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Holography ∼ AdS/CFT

Since 1997 [Maldacena ][Gubser,Klebanov, Polyakov, Witten :] useful
tool to study some strongly coupled quantum field
theories

Equivalence of two very different theories



Connection with other areas of physics

More recently: Connection between quantum gravity and
quantum information

Key ingredient: entagnlement entropy SA = minA

But we do not know yet

How is gravity encoded in the boundary quantum
degrees of freedom ?
How do we “reconstruct” spacetime -including
behind a black hole horizon – just from boundary
data?



We know is that this duality geometrizes field theoretical
concepts
Examples:

Energy ↔ radial, emergent direction

Entanglement entropy = Minimal area in the bulk



Many holographic constructs explore behind the horizon

But often, not all the way to the singularity

Here: black hole interior as trans-IR RG flow?



1 AdS/CFT, main ideas

2 Holography behind the horizon

Entanglement and Complexity-Volume are not
enough

3 Trans-IR flows

Monotonicity and the null energy condition
Toward the singularity, connection to BKL

4 Open questions



AdS/CFT

AdS/CFT



AdS/CFT

AdS: Constant negative curvature space

CFT “lives at the boundary”



AdS/CFT

Gravitational theory maps to non-gravitational one

Strong/weak coupling duality

Gauge theory lives in fewer dimensions, holographic



AdS/CFT

Asymptotically AdS geometry ⇔ CFT state

AdS ⇔ vacuum state

Black hole formation ⇔ thermalization

Black hole in AdS ⇔ thermal state

Radial direction ⇔ energy in the boundary

(quantum) theory



AdS/CFT

Solving bulk equations of motion ⇒ enough to
reconstruct the bulk outside the event horizon

But this method is not able to describe regions behind
causal horizons

What holographic constructs explore inside the black
hole? All the way to the singularity?



Holography behind the horizon

Holography behind the horizon



Holographic entanglement entropy

Holography behind the horizon

Entanglement in QM

Density matrix ρ describes the state of the whole system

Partition the system, construct the reduced density matrix
ρA by tracing over degrees of freedom in B, ρA = TrBρ

Entanglement entropy

SA = -Tr [ρAlogρA]



Holography behind the horizon

Entanglement in Conformal Field Theory

Non-local object

Useful in quantum many-body systems

Plays crucial role in quantum information (cryptography,
teleportation .....)

But

difficult to measure
difficult to calculate, especially in strongly coupled
field theories



Holography behind the horizon

AdS/CFT → entanglement entropy can be described
geometrically



Holographic Entanglement Entropy

Holography behind the horizon

Entanglement in the boundary
quantum, theory encodes the
geometry of spacetime

SA = Areamin(γA)

[Ryu,Takayanagi 2007]



Holography behind the horizon

Evidence

Agrees with analytical 2D CFT results
[Holzhey-Larsen-Wilczek ][Calabrese, Cardy ]

Holographic proof of strong subadditivity,

S(AB) + S(BC) ≥ S(ABC) + S(B)

[Headrick, Takayanagi ] and many other properties known from
QI

Proof –assuming holography [Maldacena, Lewkowycz ]

Time evolution



Holographic Complexity

Holography behind the horizon

Other important boundary quantity: circuit or gate
complexity

Starting in a reference state |Ψ0⟩ , what is the minimmum
number of fundamental gates (unitaries that act on 2
qubits) needed to make a target state |Ψf⟩ within
accuracy ϵ.



Holography behind the horizon

Defining property of
complexity: linear growth

Complexity = Volume (CV): maximal codimension-1 bulk
slice [Susskind 2014] [Susskind, Stanford 2014]

C ∼ V olmax(B)



Holography behind the horizon

Other complexities: complexity-action (CA), CV 2.0,
complexity=anything [Brown, Roberts, Susskind, Swingle, Zhao

2016][Couch, Fischler, Nguyen 2016][Belin, Myers, Ruan, Sarosi, Speranza

2021]



Holography behind the horizon

However,

• There are extremal surface barriers [Engelhardt, Wall 2013]

• Extremal surfaces do not probe past these barriers

• ⇒ it is not possible to reconstruct the entire bulk, to
reach the singularity, using extremal surfaces
(entanglement, CV)
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Motivation

Trans-IR Flows

RG flow: Interpolation

between theories at

different energy scales

Goes from UV fixed

point to IR fixed

point

View as a curve in the

space of couplings

parameterized by energy

scale Λ

g2

g1

•
IR

•UV▲

▲

▲



Trans-IR Flows

Holography:

Radial direction ↔ energy

Holographic RG flow UV-IR: from boundary to horizon

Extensive literature on holographic RG flows of vacuum
states, seminal papers:

[Freedman, S. S. Gubser, K. Pilch, Warner 1999]

[Myers, Sinha 2010–11]



Trans-IR Flows

RG flows in black hole backgrounds ? [Frenkel, Hartnoll,

Kruthoff, Shi 2021]

Black holes are dual to a thermal state

”RG” flow into the black hole? Trans-IR



Holographic RG Flow

Trans-IR Flows

In AdS/CFT, to trigger an RG flow we need to deform

the boundary CFT i.e. add matter

Example: Scalar field ϕ is dual to operator O∫
dd+1X

√
|g| [∇µϕ∇µϕ+ V (ϕ)]←→

∫
ddxϕ0O

(3.1)

Relevant deformations trigger RG flows

Flow is encoded by classical bulk dynamics

[Balasubramanian, Kraus 1999] [de Boer, Verlinde, Verlinde 2000]



RG Flows of the Vacuum

Trans-IR Flows

Start with domain wall ansatz with flat slicing

ds2 = e2A(ρ)
(
−dt2 + dx⃗2

)
+ dρ2, ((t, x⃗) ∈ Rd, ρ ≥ 0)

Get AdSd+1 with curvature ℓ when A(ρ) = ρ/ℓ

Trace anomaly coefficient is [Freedman et. al ][Myers et. al. ]

aUV =
πd/2

Γ
(
d
2

) ( ℓ

ℓP

)d−1

=
πd/2

Γ
(
d
2

)
ℓd−1
P

[
1

A′(ρ)

]d−1

Identify RHS as holographic a-function a(ρ)

For general warp factor eA(ρ) and Einstein gravity,

can prove monotonicity if NEC is obeyed



Trans-IR Flows as Black Hole Interiors

Trans-IR Flows

AdS/CFT: energy scale is the bulk radial extra dimension

black holes

RG flow of some UV thermal state (bdry.) to IR
(horizon)
In the interior the radial coordinate becomes timelike
=⇒ trans-IR [Frenkel, Hartnoll, Kruthoff, Shi 2020]

•◦ ▲

▲



Trans-IR Flows

Trans-IR flow: analytic continuation to imaginary Λ

Analytically continuation to study the black hole interior
is not a new idea: Maldacena, Hubeny, etc.

Can we define an a-function that is monotonic in the
interior? [EC, Kundu,Patra, Shashi 2022][EC, Kundu,Patra, Shashi 2022]

[EC, Shashi 2022] [EC, Sashi, Sun 2023] [EC, Castillo, Landsteiner,

Salazar-Landea 2023] [EC, Patra, Pedraza 2023]



Trans-IR Flows

More questions

1 What happens to the degrees of freedom at a trans-IR
endpoint?

Symmetric backgrounds: we lose all degrees of
freedom at the singularity. Anisotropic backgrounds:
unclear

2 Connection to Belinski–Khalatnikov–Lifshitz (BKL)
behavior close to the singularity?



Trans-IR flows

Trans-IR Flows

Holographic RG flows of thermal states

The trans-IR explores the interior of a black hole geometry

Start with “blackened” ansatz

ds2 = e2A(ρ)
(
−f(ρ)2dt2 + dx⃗2

)
+ dρ2,

Exterior is (t, x⃗) ∈ Rd, ρ ≥ 0, with horizon at ρ = 0



Trans-IR Flows

The Null Energy condition allows us to define an a
function even for less symmetric backgrounds [EC, Shashi

][EC, Castillo, Landsteiner, Salazar-Landea ]

And we can prove that this a function is also monotonic
in the interior



Null Energy Condition (NEC)

Trans-IR Flows

T µνkµkν > 0

Key idea: if NEC along kµ =
e−A(ρ)

f(ρ)
∂µ
t + ∂µ

ρ can be written as

C(ρ) d
dρ

[ã(ρ)]−K(ρ)2 ≥ 0,

where C(ρ) is positive outside the horizon

=⇒ d

dρ
[ã(ρ)] ≥ K(ρ)

2

C(ρ)
≥ 0.

=⇒ ã(ρ) is a candidate a-function.



The aT -Function

Trans-IR Flows

In the the case of a metric

ds2 = e2A(ρ)
(
−f(ρ)2dt2 + dx⃗2

)
+ dρ2,

we obtain

aT (ρ) =
πd/2

Γ
(
d
2

)
ℓd−1
P

[
f(ρ)

A′(ρ)

]d−1



The aT -Function (cont.)

Trans-IR Flows

We can prove that

Stationary at horizon:

daT
dρ

∣∣∣∣
hor

= 0

Monotonicity condition:

UV → IR :
daT
dρ
≥ 0,

Trans-IR :
daT
dκ
≤ 0



Example: Free Kasner Flows

Example: Free Kasner Flows



Einstein + Free Scalar Theory

Example: Free Kasner Flows

Einstein gravity + scalar

I =

∫
dd+1x

√
−g

(
R + d(d− 1)− 1

2
(∇αϕ∇αϕ+m2ϕ2)

)
ϕ = ϕ(r) dual to relevant operator O with dimension ∆,

IO =

∫
ddxϕ0O

Schwarzschild-like metric ansatz with horizon r = rh

ds2 =
1

r2

[
−F (r)e−χ(r)dt2 +

dr2

F (r)
+ dx⃗2

]
, (r ∈ R)

Exterior: r ≤ rh (F ≥ 0); Bdry at r = 0

Interior: r ≥ rh (F ≤ 0)



Solving for Black Hole Solutions

Example: Free Kasner Flows

Equations of motion with this ansatz:

ϕ′′ +

(
F ′

F
− d− 1

r
− χ′

2

)
ϕ′ +

∆(d−∆)

r2F
ϕ = 0 (4.1)

χ′ − 2F ′

F
− ∆(d−∆)ϕ2

(d− 1)rF
− 2d

rF
+

2d

r
= 0 (4.2)

χ′ − r

d− 1
(ϕ′)2 = 0, (4.3)

Solve numerically for {F, χ, ϕ}
Solutions labeled by “strength” of deformation

measured by the dimensionless parameter

ϕ0/T
d−∆



aT

Example: Free Kasner Flows

Can use coordinate transformation from blackened

domain wall ansatz to Schwarzschild-like ansatz to write

aT (r) =
πd/2

Γ
(
d
2

)
ℓd−1
P

e−(d−1)χ(r)/2 (4.4)

Can go further and obtain the evolution of aT along

the full flow:

daT
dE

=


daT
dρ

= −r
√
F (r)

daT
dr

, if r ≤ rh

daT
dκ

= r
√
|F (r)|daT

dr
, if r ≥ rh

(4.5)



aT (cont.)

Example: Free Kasner Flows

Set d = 3, ∆ = 2 and plot aT , daT/dE for various

deformations
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Close to the singularity; Kasner Flows

Example: Free Kasner Flows

Near-singularity (r →∞) geometry is a Kasner(-like)

universe

ds2 ∼ −dτ 2 + τ 2ptdt2 + τ 2pxdx⃗2, ϕ ∼ −
√
2pϕ log τ

pt + (d− 1)px = 1, p2ϕ + p2t + (d− 1)p2x = 1

Thus, call the geometries Kasner flows [Frenkel,

Hartnoll, Kruthoff, Shi 2020] [Caceres, Kundu, Patra, Shashi 2021]



Connecting singularity and boundary

Example: Free Kasner Flows

Recall that the boundary deformation deformation is
IO =

∫
ddxϕ0O



aT close to the singularity

Example: Free Kasner Flows

As we approach singularity (r →∞) we have aT → 0

aT (r) ∼ r−(d−1)2q2/2

where q is a function of pt and d

=⇒ Lose all d.o.f. at trans-IR endpoint. Complexity?
[Caputa, Das, Das 2021]



Example: Free Kasner Flows

Study near-singularity backreacting geometry in greater
generality

Can use Belinskii-Khalatnikov-Lifshitz (BKL)
approximation
Can also examine numerical solutions to theories
with more matter [Hartnoll, Horowitz, Kruthoff, Santos 2021]



Anisotropic Flows

Anisotropic Flows



Anisotropic Flows

Is the monotonic trans IR a-function an artifact of
having too much symmetry?

Non-isotropic RG flows [D.Giataganas, U. Gürsoy, J.F. Pedraza

2018][C.S. Chu, D. Giataganas 2020]

NEC

Trans-IR non-isotropic flows



Anisotropic Flows

Consider a background that breaks the rotational symmetry of
the constant-ρ slices,

ds2 = e2A(ρ)
[
−f(ρ)2dt2 + e2X (ρ)dx⃗2

1 + dx⃗2
2

]
+ dρ2

Asymptotically AdS

A(ρ) ∼ ρ

ℓ
(ρ→∞), lim

ρ→∞
X (ρ) = 0, lim

ρ→∞
f(ρ) = 1.



Anisotropic Flows

Key observation: NEC along kµ =
e−A(ρ)

f(ρ)
∂µ
t + ∂µ

ρ can be

written as

C(ρ) d
dρ

[ã(ρ)]−K(ρ)2 ≥ 0,

where C(ρ) is manifestly positive outside the horizon.
=⇒

d

dρ
[ã(ρ)] ≥ K(ρ)

2

C(ρ)
≥ 0.

=⇒ ã(ρ) is a candidate a-function.



Anisotropic Flows

d+ 1 dimensional space, d1 + d2 = d− 1

ds2 = e2A(ρ)
[
−f(ρ)2dt2 + e2X (ρ)dx⃗2

1 + dx⃗2
2

]
+ dρ2

we have,

C(ρ) = 1

(d− 1)f(ρ)

[
d1
(
A′(ρ) + X ′(ρ)

)
+ d2A

′(ρ)
]2
ed1X (ρ)/(d−1),

K(ρ) =
√

d1d2
d− 1

X ′(ρ).



Anisotropic Flows

and,

a(ρ) ∼ e−d1X (ρ)

[
(d−1)f(ρ)

d1

(
A′(ρ)+X ′(ρ)

)
+d2A′(ρ)

]d−1

Asymptotes to the appropriate UV trace anomaly ℓd−1

Monotonicity outside the horizon
NEC

Monotonicity inside the horizon is more involved



Anisotropic Flows

Example: IEYM =
∫
d5x
√
−g

[
1

2ℓ3P
(R + 12)− 1

4ĝ2
F a
µνF

aµν
]
.

ds2 = e2A(ρ)
[
−f(ρ)2dt2 + e2X (ρ)dx2 + dy2 + dz2

]
+ dρ2.

d1 = 1 and d2 = 2

The a-function is

a
(1)
T (ρ) ∼ e−X (ρ)

[
f(ρ)

A′(ρ) + 1
3
X ′(ρ)

]3
.

Solve EOMs numerically,



Anisotropic Flows
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Anisotropic Flows
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Conclusions



Takeaways

Conclusions

Trans-IR flows seem rather abstract in typical QFT.

Naturally emerge in holographic RG framework as

black hole interiors

We can define an a-function that is monotonic along the

flows, even in anisotropic backgrounds

We can correlate behavior at the boundary with

deformation at the singularity



Remaining Mysteries

Conclusions

Broad question: trans-IR flow in the quantum side

Better understanding more black hole
interiors/near-singularity geometries with more
complicated matter profiles (BKL analysis using
cosmological billiards [Damour, Henneaux, Nicolai 2003]).

aT close to the singularity? Losing degrees of freedom?

Many more questions...



Conclusions

Gracias!



Example: p-wave superfluid
(4 + 1)-dimensional Einstein-Yang-Mills theory with SU(2)
gauge symmetry whose bulk action is (setting ℓ = 1)

IEYM =

∫
d5x
√
−g

[
1

2ℓ3P
(R + 12)− 1

4ĝ2
F a
µνF

aµν

]
.

a = 1, 2, 3 runs over the generators of the (three-dimensional
representation of the) SU(2) gauge group



ds2 = −N(r)σ(r)2dt2 +
1

N(r)
dr2 + r2h(r)−4dx2+

r2h(r)2(dy2 + dz2)

A = ϕ(r)τ 3dt+ w(r)τ 1dx,

Solve EOMs numerically



Note: To prove monotonicity in the interior it is easier to
change to Schawrzchild -like coordinates,

ds2 =
1

r2

[
−F (r)e−χ(r)dt2 +

dr2

F (r)
+ dx⃗2

]
,

e2A(ρ) =
1

r2
, f(ρ)2 = F (r)e−χ(r),

dr

dρ
= −r

√
F (r).



What Is a Trans-IR Flow?

Assume gapless system

for now (ΛIR = 0)

Trans-IR flow accessed

by analytically continuing

to imaginary Λ

Λ

• •◦ ◦

Im

Re
UVIR

Conventional RGT
ra
ns
-I
R



Trans-IR Flows as Black Hole Interiors
Energy scale is the bulk radial extra dimension

RG flows: UV at the boundary, IR at the horizon

Q: Black holes?

RG flow of some UV thermal state

Radial coordinate becomes timelike =⇒ interior is
trans-IR! [Frenkel, Hartnoll, Kruthoff, Shi 2020]

ρ

• •◦ ◦

Im

Re
UVIR

Conventional RGT
ra
ns
-I
R

•◦ ▲

▲



Counting Degrees of Freedom

Count degrees of freedom along
flow with a monotonically
decreasing function of energy

Zamolodchikov c-theorem (2d)

Evaluates to central charge
at fixed points

Cardy a-theorem (2n-d)

Evaluates to trace anomaly
coefficient at fixed points



RG Flows of Thermal States

To probe trans-IR, need to use a black hole geometry

Start with “blackened” domain wall ansatz with warped
flat slicing

ds2 = e2A(ρ)
(
−f(ρ)2dt2 + dx⃗2

)
+dρ2, (f(ρ) = f1ρ+O(ρ3))

Exterior is (t, x⃗) ∈ Rd, ρ ≥ 0, with horizon at ρ = 0



Interior accessed via analytic continuation

ρ = iκ , t = tI−sgn(tI)
iγ

2T
,

(
κ ≥ 0, γ ∈ Z+

1

2

)
Get AdSd+1-Schwarzschild with curvature ℓ when

eA(ρ) =
2

d
cosh

(
dρ

2ℓ

)2/d

, f(ρ) = tanh

(
dρ

2ℓ

)
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