i
. a0
2
et a
2850 %
______ : —T0) E
[9)
; @)

| -40

Hits per Fibre
1 10 : 100 800 -80

L

Each of these panels assumes a 1cm fiber
pitch, one pixel per fibre, 2MeV of energy

Enables imaging down to the MeV scale!

University of

UCli

California, Irvine


https://www.nature.com/articles/s42005-021-00763-5

———— =

Q\\‘S- *

Chooz-A: Cavern Reactor Core

Prospects: SuperChooz

* SuperChooz would have a large, LiquidO-like
far detector in cavern of old Chooz-A reactor

* In exploratory phase; demonstrator called T et
(11 L} ’ OO g g fus sl l :g;:;:fen.s m
CLOUD” approved and under | ~
development i
g C'!Z:szc-oAzicShigggy Far Detector
CLOUD: el s

— Demonstrator of LiquidO technology

— Baseline of about ~35 m from
reactor core

— 50-10 tons, 10,000 fibers read out
by SiPMs on both ends

— Will operate on three phases
focused on detection of reactor
antineutrinos, solar neutrinos and
geo-neutrinos

For more information, please see
for examp/e Diana Navas’ —talk at 5-10 tons LiquidO—Trocker Inner Detector

ICHEP 2024 Opagque scintillator + 10,000 fibres + SiPMs at both fibre ends
~1.8 m diameter, >200 PE/MeV design, sub-ns timing

. z = = University of
22 - — — UCI California, Irvine



https://indico.cern.ch/event/1291157/contributions/5904067/

Oscillation Anomalies

with Short Baseline Reactor, Accelerator and Source Experiments

UCI University of
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LSND/MiniBooNE

PRD 64,112007 (2001) and

PRD 103, 052002 (2021)

500

 LSND and MiniBooNE

observed a ~60 excess of
electron (anti)neutrinos in a
muon (anti)neutrino beam ——

— Could be explained via eV-scale
sterile neutrino oscillations

100

lIIIIIIIIIllll]lllllllllll

* However: PRL 125, 071801 (2020)

i MiniBooNE

Visible Energy [MeV]

In conflict with

- Other

[ oirt

|:| A Ny
- 7 misid
- v, from K°
|:| v, from K**
|:| v, from p*-

= )
L _iBestit

-@- Data

MicroBooNE:

€ Best Fit Point

I 99%C.L

170 ton
LArTPC
Same L/E
and same
beam as
MiniBooNE

T 90%C.L.
T 68%C.L.

10° g
C 90% C.L. Allowed
" [ILSND
10 & MiniBooNE (2018)
~ []Dentler et al. (2018)
10 ;r [)Gariazzo et al. (2019)
T ol
Sw'E
102 |
F 90% C.L. (CL,) Excluded
5| —NOomAD
107 KarmEN2
- —MINOS, MINOS+, Daya Bay and Bugey-3
10—4 IIIIIu] L IIlIlIIl 1 Illllul 1 I||IIII] L IIIIIIII 1 IIIIIL|] L LN
10¢ 10° 10* 10° 102 10" 1

sin’26,,, = 41U, FIU P

accelerator and
reactor

disappearance

measurements

Excess not seen
by MicroBooNE
experiment as

either BSM e*e ™,
single-y, orv,

Signal Strength

1.0

0.8 1

0.6 -

0.4 1

0.2

0.0 -

L Signal strength of 1: expected rate of
events from MiniBooNE unfolded excess
under different kinematic hypotheses
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.071801
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.64.112007
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.052002
https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1127-PUB.pdf

Further Tests

- Fermilab Short Baseline Neutrino (SBN) Program:

— Two LArTPCs at near and far Iocatlons (SBND ‘and =
ICARUS)

% Jus> - -

g ~ _ Same beam as LSND/MiniBooNE o mw = ==

iR e e T : e Both detectors already in-operation
= - B < L —
T R, e s R e &l =3 P = 5 i L SBNNear Detector ‘-
o Te Tt T T enballaector] T D MlcroBooNE ' Eoge - — T R
Vgt WEEh . Femmm 00 o= S N_e;ut_f_'“ﬂafaf e 'i;.a i3 Bl == = outer Neutrino Beam
523 = —_— —— - =8 = e B A X 9 = Target Hall

JSNS2:
— Search for v, appearance in v, beam from J-PARC’s spallation

neutron source
— Pulsed neutrino source from pion, muon and kaon decay at rest

* The Fermilab SBN and JSNS2 experiments will
provide definite tests of the oscillation
hypothesis:

— Fermilab SBN: two functionally identical

detectors, very robust against flux and cross-
section uncertainties

First detector
already in
operation

Hg target for neutron
and neutrino sources

Also deploying a

second detector
at a baseline of

3GeV pulsed

proton beam 48 m

— JSNS2: same type of source (¢ decay at rest),
neutrino target (proton) and detection principle
(inverse beta decay) as LSND, but with better signal-
to-noise and two detectors at different baselines

University of
25 . UCI California, Irvine

arXiv:2104.13169 and arXiv:2012.10807



https://arxiv.org/abs/2104.13169
https://arxiv.org/abs/2012.10807

See arXiv:2203.07214 for a

Reactor Antineutrino Anomaly (RAA) e

---------------------------------------------------------------------
* *

* Description: a ~6% deficit with ~30 significance in the { = ratio of measured over predicted rate for

measured total reactor De ﬂUX versus the prediction from the 12
Huber+Mueller (HM) model at short baselines [ouoestie v2.of 5 iov
— Could also be explained by ~eV sterile neutrino oscillations .} oot summetion :
1'2JIII| I I||||||| I |||||||| [ ||||||| I |||||||| | I||||||| T IIIII_I_ :
11— [T :
fe) - - 1.0+
I SN (I £ s S S R Y T ‘ ]
T conversion -
43 0.9/~ i - E predictions 1
-l Tl & 0.9p relying on ILL]
= 0-8__ i - - beta spectra
il i f
S " 0.8
g 06— 1 r
(@] —~ — No oscillation —

0.5 —— With oscillations (3 active v's + 1 sterile v)

— H t
llllr Elx'?elrllnl‘ﬁl S | IIIIIII| | IIIIIII| | Illlllll | IIIIIII| L L

L | Huber; Mueller et al.;
0.7+ | Haag et al.

0.4 1 0o 1 01 1 oz 103 104 105 103 E Estienne, Fallot et al.
Reactor To Detector Distance (m) ‘ Eiﬁi?ki Zi R
However, new data_ suggests that the HM model S o T " o5
overestimates the Ue ﬂux from 235U f|SS|On ............................................. -
... by about the right amount to explain the anomaly! “new data = fuel evolution in LEU experiments,
~ measurements in HEU experiments, measurement of
Note: there is still a discrepancy in the reactor U, spectral shape 235(J/239Py beta spectra ratio at Kurchatov Institute
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https://arxiv.org/abs/2203.07214

Experimental Exploration of the RAA

* Moreover, searches for sterile neutrino oscillations have been performed at very short baselines:

Experiments: ‘
‘ 11-13 m

LEU Reactors { 3100 MW - DANSS i oam| 09t

Fission of 235U, 238,
239Pu’ 241Pu

2800 MW | NEOS @ 1t

/ 100 mw [ NEUTRINO-4 i 1.5t
HEU Reactors 85 MW | PROSPECT E 4t
Fission of 2351 | | |
e 65 MW soLia [ | 16t

\ 58 MW B STEREOI] 1.71

6 9 12 15 18 21 24m
(chart courtesy of B. Roskovec) + (mini-)CHANDLER, NuLAT

— Most of these experiments are movable and/or segmented, allowing to search for an unambiguous
oscillation signal that is independent of reactor prediction models

: University of
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RAA EXxclusion Contours and Hint

* One of these experiments has
claimed an observation: Neutrino-4
(PRD 104, 032003 (2021)

— All other experiments so far have
set limits

 Comments about Neutrino-4’s claim:

— ltis2.70

— It is controversial (e.g. PLB 816,
136214 (2021) and arXiv:2006.13639)

— Itis in strong tension with null
results from other experiments
(e.g. right plot)

— Itis roughly consistent with the
Gallium Anomaly (next slide)

Am2. [eV?]

107"

—-— PROSPECT-|, CL_, 95% C.L.

-~ STEREO, CL,, 95% C.L.

——= DANSS, 90% C.L.
NEOS, 90% C.L.

- [ €] Neutrino-4 95% C.L.

———
——
-

—
—
—_
————_ .
——
=
——

—-
——
———
———
——
——

— M. Andriamirado (lIT)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032003
https://www.sciencedirect.com/science/article/pii/S0370269321001544
https://www.sciencedirect.com/science/article/pii/S0370269321001544
https://arxiv.org/abs/2006.13639
https://agenda.infn.it/event/37867/contributions/233974/

PPNP 134, 104082 (2024)

i 1.2
T h e G al I I u m An o m a Iy - Most of these Measurements
o _ _ 1 13_ measurements were carried out in
« Description: capture rates of v, from calibration “'F+ done in the 90s _ 2019
sources on 71Ga are below expectation e T 1) R S
a, "¢ ®
Gallex and SAGE: > 0.9E
Radiochemical neutrino [, Coolingsystem Z L
experiments that detected . E o8b o b S R
solar neutrinos via | =~ 1 {
v, _|_71 Ga _)71 Ge + e~ lOut:rata:get % 0.7k
BEST: . | o.ot————»>—d
< s N 5 5
— Independent test of the Inner target Q;Q @,Y* < ,CJO' x&‘z’ O&Q’
. \\Ga 6 C} ‘Jrr + &/ ),
Gallium Anomaly N A N N ) <
— Two-volume design &I_ 6@’ ny ¥ ¥
— High-intensity 51Cr source = . N I .
T oI L High significance (>50), but oscillation interpretation in strong
« What next? tension with reactor v, data and KATRIN exclusion contours

— Several short-baseline reactor v, experiments are coming online or working towards an upgrade
(DANSS, JUNO-TAO, NEQOS, Neutrino-4+ and PROSPECT-II)

— KATRIN expected to fully cover Neutrino-4 and most of BEST’s parameter space
— ldeas for new tests are under planning & discussion
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https://link.springer.com/article/10.1140/epjc/s10052-023-11818-y
https://www.sciencedirect.com/science/article/pii/S0146641023000637

Summary &
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Summary & Conclusions

* Neutrino oscillations are a window to physics beyond the Standard Model and an
excellent way to measure many properties of these elusive particles

* The field is now in a precision era

— Measurements at short baselines by reactor experiments have played a critical role in
elucidating the neutrino’s oscillatory behavior and establishing the three-neutrino framework

—  Future measurements will address some of the most pressing open questions in neutrino
physics and probe our knowledge of neutrino oscillations with unprecedented precision

* The majority of the data collected to date can be explained with the three-neutrino
framework

— Several oscillation anomalies have arisen at short baselines

—  Sterile neutrino oscillations not ruled out, but evidence has weakened

Stay tuned for more exciting results and (hopefully) some surprises!
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