Flowing behind the horizon

by

Elena Cáceres University of Texas at Austin

SILAFAE 2024

Holography $\sim \mathsf{AdS}/\mathsf{CFT}$

- Since 1997 [Maldacena][Gubser,Klebanov, Polyakov, Witten :] useful tool to study some strongly coupled quantum field theories
- Equivalence of two very different theories

- Connection with other areas of physics
- More recently: Connection between quantum gravity and quantum information

Key ingredient: entagnlement entropy $S_A = \min A$

- But we do not know yet
 - How is gravity encoded in the boundary quantum degrees of freedom ?
 - How do we "reconstruct" spacetime -including behind a black hole horizon – just from boundary data?

- We know is that this duality geometrizes field theoretical concepts
 - Examples:
 - $\mathsf{Energy} \leftrightarrow \mathsf{radial}, \, \mathsf{emergent} \, \mathsf{direction}$

Entanglement entropy = Minimal area in the bulk

Many holographic constructs explore behind the horizon

But often, not all the way to the singularity

Here: black hole interior as trans-IR RG flow?

- 1 AdS/CFT, main ideas
- 2 Holography behind the horizon
 - Entanglement and Complexity-Volume are not enough
- 3 Trans-IR flows
 - Monotonicity and the null energy condition
 - Toward the singularity, connection to BKL
- 4 Open questions

AdS/CFT

AdS: Constant negative curvature space

CFT "lives at the boundary"

Gravitational theory maps to non-gravitational one

- Strong/weak coupling duality
- Gauge theory lives in fewer dimensions, *holographic*

Asymptotically AdS geometry \Leftrightarrow CFT state AdS \Leftrightarrow vacuum state Black hole formation \Leftrightarrow thermalization Black hole in AdS \Leftrightarrow thermal state Radial direction \Leftrightarrow energy in the boundary (quantum) theory Solving bulk equations of motion \Rightarrow enough to reconstruct the bulk outside the event horizon

But this method is not able to describe regions behind causal horizons

What holographic constructs explore **inside the black hole**? All the way to the **singularity**?

Holography behind the horizon

Holography behind the horizon

Holographic entanglement entropy

Entanglement in QM

Density matrix ρ describes the state of the whole system

Partition the system, construct the reduced density matrix ρ_A by tracing over degrees of freedom in B, $\rho_A = \text{Tr}_B \rho$

Entanglement entropy

$$S_A = -\text{Tr}\left[\rho_A \log \rho_A\right]$$

Entanglement in Conformal Field Theory

- Non-local object
- Useful in quantum many-body systems
- Plays crucial role in quantum information (cryptography, teleportation)
- But
 - difficult to measure
 - difficult to calculate, especially in strongly coupled field theories

$AdS/CFT \rightarrow$ entanglement entropy can be described geometrically

Holography behind the horizon

Holographic Entanglement Entropy

Entanglement in the boundary quantum, theory encodes the geometry of spacetime

$$\mathsf{S}_A = \operatorname{Area}_{min}(\gamma_A)$$

[Ryu, Takayanagi 2007]

Evidence

Agrees with analytical 2D CFT results [Holzhey-Larsen-Wilczek][Calabrese, Cardy]

Holographic proof of strong subadditivity,

 $S(AB) + S(BC) \ge S(ABC) + S(B)$

[Headrick, Takayanagi] and many other properties known from QI $% \left[{{{\rm{A}}_{{\rm{B}}}}_{{\rm{A}}}} \right]$

Proof –assuming holography [Maldacena, Lewkowycz]
 Time evolution

Holographic Complexity

Other important boundary quantity: circuit or gate complexity

Starting in a reference state $|\Psi_0\rangle$, what is the minimmum number of fundamental gates (unitaries that act on 2 qubits) needed to make a target state $|\Psi_f\rangle$ within accuracy ϵ .

Defining property of complexity: linear growth

Complexity = Volume (CV): maximal codimension-1 bulk

slice [Susskind 2014] [Susskind, Stanford 2014]

 $C \sim Vol_{\max}(B)$

 Other complexities: complexity-action (CA), CV 2.0, complexity=anything [Brown, Roberts, Susskind, Swingle, Zhao 2016][Couch, Fischler, Nguyen 2016][Belin, Myers, Ruan, Sarosi, Speranza 2021]

However,

- There are extremal surface barriers [Engelhardt, Wall 2013]
- Extremal surfaces do not probe past these barriers
- ⇒ it is not possible to reconstruct the entire bulk, to reach the singularity, using extremal surfaces (entanglement, CV)

Trans-IR Flows

Trans-IR Flows

Motivation

- RG flow: Interpolation between theories at different energy scales
 - Goes from UV fixed point to IR fixed point
- View as a curve in the space of couplings parameterized by energy

Holography:

- Radial direction ↔ energy
- Holographic RG flow UV-IR: from boundary to horizon
- Extensive literature on holographic RG flows of vacuum states, seminal papers:
 - [Freedman, S. S. Gubser, K. Pilch, Warner 1999]
 - [Myers, Sinha 2010–11]

- RG flows in black hole backgrounds ? [Frenkel, Hartnoll, Kruthoff, Shi 2021]
- Black holes are dual to a thermal state
- "RG" flow into the black hole? Trans-IR

Holographic RG Flow

In AdS/CFT, to trigger an RG flow we need to deform the boundary CFT *i.e.* add matter

• Example: Scalar field ϕ is dual to operator $\mathcal O$

$$\int d^{d+1} X \sqrt{|g|} \left[\nabla_{\mu} \phi \nabla^{\mu} \phi + V(\phi) \right] \longleftrightarrow \int d^{d} x \, \phi_{0} \mathcal{O}$$
(3.1)

Relevant deformations trigger RG flows
 Flow is encoded by classical bulk dynamics
 [Balasubramanian, Kraus 1999] [de Boer, Verlinde, Verlinde 2000]

RG Flows of the Vacuum

Start with domain wall ansatz with flat slicing

$$ds^{2} = e^{2A(\rho)} \left(-dt^{2} + d\vec{x}^{2} \right) + d\rho^{2}, \quad ((t, \vec{x}) \in \mathbb{R}^{d}, \ \rho \ge 0)$$

Get AdS_{d+1} with curvature ℓ when $A(\rho) = \rho/\ell$

Trace anomaly coefficient is [Freedman et. al][Myers et. al.]

$$a_{\rm UV} = \frac{\pi^{d/2}}{\Gamma\left(\frac{d}{2}\right)} \left(\frac{\ell}{\ell_P}\right)^{d-1} = \frac{\pi^{d/2}}{\Gamma\left(\frac{d}{2}\right)\ell_P^{d-1}} \left[\frac{1}{A'(\rho)}\right]^{d-1}$$

Identify RHS as holographic *a*-function *a*(*ρ*)
 For general warp factor *e*^{A(ρ)} and Einstein gravity, can prove monotonicity if NEC is obeyed

Trans-IR Flows as Black Hole Interiors

- AdS/CFT: energy scale is the bulk radial extra dimension
- black holes
 - RG flow of some UV thermal state (bdry.) to IR (horizon)
 - In the interior the radial coordinate becomes timelike
 - \implies trans-IR [Frenkel, Hartnoll, Kruthoff, Shi 2020]

- \blacksquare Trans-IR flow: analytic continuation to imaginary Λ
- Analytically continuation to study the black hole interior is not a new idea: Maldacena, Hubeny, etc.
- Can we define an a-function that is monotonic in the interior? [EC, Kundu,Patra, Shashi 2022][EC, Kundu,Patra, Shashi 2022]
 [EC, Shashi 2022] [EC, Sashi, Sun 2023] [EC, Castillo, Landsteiner, Salazar-Landea 2023] [EC, Patra, Pedraza 2023]

More questions

- What happens to the degrees of freedom at a trans-IR endpoint?
 - Symmetric backgrounds: we lose all degrees of freedom at the singularity. Anisotropic backgrounds: unclear
- 2 Connection to Belinski–Khalatnikov–Lifshitz (BKL) behavior close to the singularity?

- Holographic RG flows of thermal states
- The trans-IR explores the interior of a black hole geometry
- Start with "blackened" ansatz

$$ds^{2} = e^{2A(\rho)} \left(-f(\rho)^{2} dt^{2} + d\vec{x}^{2} \right) + d\rho^{2},$$

• Exterior is $(t, \vec{x}) \in \mathbb{R}^d$, $\rho \ge 0$, with horizon at $\rho = 0$

- The Null Energy condition allows us to define an *a* function even for less symmetric backgrounds [EC, Shashi][EC, Castillo, Landsteiner, Salazar-Landea]
- And we can prove that this *a* function is also monotonic in the interior

Null Energy Condition (NEC)

$$T^{\mu
u}k_{\mu}k_{\nu} > 0$$

Key idea: if NEC along $k^{\mu} = \frac{e^{-A(\rho)}}{f(\rho)}\partial_{t}^{\mu} + \partial_{\rho}^{\mu}$ can be written as
 $\mathcal{C}(\rho)\frac{d}{d\rho}\left[\tilde{a}(\rho)\right] - \mathcal{K}(\rho)^{2} \ge 0,$

where $\mathcal{C}(\rho)$ is positive outside the horizon

$$\implies \qquad \frac{d}{d\rho} \left[\tilde{a}(\rho) \right] \ge \frac{\mathcal{K}(\rho)^2}{\mathcal{C}(\rho)} \ge 0.$$

 $\implies \tilde{a}(\rho)$ is a candidate a-function.

The a_T -Function

In the the case of a metric

$$ds^{2} = e^{2A(\rho)} \left(-f(\rho)^{2} dt^{2} + d\vec{x}^{2} \right) + d\rho^{2},$$

we obtain

$$a_T(\rho) = \frac{\pi^{d/2}}{\Gamma\left(\frac{d}{2}\right)\ell_P^{d-1}} \left[\frac{f(\rho)}{A'(\rho)}\right]^{d-1}$$

Trans-IR Flows

The *a_T*-Function (cont.)

We can prove that

Stationary at horizon:

$$\left. \frac{da_T}{d\rho} \right|_{\rm hor} = 0$$

Monotonicity condition:

$$\mathsf{UV} \to \mathsf{IR} : \frac{da_T}{d\rho} \ge 0$$

Trans-IR : $\frac{da_T}{d\kappa} \le 0$

Trans-IR Flows

Example: Free Kasner Flows

Example: Free Kasner Flows

Einstein + Free Scalar Theory

Einstein gravity + scalar

$$I = \int d^{d+1}x \sqrt{-g} \left(R + d(d-1) - \frac{1}{2} (\nabla^{\alpha} \phi \nabla_{\alpha} \phi + m^2 \phi^2) \right)$$

 $\phi = \phi(r)$ dual to relevant operator \mathcal{O} with dimension Δ ,

$$I_{\mathcal{O}} = \int d^d x \, \phi_0 \, \mathcal{O}$$

Schwarzschild-like metric ansatz with horizon $r = r_h$

$$ds^{2} = \frac{1}{r^{2}} \left[-F(r)e^{-\chi(r)}dt^{2} + \frac{dr^{2}}{F(r)} + d\vec{x}^{2} \right], \quad (r \in \mathbb{R})$$

Exterior: $r \le r_h$ ($F \ge 0$); Bdry at r = 0Interior: $r \ge r_h$ ($F \le 0$)

Solving for Black Hole Solutions

Equations of motion with this ansatz:

$$\phi'' + \left(\frac{F'}{F} - \frac{d-1}{r} - \frac{\chi'}{2}\right)\phi' + \frac{\Delta(d-\Delta)}{r^2F}\phi = 0 \quad (4.1)$$

$$\chi' - \frac{2F'}{F} - \frac{\Delta(d-\Delta)\phi^2}{(d-1)rF} - \frac{2d}{rF} + \frac{2d}{r} = 0 \quad (4.2)$$

$$\chi' - \frac{r}{d-1}(\phi')^2 = 0, \quad (4.3)$$

Solve numerically for $\{F, \chi, \phi\}$

- Solutions labeled by "strength" of deformation measured by the dimensionless parameter $\phi_0/T^{d-\Delta}$

 a_T

 Can use coordinate transformation from blackened domain wall ansatz to Schwarzschild-like ansatz to write

$$a_T(r) = \frac{\pi^{d/2}}{\Gamma\left(\frac{d}{2}\right)\ell_P^{d-1}} e^{-(d-1)\chi(r)/2}$$
(4.4)

 Can go further and obtain the evolution of a_T along the full flow:

$$\frac{da_T}{dE} = \begin{cases} \frac{da_T}{d\rho} = -r\sqrt{F(r)}\frac{da_T}{dr}, & \text{if } r \le r_h \\ \frac{da_T}{d\kappa} = r\sqrt{|F(r)|}\frac{da_T}{dr}, & \text{if } r \ge r_h \end{cases}$$
(4.5)

a_T (cont.)

Set d = 3, $\Delta = 2$ and plot a_T , da_T/dE for various deformations

Close to the singularity; Kasner Flows

 Near-singularity $(r \to \infty)$ geometry is a Kasner(-like) universe

$$ds^{2} \sim -d\tau^{2} + \tau^{2p_{t}}dt^{2} + \tau^{2p_{x}}d\vec{x}^{2}, \quad \phi \sim -\sqrt{2}p_{\phi}\log\tau$$
$$p_{t} + (d-1)p_{x} = 1, \quad p_{\phi}^{2} + p_{t}^{2} + (d-1)p_{x}^{2} = 1$$

 Thus, call the geometries Kasner flows [Frenkel, Hartnoll, Kruthoff, Shi 2020] [Caceres, Kundu, Patra, Shashi 2021]

Connecting singularity and boundary

Recall that the boundary deformation deformation is $I_{\mathcal{O}} = \int d^d x \, \phi_0 \, \mathcal{O}$

• As we approach singularity $(r \to \infty)$ we have $a_T \to 0$

$$a_T(r) \sim r^{-(d-1)^2 q^2/2}$$

where q is a function of p_t and d \implies Lose all d.o.f. at trans-IR endpoint. Complexity? [Caputa, Das, Das 2021]

- Study near-singularity backreacting geometry in greater generality
 - Can use Belinskii-Khalatnikov-Lifshitz (BKL) approximation
 - Can also examine numerical solutions to theories with more matter [Hartnoll, Horowitz, Kruthoff, Santos 2021]

Anisotropic Flows

Anisotropic Flows

Is the monotonic trans IR a-function an artifact of having too much symmetry?

- Non-isotropic RG flows [D.Giataganas, U. Gürsoy, J.F. Pedraza 2018][C.S. Chu, D. Giataganas 2020]
- NEC
- Trans-IR non-isotropic flows

Consider a background that breaks the rotational symmetry of the constant- ρ slices,

$$ds^{2} = e^{2A(\rho)} \left[-f(\rho)^{2} dt^{2} + e^{2\mathcal{X}(\rho)} d\vec{x}_{1}^{2} + d\vec{x}_{2}^{2} \right] + d\rho^{2}$$

Asymptotically ${\cal A}dS$

$$A(\rho) \sim \frac{\rho}{\ell} \ (\rho \to \infty), \ \lim_{\rho \to \infty} \mathcal{X}(\rho) = 0, \ \lim_{\rho \to \infty} f(\rho) = 1.$$

Key observation: NEC along $k^\mu=\frac{e^{-A(\rho)}}{f(\rho)}\partial_t^\mu+\partial_\rho^\mu$ can be written as

$$C(\rho) \frac{d}{d\rho} [\tilde{a}(\rho)] - \mathcal{K}(\rho)^2 \ge 0,$$

where $\mathcal{C}(\rho)$ is manifestly positive outside the horizon.

$$\frac{d}{d\rho} \left[\tilde{a}(\rho) \right] \ge \frac{\mathcal{K}(\rho)^2}{\mathcal{C}(\rho)} \ge 0.$$

 $\implies \tilde{a}(\rho)$ is a candidate a-function.

d+1 dimensional space, $d_1+d_2=d-1$

$$ds^{2} = e^{2A(\rho)} \left[-f(\rho)^{2} dt^{2} + e^{2\mathcal{X}(\rho)} d\vec{x}_{1}^{2} + d\vec{x}_{2}^{2} \right] + d\rho^{2}$$

we have,

$$\begin{aligned} \mathcal{C}(\rho) &= \frac{1}{(d-1)f(\rho)} \left[d_1 \left(A'(\rho) + \mathcal{X}'(\rho) \right) + d_2 A'(\rho) \right]^2 e^{d_1 \mathcal{X}(\rho)/(d-1)}, \\ \mathcal{K}(\rho) &= \sqrt{\frac{d_1 d_2}{d-1}} \mathcal{X}'(\rho). \end{aligned}$$

and,

$$a(\rho) \sim e^{-d_1 \mathcal{X}(\rho)} \left[\frac{(d-1)f(\rho)}{d_1 \left(A'(\rho) + \mathcal{X}'(\rho) \right) + d_2 A'(\rho)} \right]^{d-1}$$

- Asymptotes to the appropriate UV trace anomaly ℓ^{d-1}
- Monotonicity outside the horizon
 NEC
- Monotonicity inside the horizon is more involved \checkmark

Example:
$$I_{\text{EYM}} = \int d^5 x \sqrt{-g} \left[\frac{1}{2\ell_{\text{P}}^3} \left(R + 12 \right) - \frac{1}{4\hat{g}^2} F^a_{\mu\nu} F^{a\mu\nu} \right]$$

$$ds^{2} = e^{2A(\rho)} \left[-f(\rho)^{2} dt^{2} + e^{2\mathcal{X}(\rho)} dx^{2} + dy^{2} + dz^{2} \right] + d\rho^{2}.$$

 $d_1 = 1$ and $d_2 = 2$ The *a*-function is

$$a_T^{(1)}(\rho) \sim e^{-\mathcal{X}(\rho)} \left[\frac{f(\rho)}{A'(\rho) + \frac{1}{3}\mathcal{X}'(\rho)} \right]^3.$$

Solve EOMs numerically,

Conclusions

Conclusions

Trans-IR flows seem rather abstract in typical QFT.

- Naturally emerge in holographic RG framework as black hole interiors
- We can define an a-function that is monotonic along the flows, even in anisotropic backgrounds
- We can correlate behavior at the boundary with deformation at the singularity

Remaining Mysteries

Broad question: trans-IR flow in the quantum side

 Better understanding more black hole interiors/near-singularity geometries with more complicated matter profiles (BKL analysis using cosmological billiards [Damour, Henneaux, Nicolai 2003]).

a_T close to the singularity? Losing degrees of freedom?
 Many more questions...

Gracias!

Conclusions

Example: p-wave superfluid

(4+1)-dimensional Einstein-Yang-Mills theory with SU(2) gauge symmetry whose bulk action is (setting $\ell = 1$)

$$I_{\rm EYM} = \int d^5 x \sqrt{-g} \left[\frac{1}{2\ell_{\rm P}^3} \left(R + 12 \right) - \frac{1}{4\hat{g}^2} F^a_{\mu\nu} F^{a\mu\nu} \right]$$

a=1,2,3 runs over the generators of the (three-dimensional representation of the) SU(2) gauge group

$$ds^{2} = -N(r)\sigma(r)^{2}dt^{2} + \frac{1}{N(r)}dr^{2} + r^{2}h(r)^{-4}dx^{2} + r^{2}h(r)^{2}(dy^{2} + dz^{2})$$
$$\mathcal{A} = \phi(r)\tau^{3}dt + w(r)\tau^{1}dx,$$

Solve EOMs numerically

Note: To prove monotonicity in the interior it is easier to change to Schawrzchild -like coordinates,

$$ds^{2} = \frac{1}{r^{2}} \left[-F(r)e^{-\chi(r)}dt^{2} + \frac{dr^{2}}{F(r)} + d\vec{x}^{2} \right],$$
$$e^{2A(\rho)} = \frac{1}{r^{2}}, \quad f(\rho)^{2} = F(r)e^{-\chi(r)}, \quad \frac{dr}{d\rho} = -r\sqrt{F(r)}.$$

- Assume gapless system for now (Λ_{IR} = 0)
- Trans-IR flow accessed by analytically continuing to imaginary Λ

Trans-IR Flows as Black Hole Interiors

- Energy scale is the bulk radial extra dimension
- RG flows: UV at the boundary, IR at the horizon
- Q: Black holes?
 - RG flow of some UV thermal state
 - Radial coordinate becomes timelike trans-IR! [Frenkel, Hartnoll, Kruthoff, Shi 2020]

Counting Degrees of Freedom

- Count degrees of freedom along flow with a monotonically decreasing function of energy
- Zamolodchikov c-theorem (2d)
 - Evaluates to central charge at fixed points
- Cardy *a*-theorem (2n-d)
 - Evaluates to trace anomaly coefficient at fixed points

- To probe trans-IR, need to use a black hole geometry
- Start with "blackened" domain wall ansatz with warped flat slicing

$$ds^{2} = e^{2A(\rho)} \left(-f(\rho)^{2} dt^{2} + d\vec{x}^{2} \right) + d\rho^{2}, \ (f(\rho) = f_{1}\rho + O(\rho^{3}))$$

• Exterior is $(t, \vec{x}) \in \mathbb{R}^d$, $\rho \ge 0$, with horizon at $\rho = 0$

Interior accessed via analytic continuation

$$\boxed{\rho = i\kappa}, \ t = t_I - \mathsf{sgn}(t_I) \frac{i\gamma}{2T}, \ \left(\kappa \ge 0, \ \gamma \in \mathbb{Z} + \frac{1}{2}\right)$$

• Get AdS_{d+1} -Schwarzschild with curvature ℓ when

$$e^{A(\rho)} = \frac{2}{d} \cosh\left(\frac{d\rho}{2\ell}\right)^{2/d}, \quad f(\rho) = \tanh\left(\frac{d\rho}{2\ell}\right)$$