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Parton distributions are present since 1960 when the determination of the 
cross section depends on the structure functions 𝑭𝟐 and 𝑭𝑳.
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Parton Distribution Functions 
Experimental results of structure functions were

J.T. Friedman and H.W. Kendall, Ann.Rev.Nucl.sci. 22(1972) 2013 

Then, a scaling was expected as

𝐹%*+ 𝑥 = 𝑥 *
,-'
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Parton Distribution Functions 

o Where 𝑓,/0 is the probability density of finding the parton 𝒊 inside the
hadron 𝒉 with a fraction of momentum 𝒙 . They are called Parton
Distribution Functions (PDFs). 
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Parton Distribution Functions 

o Where 𝑓,/0 is the probability density of finding the parton 𝒊 inside the
hadron 𝒉 with a fraction of momentum 𝒙 . They are called Parton
Distribution Functions (PDFs). 

o At higher orders in the expansion the scaling breaks down and a
dependece on the renormalization scale 𝝁 appears.

o The funcitonal form of the PDFs is not known from first principles.
Nevertheless, DGLAP gives the evolution with the scale, 

with 𝑷𝒂/𝒃 the Altarelli-Parisi splitting functions. 

𝜇%
𝑑
𝑑𝜇% 𝑓,/0 𝑥, 𝜇 = 4
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𝑃5/4
𝑥
𝜉 , 𝛼6 𝜇 𝑓4/0(𝜉, 𝜇)

Idea only 
true at LO

Altarelli, G., & Parisi, G. (1977). Asymptotic freedom in parton language. Nuclear Physics B, 126(2), 298-318
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One big asumption…
Universality holds for the PDFs, therefore, any process that is an inclusive hard
scattering can be written as, 

and

Parton Distribution Functions 

𝑑𝜎789 =*
,

𝑑𝜎:(,→:#⨂𝑓, 𝑑𝜎7< =*
,,>

𝑑𝜎,(>→:(:#⨂𝑓,⨂𝑓>

with the same PDFs. Also, the PDFs contains the long distance structure of
hadrons. 

We need global Fits

Factorization 
scheme and fixed 
order calculations 
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Parton Distribution Functions 

𝑑𝜎789 =*
,

𝑑𝜎:(,→:#⨂𝑓, 𝑑𝜎7< =*
,,>

𝑑𝜎,(>→:(:#⨂𝑓,⨂𝑓>

with the same PDFs. Also, the PDFs contains the long distance structure of
hadrons. 

Factorization 
scheme and fixed 
order calculations 

We need global Fits

Without PDFs there are no theorical predictions!
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Global Fits
o Steps in general. Choose: i) a factorization scheme, ii) an order in pQCD, iii) a

starting scale 𝑄?, iv) the data to be fitted, v) the heavy flavor scheme.  
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Global Fits

o Parametrize partonic distributions, in general, 

𝑥𝑓, 𝑥, 𝑄?% = 𝐴,𝑥@$ 1 − 𝑥 A$𝑃(𝑥, 𝑐,)

o Solve the DGLAP equations for the measured kinematics. 

o Convolute PDFS and partonic Cross-sections. 

o Minimize distance between theorical predictions and experimental values. 

o Use a method to estimate theorical error bands. 

o Create grids in 𝒙 and 𝑸𝟐, and provide an interpolator for the grid. 

o Steps in general. Choose: i) a factorization scheme, ii) an order in pQCD, iii) a
starting scale 𝑄?, iv) the data to be fitted, v) the heavy flavor scheme.  
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o All the running of MC codes take a long time to
reach good precision.

o They carry a significant environmental impact 
(and to our pockets given the cost of the CPU 
and then the electricity)

Cieri, L. (2024, june 19). Precise theoretical predictions at 
colliders. LHCPHENO 2024, IFIC, Valencia, España.

* One CPU year is equivalent to run the
code in 1000 cores continuosly 9 hours.
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o All the running of MC codes take a long time to

reach good precision.

o They carry a significant environmental impact 
(and to our pockets given the cost of the CPU 
and then the electricity)

o Can we speed up the running time without 
touching the code?

o Most codes require non perturbative 
inputs (e.g. PDFs) and most of them are 
provided as grids and interpolate over them. 

o A quick exploration shows that interpolation 
time could be reduced 40-50% if we had 
analytical expressions for the PDFs.

Cieri, L. (2024, june 19). Precise theoretical predictions at 
colliders. LHCPHENO 2024, IFIC, Valencia, España.

* One CPU year is equivalent to run the
code in 1000 cores continuosly 9 hours.
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Goal: Find an analytical 𝒙 and 𝑸𝟐 form for a set of proton PDFs.
 

More details in: Phys. Rev. D 110, 036019 [hep-ph]

o How? Inpired by functional form of HERAPDF, we propose a general
functional form 

𝑥𝑓, 𝑥, 𝑄% = 𝐴, 𝑄% 𝑥@$ $
! 1 − 𝑥 A$ $! 𝑃 𝑥, 𝑐, 𝑄%

−Θ(𝑥C,, − 𝑥)𝐴,D 𝑄% 𝑥@$
# $! 1 − 𝑥 A$

# $! 𝑃 𝑥, 𝑐,D 𝑄%
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Goal: Find an analytical 𝒙 and 𝑸𝟐 form for a set of proton PDFs.
 
o How? Inpired by functional form of HERAPDF, we propose a general

functional form 

o Fitted using Machine Learning tools and techniques. 

𝑥𝑓, 𝑥, 𝑄% = 𝐴, 𝑄% 𝑥@$ $
! 1 − 𝑥 A$ $! 𝑃 𝑥, 𝑐, 𝑄%

−Θ(𝑥C,, − 𝑥)𝐴,D 𝑄% 𝑥@$
# $! 1 − 𝑥 A$

# $! 𝑃 𝑥, 𝑐,D 𝑄%

o Our hypotesis is that the 𝑸𝟐-dependence of the PDFs is given by the parameters. 

o The heavyside function is used to give more flexibility at low 𝑥 . (Inspired by
HERAPDF and gradient boosting algorithm) 

More details in: Phys. Rev. D 110, 036019 [hep-ph]
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Fitting procedure 

o We generate a grid of 5,000-10,000 random points in { 𝑥, 𝑄% } using
HERAPDF20_NLO_EIG (HERAPDF 2.0)

o The range was chosen in accordance to HERAPDF

o Furthermore, we use for light quarks and gluons 𝑄EFG = 𝑄? ≈ 1.37 GeV, whilst
𝑄? = 1.5 GeV and 𝑄? = 4.5 GeV for the charm and bottom quarks, respectively 

Note: We are fitting the results of an existing fit. 

More details in: Phys. Rev. D 110, 036019 [hep-ph]
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Finding the best fit: cost function 

o Since HEP phenomenology is not only interested in the central value of the
PDF, we rather define the best fitting parameters through the cost function, 

Δ, 𝑄- = . /!
"# 0,2$ ,2$ 3 .[/!

%&'( 0,2$ ,2$]
.[/!

%&'( 0,2$ ,2$]
,

o which takes care of the integral error of the determination of the PDFs,
through the integration operator, 

𝐼 𝑓, 𝑄% = 4
'?%&

'
𝑑𝑥 𝑓 𝑥, 𝑄% .

Inspired by 
Factorizaction 

Theorem 

More details in: Phys. Rev. D 110, 036019 [hep-ph]
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o We use ML to find all coefficients.
𝒙𝒖𝒗 distribuction coefficients

o For this particular case, a polynomial function was sufficient. In many cases it was
necessary to propose a more complicated basis.

More details in: Phys. Rev. D 110, 036019 [hep-ph]



o We found a good agreement and only use one region to 𝒙$𝒖 and two regions to 𝒙𝒖𝒗.
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Machine Learning for PDFs 
Up quark distributions
 

o We can obtain 𝑢-quark distribution by: 𝒙𝒖 = 𝒙$𝒖 + 𝒙𝒖𝒗
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Machine Learning for PDFs 
Down quark distributions
 

o Similar to the 𝑢-quark, we found a good agreement and in this case we only use one
region to both distributions.

o Similarly, 𝑑-quark distribution by: 𝒙𝒅 = 𝒙$𝒅 + 𝒙𝒅𝒗
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Machine Learning for PDFs 
Strange and Charm quark distributions
 

o For 𝑠-quark and 𝑐-quark we used two regions.

o Only small discrepancies for 𝑥 < 10#$ at 𝑄 = 10 GeV in 𝑠-quark distribution are
present. 
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Machine Learning for PDFs 
Bottom quark and Gluon distributions
 

o For the 𝑏-quark we split into two regions and for the gluon we split into four regions.

o Small deviations of the central value for 𝑥 < 10#$ in 𝑏-quark were found. 
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How good is good ?

o The estimator Δ%(𝑄&) shows small integral error (maximum of 1.5% for all partons)

Results

S. A. Ochoa-Oregon et al., Phys. Rev. D 110, 036019 [hep-ph].
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How fast is fast?
Results

8

A. Run time

We start by presenting, in Tab. (I), the run-time dif-
ference when performing a call to our PDFs and LHAPDF,
for sets of points in the (x, Q

2) space. As we can appre-
ciate, for Npoints → 103→4 the gain is quite substantial.
This is due to the fact that calling LHAPDF has an over-
head time for loading and reading the grid, which albeit
small, dominates the total run time when one evaluates
a small number of points. Therefore, if we were inter-
ested in evaluating a handful of points we would be wise
in choosing our ML-PDFs over LHAPDF. As we move to
larger number of points Npoints ↑ 105 the weight of this
overhead starts to dilute, and once we pass the mark
Npoints ↑ 106, we reach a region where we are essen-
tially comparing only the execution time of interpolation
versus evaluation. In the last column we display the
percentual time gain, defined as

gain(%) = 100 ↓
timeLHAPDF ↔ timeML-PDF

timeLHAPDF

. (41)

A negative gain would mean that the interpolation is
faster than the direct evaluation. As can be seen from
the table, the gain seems to approach a plateau around
50% (i.e. our ML-PDF are two times faster than LHAPDF),
which is quite sizable.

Npoints LHAPDF (s) ML-PDFs (s) Gain(%)

103 3.76 · 10→2 2.92 · 10→4 99.22

104 4.20 · 10→2 2.50 · 10→3 94.05

105 8.94 · 10→2 2.50 · 10→2 72.10

106 0.56 0.25 55.46

107 5.25 2.50 52.49

108 52.04 24.92 52.11

TABLE I. Comparison of the time (in seconds) required to
compute Npoints evaluations of HERAPDF2.0 within LHAPDF

framework, and our ML-PDF analytic approximation.

From these numbers it appears that, for a code requir-
ing Monte-Carlo integration, it would be beneficial to use
something akin to our ML-PDFs. We further investigate
this in the next sub-section.

B. Validity of the sum rules

One important physically-motivated cross-check of our
analytic ML-PDFs are the sum rules. For any energy
scale Q, the sum rules are given by

S1(Q
2) =

∫
1

0

dx uv(x, Q
2) = 2 , (42)

S2(Q
2) =

∫
1

0

dx dv(x, Q
2) = 1 , (43)

for the up and down valence quarks, and

∫
1

0

dx [fi(x, Q
2) ↔ f̄i(x, Q

2)] = 0 , (44)

for all other quarks. Also, the PDFs must fulfill that the
total momenta carried by the constituents partons equal
the momentum of the hadron. This is encoded in the
momentum sum rule

S3(Q
2) =

∫
1

0

dx x



g(x, Q
2) +

∑

i↑{q,q̄}

fi(x, Q
2)



 = 1 ,

(45)
where the sum is carried out over all the active flavours
of quarks. These constraints are often imposed when
performing the PDF extraction from fits to experimental
data. In the case of HERAPDF2.0, Eq. (44) is automati-
cally fulfilled by construction (no q↔ q̄ distinction for sea
quarks), and this also holds for our analytic ML-PDFs.

FIG. 9. Sum rules for up (upper) and down (lower) valence
distributions as a function of Q. We show the values cal-
culated with HERAPDF2.0 (blue) and our analytic ML-PDF
(orange), and also the theoretical exact value (green).

In Fig. 9 we compare the result of Eqs. (42) and
(43) for HERAPDF2.0 (blue) and our analytic ML-PDFs
(orange) w.r.t. the theoretical value (green line). In both
cases, we consider Q ↗ [10 GeV, 1000 GeV] and we find
that our analytic ML-PDF leads to results closer to the
theoretical value. In concrete, for up valence quark, we
get deviations of O(0.1 %) for ML-PDFs and O(0.2 %) for

o Comparison of the time (in seconds) required to compute 𝑁)*+,-. evaluations of 
HERAPDF2.0 within LHAPDF framework, and our ML-PDF analytic 
approximation.

o The gains seems to approach a plateau around 50%.
S. A. Ochoa-Oregon et al., Phys. Rev. D 110, 036019 [hep-ph].

𝐆𝐚𝐢𝐧 % = 𝟏𝟎𝟎×
𝐭𝐢𝐦𝐞𝑳𝑯𝑨𝑷𝑫𝑭 − 𝐭𝐢𝐦𝐞𝑴𝑳(𝑷𝑫𝑭

𝐭𝐢𝐦𝐞𝑳𝑯𝑨𝑷𝑫𝑭
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The final test … 
o We test our results with two

observables:
i) 𝑝 + 𝑝 → 𝜋 and 
ii) 𝑝 + 𝑝 → 𝜋 + 𝛾 at NLO.

o We find an almost perfect
agreemen (≈ 𝟏% difference)

o Time consumption is also
improved! 

Results
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FIG. 12. Upper plot: di!erential cross-section for the process
p + p → ω + ε as a function of the transverse momentum of
the pion (pT ), including up to NLO QCD corrections. We
run the simulation using our analytic ML-PDFs (dots) and
LHAPDF with HERAPDF2.0 (solid). Lower plot: ratio between
the two cross-sections.

the central rapidity region, |ω
ω
|, |ω

ε
| → 2.5, imposing

p
ε
T ↑ [30 GeV, 1500 GeV]. We used the same FFs as be-

fore, and we took the renormalization and factorization
scales to be equal to

µ =
pT + p

ε
T

2
. (46)

In this case, we chose to run 108 points both in order
to be in what we expect (from Tab. I) to be a very low
time-gain region and because the observable requires a
large number of points to produce physical results. We
show the outcome in Fig. 12. As before, the upper plot
presents the cross-section, while the lower plot demon-
strates the ratio between the two computations. Given
the pT range explored, there are some oscillations of the
output associated to statistical fluctuations. In fact, us-
ing 107 points gave unphysical results for some pT val-
ues. We can then say that this observable would greatly
benefit from using a higher number of points. For our
purpose, 108 points is enough. In the pT → 10 GeV
region, that dominates the cross-section, the di!erences
are within 5% and are feasible of further reduction. The
runtime for LHAPDF was of 207.5 minutes, almost 3.45
hours, while the ML-PDF run took 144.5 minutes, more
than a full hour less. We summarise the runtime of the

Obs. LHAPDF (s) ML-PDFs (s) Gain(%)

p + p → ε 628.320 558.854 11.06

p + p → ω + ε 12452.273 8671.827 30.36

TABLE II. Comparison of the time (in seconds) required to
compute two observables using LHAPDF and ML-PDFs. See
text for details.

cross-sections in Tab. II. This gain is much larger than
in the previous test, and far more than expected from
the table. Also, we notice that the predictions obtained
with our ML-PDFs are compatible with the propagation
of errors of HERAPDF2.0 into the observable (light blue
band).

To conclude, the results of these two realistic calcula-
tions clearly supports the potential of our ML-PDFs to
reduce the computational cost of the simulations, keeping
under control the uncertainties of the approximation.

VI. CONCLUSIONS

In this work, we provide an analytic approximation
to PDFs using machine-assisted techniques to adjust
both their x and Q-dependence. Our starting hypoth-
esis was the assumption that the x-dependence could be
reproduced by Eulerian-like functions, whilst all the Q-
dependence is embodied within the coe”cients.

By doing so, we obtain a reliable approximation to
HERAPDF2.0, taking into consideration up to NLO QCD
corrections. We show that the integral error is under
control for an ample range of x and Q values. In fact,
our ML-PDFs were tested for Q ↑ [Q0, 1000 GeV], pre-
senting (for most of the distributions) deviations w.r.t.
HERAPDF2.0 below percent level. It is important to high-
light that this is comparable with the error of the PDF
sets themselves, and far smaller than the uncertainties
introduced by truncating the perturbative expansion of
observables in QCD. In fact, we find that the error in-
duced by the ML-PDF in p + p ↓ ε is O(1 %) whilst
for p + p ↓ ϑ + ε is O(5 %) [30]. These errors are much
smaller than the O(20↔50 %) -or even larger- uncertain-
ties arising from scale variations. Furthermore, we found
a non-negligible reduction of the runtime: O(11 %) for
p + p ↓ ε and O(30 %) for p + p ↓ ϑ + ε.

To conclude, we want to emphasize that the strategy
explained in this article is fully applicable to any PDF
set, and even to FFs, at any perturbative order (NLO,
NNLO and beyond), due to the fact that we made no
assumptions about the order at which DGLAP evolution
is truncated. The only required ingredient is a previ-
ously existent PDF, extracted from data, to be used as
input in our formalism. Our only hypothesis is that the
Q-dependence is fully embodied within the coe”cients
{A, B, . . .} described in Sec. IV. Following this approach,
we can avoid using interpolation methods to evaluate the

S. A. Ochoa-Oregon et al., Phys. Rev. D 110, 036019 [hep-ph].
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FIG. 12. Upper plot: di!erential cross-section for the process
p + p → ω + ε as a function of the transverse momentum of
the pion (pT ), including up to NLO QCD corrections. We
run the simulation using our analytic ML-PDFs (dots) and
LHAPDF with HERAPDF2.0 (solid). Lower plot: ratio between
the two cross-sections.

the central rapidity region, |ω
ω
|, |ω

ε
| → 2.5, imposing

p
ε
T ↑ [30 GeV, 1500 GeV]. We used the same FFs as be-

fore, and we took the renormalization and factorization
scales to be equal to

µ =
pT + p

ε
T

2
. (46)

In this case, we chose to run 108 points both in order
to be in what we expect (from Tab. I) to be a very low
time-gain region and because the observable requires a
large number of points to produce physical results. We
show the outcome in Fig. 12. As before, the upper plot
presents the cross-section, while the lower plot demon-
strates the ratio between the two computations. Given
the pT range explored, there are some oscillations of the
output associated to statistical fluctuations. In fact, us-
ing 107 points gave unphysical results for some pT val-
ues. We can then say that this observable would greatly
benefit from using a higher number of points. For our
purpose, 108 points is enough. In the pT → 10 GeV
region, that dominates the cross-section, the di!erences
are within 5% and are feasible of further reduction. The
runtime for LHAPDF was of 207.5 minutes, almost 3.45
hours, while the ML-PDF run took 144.5 minutes, more
than a full hour less. We summarise the runtime of the

Obs. LHAPDF (s) ML-PDFs (s) Gain(%)

p + p → ε 628.320 558.854 11.06

p + p → ω + ε 12452.273 8671.827 30.36

TABLE II. Comparison of the time (in seconds) required to
compute two observables using LHAPDF and ML-PDFs. See
text for details.

cross-sections in Tab. II. This gain is much larger than
in the previous test, and far more than expected from
the table. Also, we notice that the predictions obtained
with our ML-PDFs are compatible with the propagation
of errors of HERAPDF2.0 into the observable (light blue
band).

To conclude, the results of these two realistic calcula-
tions clearly supports the potential of our ML-PDFs to
reduce the computational cost of the simulations, keeping
under control the uncertainties of the approximation.

VI. CONCLUSIONS

In this work, we provide an analytic approximation
to PDFs using machine-assisted techniques to adjust
both their x and Q-dependence. Our starting hypoth-
esis was the assumption that the x-dependence could be
reproduced by Eulerian-like functions, whilst all the Q-
dependence is embodied within the coe”cients.

By doing so, we obtain a reliable approximation to
HERAPDF2.0, taking into consideration up to NLO QCD
corrections. We show that the integral error is under
control for an ample range of x and Q values. In fact,
our ML-PDFs were tested for Q ↑ [Q0, 1000 GeV], pre-
senting (for most of the distributions) deviations w.r.t.
HERAPDF2.0 below percent level. It is important to high-
light that this is comparable with the error of the PDF
sets themselves, and far smaller than the uncertainties
introduced by truncating the perturbative expansion of
observables in QCD. In fact, we find that the error in-
duced by the ML-PDF in p + p ↓ ε is O(1 %) whilst
for p + p ↓ ϑ + ε is O(5 %) [30]. These errors are much
smaller than the O(20↔50 %) -or even larger- uncertain-
ties arising from scale variations. Furthermore, we found
a non-negligible reduction of the runtime: O(11 %) for
p + p ↓ ε and O(30 %) for p + p ↓ ϑ + ε.

To conclude, we want to emphasize that the strategy
explained in this article is fully applicable to any PDF
set, and even to FFs, at any perturbative order (NLO,
NNLO and beyond), due to the fact that we made no
assumptions about the order at which DGLAP evolution
is truncated. The only required ingredient is a previ-
ously existent PDF, extracted from data, to be used as
input in our formalism. Our only hypothesis is that the
Q-dependence is fully embodied within the coe”cients
{A, B, . . .} described in Sec. IV. Following this approach,
we can avoid using interpolation methods to evaluate the

S. A. Ochoa-Oregon et al arXiv:2404.15175 [hep-ph].
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o PDFs are key ingredients for any phenomenological theoretical predictions.

o Since MC simulations are taking the CPU cost to the extreme, we exploited ML to 

extract analytical PDFs to avoid running interpolations techniques.

o We compared our results w.r.t. LHAPDF within two benchmarks finding an 

improvement in the CPU time of around 11%  for 𝒑 + 𝒑 → 𝝅  and more than 30% for 

𝒑 + 𝒑 → 𝝅 + 𝜸 ,  both at NLO.  

o The code (FORTRAN) with the PDFs can be found at 
https://zenodo.org/records/12745978. 
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𝒙𝒖𝒗 distribution

Regions

S. A. Ochoa-Oregon et al., Phys. Rev. D 110, 036019 [hep-ph].

𝒙𝒈 distribution

𝒙𝒔 distribution

𝒙𝒄 distribution𝒙𝒃 distribution

𝑅) = {𝑄* ≤ 𝑄 ≤ 10 GeV}

𝑅+ = {10GeV ≤ 𝑄 ≤ 1000 GeV}

𝑅) = {𝑄* ≤ 𝑄 ≤ 2.5 GeV}

𝑅+ = {2.5 GeV ≤ 𝑄 ≤ 5 GeV}

𝑅, = {5 GeV ≤ 𝑄 ≤ 5 GeV}

𝑅- = {150 GeV ≤ 𝑄 ≤ 1000 GeV}

𝑅) = {𝑄* ≤ 𝑄 ≤ 4.5 GeV}

𝑅+ = {4.5 GeV ≤ 𝑄 ≤ 1000 GeV}

𝑅) = {4.5 ≤ 𝑄 ≤ 15 GeV}

𝑅+ = {15 GeV ≤ 𝑄 ≤ 1000 GeV}

𝑅) = {1.47 ≤ 𝑄 ≤ 3 GeV}

𝑅+ = {3 GeV ≤ 𝑄 ≤ 1000 GeV}
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xd̄ðx;Q2Þ (lower plot) and the HERAPDF2.0_NLO_EIG PDF
set. We appreciate a very good agreement for different
values of Q.

C. Up-quark distributions

The optimal fit was found by considering uv and ū
distributions. To this end, we proposed

xuvðx;Q2Þ ¼ AuvðQ
2ÞxBuv ðQ

2Þð1 − xÞCuv ðQ
2Þ

× ½1þDuvðQ
2Þxþ EuvðQ

2Þx2

þ FuvðQ
2Þx3 þGuvðQ

2Þx4 þHuvðQ
2Þx5&

ð23Þ

to approximate uv, while a slightly more complicated
Ansatz was used for ū. In that case, we split the analysis
into two regions:

R1 ¼ fQ0 ≤ Q ≤ 10 GeVg; ð24Þ

R2 ¼ f10 GeV ≤ Q ≤ 1000 GeVg: ð25Þ

Then, we defined

xūðx;Q2Þ ¼ AūðQ2ÞxBūðQ2Þð1 − xÞCūðQ2Þ

× ½1þDūðQ2Þxþ EūðQ2Þx2

þ FūðQ2Þx3 þGūðQ2Þx4 þHūðQ2Þx5&

for Q∈R1, and

xūðx;Q2Þ ¼ AūðQ2ÞxBūðQ2Þð1 − xÞCūðQ2Þ

× ½1þDūðQ2Þxþ EūðQ2Þx3&

− ΘðxC;ū − xÞA0
ūðQ2ÞxB0

ūðQ2Þ

× ð1 − xÞC0
ūðQ2Þ½1þD0

ūðQ2Þx2& ð26Þ

for Q∈R2. Here, we used the cut xC;d̄ ¼ 0.01, inspired by
the gluon PDF parametrization defined by HERAPDF. After
fitting these two distributions, we can define

uðx;Q2Þ ¼ ūðx;Q2Þ þ uvðx;Q2Þ ð27Þ

and obtain the u-quark distribution.
We show the comparison between our analytic ML-PDF

approximations to xuvðx;Q2Þ (upper plot) and xūðx;Q2Þ
(lower plot) with respect to the HERAPDF2.0_NLO_EIG PDF
set in Fig. 3. Again, the agreement is excellent for the
complete range of Q considered in this analysis.

D. Strange-quark distribution

For the strange quark, we took the usual assumption that
s̄≡ s, a common choice for PDFs at NLO that is also

imposed for charm and bottom PDFs. After unsuccessfully
trying several functional forms based on Euler beta
functions, we noticed that the behaviors below and above
Q ¼ 4.5 GeV were slightly different. Thus, we used this
threshold and split the Q analysis into two regions:

R1 ¼ fQ0 ≤ Q ≤ 4.5 GeVg; ð28Þ

R2 ¼ f4.5 GeV ≤ Q ≤ 1000 GeVg: ð29Þ

We defined

xsðx;Q2Þ ¼ AsðQ2ÞxBsðQ2Þð1 − xÞCsðQ2Þ

− ΘðxC;sðR1Þ − xÞA0
sðQ2ÞxB0

sðQ2Þ

× ð1 − xÞC0
sðQ2Þ ð30Þ

and

xsðx;Q2Þ ¼ AsðQ2ÞxBsðQ2Þð1 − xÞCsðQ2Þ

− ΘðxC;sðR2Þ − xÞA0
sðQ2ÞxB0

sðQ2Þ

× ð1 − xÞC0
sðQ2Þ½1þD0

sðQ2Þx2&; ð31Þ

FIG. 3. Comparison between our analytic ML-PDF approx-
imations (dashed lines) and HERAPDF2.0 (solid dots), for xuv
(upper plot) and xū (lower plot), at three different values of Q.
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For 𝑅):

For 𝑅+:

xd̄ðx;Q2Þ (lower plot) and the HERAPDF2.0_NLO_EIG PDF
set. We appreciate a very good agreement for different
values of Q.

C. Up-quark distributions

The optimal fit was found by considering uv and ū
distributions. To this end, we proposed

xuvðx;Q2Þ ¼ AuvðQ
2ÞxBuv ðQ

2Þð1 − xÞCuv ðQ
2Þ

× ½1þDuvðQ
2Þxþ EuvðQ

2Þx2

þ FuvðQ
2Þx3 þGuvðQ

2Þx4 þHuvðQ
2Þx5&

ð23Þ

to approximate uv, while a slightly more complicated
Ansatz was used for ū. In that case, we split the analysis
into two regions:

R1 ¼ fQ0 ≤ Q ≤ 10 GeVg; ð24Þ

R2 ¼ f10 GeV ≤ Q ≤ 1000 GeVg: ð25Þ

Then, we defined

xūðx;Q2Þ ¼ AūðQ2ÞxBūðQ2Þð1 − xÞCūðQ2Þ

× ½1þDūðQ2Þxþ EūðQ2Þx2

þ FūðQ2Þx3 þGūðQ2Þx4 þHūðQ2Þx5&

for Q∈R1, and

xūðx;Q2Þ ¼ AūðQ2ÞxBūðQ2Þð1 − xÞCūðQ2Þ

× ½1þDūðQ2Þxþ EūðQ2Þx3&

− ΘðxC;ū − xÞA0
ūðQ2ÞxB0

ūðQ2Þ

× ð1 − xÞC0
ūðQ2Þ½1þD0

ūðQ2Þx2& ð26Þ

for Q∈R2. Here, we used the cut xC;d̄ ¼ 0.01, inspired by
the gluon PDF parametrization defined by HERAPDF. After
fitting these two distributions, we can define

uðx;Q2Þ ¼ ūðx;Q2Þ þ uvðx;Q2Þ ð27Þ

and obtain the u-quark distribution.
We show the comparison between our analytic ML-PDF

approximations to xuvðx;Q2Þ (upper plot) and xūðx;Q2Þ
(lower plot) with respect to the HERAPDF2.0_NLO_EIG PDF
set in Fig. 3. Again, the agreement is excellent for the
complete range of Q considered in this analysis.

D. Strange-quark distribution

For the strange quark, we took the usual assumption that
s̄≡ s, a common choice for PDFs at NLO that is also

imposed for charm and bottom PDFs. After unsuccessfully
trying several functional forms based on Euler beta
functions, we noticed that the behaviors below and above
Q ¼ 4.5 GeV were slightly different. Thus, we used this
threshold and split the Q analysis into two regions:

R1 ¼ fQ0 ≤ Q ≤ 4.5 GeVg; ð28Þ

R2 ¼ f4.5 GeV ≤ Q ≤ 1000 GeVg: ð29Þ

We defined

xsðx;Q2Þ ¼ AsðQ2ÞxBsðQ2Þð1 − xÞCsðQ2Þ

− ΘðxC;sðR1Þ − xÞA0
sðQ2ÞxB0

sðQ2Þ

× ð1 − xÞC0
sðQ2Þ ð30Þ

and

xsðx;Q2Þ ¼ AsðQ2ÞxBsðQ2Þð1 − xÞCsðQ2Þ

− ΘðxC;sðR2Þ − xÞA0
sðQ2ÞxB0

sðQ2Þ

× ð1 − xÞC0
sðQ2Þ½1þD0

sðQ2Þx2&; ð31Þ

FIG. 3. Comparison between our analytic ML-PDF approx-
imations (dashed lines) and HERAPDF2.0 (solid dots), for xuv
(upper plot) and xū (lower plot), at three different values of Q.
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xd̄ðx;Q2Þ (lower plot) and the HERAPDF2.0_NLO_EIG PDF
set. We appreciate a very good agreement for different
values of Q.

C. Up-quark distributions

The optimal fit was found by considering uv and ū
distributions. To this end, we proposed

xuvðx;Q2Þ ¼ AuvðQ
2ÞxBuv ðQ

2Þð1 − xÞCuv ðQ
2Þ

× ½1þDuvðQ
2Þxþ EuvðQ

2Þx2

þ FuvðQ
2Þx3 þGuvðQ

2Þx4 þHuvðQ
2Þx5&

ð23Þ

to approximate uv, while a slightly more complicated
Ansatz was used for ū. In that case, we split the analysis
into two regions:

R1 ¼ fQ0 ≤ Q ≤ 10 GeVg; ð24Þ

R2 ¼ f10 GeV ≤ Q ≤ 1000 GeVg: ð25Þ

Then, we defined

xūðx;Q2Þ ¼ AūðQ2ÞxBūðQ2Þð1 − xÞCūðQ2Þ

× ½1þDūðQ2Þxþ EūðQ2Þx2

þ FūðQ2Þx3 þGūðQ2Þx4 þHūðQ2Þx5&

for Q∈R1, and

xūðx;Q2Þ ¼ AūðQ2ÞxBūðQ2Þð1 − xÞCūðQ2Þ

× ½1þDūðQ2Þxþ EūðQ2Þx3&

− ΘðxC;ū − xÞA0
ūðQ2ÞxB0

ūðQ2Þ

× ð1 − xÞC0
ūðQ2Þ½1þD0

ūðQ2Þx2& ð26Þ

for Q∈R2. Here, we used the cut xC;d̄ ¼ 0.01, inspired by
the gluon PDF parametrization defined by HERAPDF. After
fitting these two distributions, we can define

uðx;Q2Þ ¼ ūðx;Q2Þ þ uvðx;Q2Þ ð27Þ

and obtain the u-quark distribution.
We show the comparison between our analytic ML-PDF

approximations to xuvðx;Q2Þ (upper plot) and xūðx;Q2Þ
(lower plot) with respect to the HERAPDF2.0_NLO_EIG PDF
set in Fig. 3. Again, the agreement is excellent for the
complete range of Q considered in this analysis.

D. Strange-quark distribution

For the strange quark, we took the usual assumption that
s̄≡ s, a common choice for PDFs at NLO that is also

imposed for charm and bottom PDFs. After unsuccessfully
trying several functional forms based on Euler beta
functions, we noticed that the behaviors below and above
Q ¼ 4.5 GeV were slightly different. Thus, we used this
threshold and split the Q analysis into two regions:

R1 ¼ fQ0 ≤ Q ≤ 4.5 GeVg; ð28Þ

R2 ¼ f4.5 GeV ≤ Q ≤ 1000 GeVg: ð29Þ

We defined

xsðx;Q2Þ ¼ AsðQ2ÞxBsðQ2Þð1 − xÞCsðQ2Þ

− ΘðxC;sðR1Þ − xÞA0
sðQ2ÞxB0

sðQ2Þ

× ð1 − xÞC0
sðQ2Þ ð30Þ

and

xsðx;Q2Þ ¼ AsðQ2ÞxBsðQ2Þð1 − xÞCsðQ2Þ

− ΘðxC;sðR2Þ − xÞA0
sðQ2ÞxB0

sðQ2Þ

× ð1 − xÞC0
sðQ2Þ½1þD0

sðQ2Þx2&; ð31Þ

FIG. 3. Comparison between our analytic ML-PDF approx-
imations (dashed lines) and HERAPDF2.0 (solid dots), for xuv
(upper plot) and xū (lower plot), at three different values of Q.
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Down distributions
R3 ¼ f5 GeV ≤ Q ≤ 150 GeVg; ð16Þ

R4 ¼ f150 GeV ≤ Q ≤ 1000 GeVg; ð17Þ

which we determined by examining the Q behavior of the
gluon density. Consequently, we defined

xgðx;Q2Þ ¼ AgðQ2ÞxBgðQ2Þð1 − xÞCgðQ2Þ

− ΘðxC;g − xÞA0
gðQ2ÞxB0

gðQ2Þ

× ð1 − xÞC0
gðQ2Þ ð18Þ

for Q∈R1, and

xgðx;Q2Þ ¼ AgðQ2ÞxBgðQ2Þð1 − xÞCgðQ2Þ

− ΘðxC;g − xÞA0
gðQ2ÞxB0

gðQ2Þ

× ð1 − xÞC0
gðQ2Þ½1þD0

gðQ2Þx2& ð19Þ

for Q∈ fR2; R3; R4g, together with xC;g ¼ 0.1. Again, this
last value was fixed by an exploratory procedure.
We emphasize that, since the analysis was done inde-

pendently for each region, the functions fAgðQ2Þ;
BgðQ2Þ; CgðQ2Þg and fA0

gðQ2Þ; B0
gðQ2Þ; C0

gðQ2Þ; D0
gðQ2Þg

in Eq. (19) have different behaviors in R2, R3, and R4.
In Fig. 1, we show our analytic ML-PDF approximation

to xgðx;Q2Þ with respect to the corresponding gluon PDF
from HERAPDF2.0_NLO_EIG at 10 GeV (blue), 100 GeV
(green), and 1000 GeV (orange). Even if small fluctuations
occur at low x, the overall agreement is very good.
Furthermore, the agreement remains when choosing differ-
ent values of Q, thanks to splitting the analysis into four
regions.

B. Down-quark distributions

In this case, the optimal fit was achieved by considering
dv and d̄ distributions. Therefore, we wrote

xdvðx;Q2Þ ¼ AdvðQ
2ÞxBdv ðQ

2Þð1 − xÞCdv ðQ
2Þ

× ½1þDdvðQ
2Þx2 þ EdvðQ

2Þx4

þ FdvðQ
2Þx6&; ð20Þ

xd̄ðx;Q2Þ ¼ Ad̄ðQ2ÞxBd̄ðQ2Þð1 − xÞCd̄ðQ2Þ

− ΘðxC;d̄ − xÞA0
d̄ðQ

2ÞxB
0
d̄
ðQ2Þð1 − xÞC

0
d̄
ðQ2Þ

× ½1þD0
d̄ðQ

2Þx2 þ E0
d̄ðQ

2Þx4&; ð21Þ

with xC;d̄ ¼ 0.04. We deemed this value to be the best
choice to describe the PDFs by repeating the procedure for
a range of xC;d̄ and selecting the optimal. Then, the d-quark
distribution can be recovered by computing

dðx;Q2Þ ¼ dvðx;Q2Þ þ d̄ðx;Q2Þ: ð22Þ

In Fig. 2, we present a comparison between our analytic
ML-PDF approximations to xdvðx;Q2Þ (upper plot) and

FIG. 1. Comparison between our analytic ML-PDF approxi-
mation (dashed lines) and HERAPDF2.0 (solid dots) for gluon
distributions, at three different values of Q. Notice that the gluon
PDFs are multiplied by a factor of 0.05 in order to better
appreciate the differences among them at different scales.

FIG. 2. Comparison between our analytic ML-PDF approx-
imations (dashed lines) and HERAPDF2.0 (solid dots), for xdv
(upper plot) and xd̄ (lower plot), at three different values of Q.
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R3 ¼ f5 GeV ≤ Q ≤ 150 GeVg; ð16Þ

R4 ¼ f150 GeV ≤ Q ≤ 1000 GeVg; ð17Þ

which we determined by examining the Q behavior of the
gluon density. Consequently, we defined

xgðx;Q2Þ ¼ AgðQ2ÞxBgðQ2Þð1 − xÞCgðQ2Þ

− ΘðxC;g − xÞA0
gðQ2ÞxB0

gðQ2Þ

× ð1 − xÞC0
gðQ2Þ ð18Þ

for Q∈R1, and

xgðx;Q2Þ ¼ AgðQ2ÞxBgðQ2Þð1 − xÞCgðQ2Þ

− ΘðxC;g − xÞA0
gðQ2ÞxB0

gðQ2Þ

× ð1 − xÞC0
gðQ2Þ½1þD0

gðQ2Þx2& ð19Þ

for Q∈ fR2; R3; R4g, together with xC;g ¼ 0.1. Again, this
last value was fixed by an exploratory procedure.
We emphasize that, since the analysis was done inde-

pendently for each region, the functions fAgðQ2Þ;
BgðQ2Þ; CgðQ2Þg and fA0

gðQ2Þ; B0
gðQ2Þ; C0

gðQ2Þ; D0
gðQ2Þg

in Eq. (19) have different behaviors in R2, R3, and R4.
In Fig. 1, we show our analytic ML-PDF approximation

to xgðx;Q2Þ with respect to the corresponding gluon PDF
from HERAPDF2.0_NLO_EIG at 10 GeV (blue), 100 GeV
(green), and 1000 GeV (orange). Even if small fluctuations
occur at low x, the overall agreement is very good.
Furthermore, the agreement remains when choosing differ-
ent values of Q, thanks to splitting the analysis into four
regions.

B. Down-quark distributions

In this case, the optimal fit was achieved by considering
dv and d̄ distributions. Therefore, we wrote

xdvðx;Q2Þ ¼ AdvðQ
2ÞxBdv ðQ

2Þð1 − xÞCdv ðQ
2Þ

× ½1þDdvðQ
2Þx2 þ EdvðQ

2Þx4

þ FdvðQ
2Þx6&; ð20Þ

xd̄ðx;Q2Þ ¼ Ad̄ðQ2ÞxBd̄ðQ2Þð1 − xÞCd̄ðQ2Þ

− ΘðxC;d̄ − xÞA0
d̄ðQ

2ÞxB
0
d̄
ðQ2Þð1 − xÞC

0
d̄
ðQ2Þ

× ½1þD0
d̄ðQ

2Þx2 þ E0
d̄ðQ

2Þx4&; ð21Þ

with xC;d̄ ¼ 0.04. We deemed this value to be the best
choice to describe the PDFs by repeating the procedure for
a range of xC;d̄ and selecting the optimal. Then, the d-quark
distribution can be recovered by computing

dðx;Q2Þ ¼ dvðx;Q2Þ þ d̄ðx;Q2Þ: ð22Þ

In Fig. 2, we present a comparison between our analytic
ML-PDF approximations to xdvðx;Q2Þ (upper plot) and

FIG. 1. Comparison between our analytic ML-PDF approxi-
mation (dashed lines) and HERAPDF2.0 (solid dots) for gluon
distributions, at three different values of Q. Notice that the gluon
PDFs are multiplied by a factor of 0.05 in order to better
appreciate the differences among them at different scales.

FIG. 2. Comparison between our analytic ML-PDF approx-
imations (dashed lines) and HERAPDF2.0 (solid dots), for xdv
(upper plot) and xd̄ (lower plot), at three different values of Q.
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Strange distribution

xd̄ðx;Q2Þ (lower plot) and the HERAPDF2.0_NLO_EIG PDF
set. We appreciate a very good agreement for different
values of Q.

C. Up-quark distributions

The optimal fit was found by considering uv and ū
distributions. To this end, we proposed

xuvðx;Q2Þ ¼ AuvðQ
2ÞxBuv ðQ

2Þð1 − xÞCuv ðQ
2Þ

× ½1þDuvðQ
2Þxþ EuvðQ

2Þx2

þ FuvðQ
2Þx3 þGuvðQ

2Þx4 þHuvðQ
2Þx5&

ð23Þ

to approximate uv, while a slightly more complicated
Ansatz was used for ū. In that case, we split the analysis
into two regions:

R1 ¼ fQ0 ≤ Q ≤ 10 GeVg; ð24Þ

R2 ¼ f10 GeV ≤ Q ≤ 1000 GeVg: ð25Þ

Then, we defined

xūðx;Q2Þ ¼ AūðQ2ÞxBūðQ2Þð1 − xÞCūðQ2Þ

× ½1þDūðQ2Þxþ EūðQ2Þx2

þ FūðQ2Þx3 þGūðQ2Þx4 þHūðQ2Þx5&

for Q∈R1, and

xūðx;Q2Þ ¼ AūðQ2ÞxBūðQ2Þð1 − xÞCūðQ2Þ

× ½1þDūðQ2Þxþ EūðQ2Þx3&

− ΘðxC;ū − xÞA0
ūðQ2ÞxB0

ūðQ2Þ

× ð1 − xÞC0
ūðQ2Þ½1þD0

ūðQ2Þx2& ð26Þ

for Q∈R2. Here, we used the cut xC;d̄ ¼ 0.01, inspired by
the gluon PDF parametrization defined by HERAPDF. After
fitting these two distributions, we can define

uðx;Q2Þ ¼ ūðx;Q2Þ þ uvðx;Q2Þ ð27Þ

and obtain the u-quark distribution.
We show the comparison between our analytic ML-PDF

approximations to xuvðx;Q2Þ (upper plot) and xūðx;Q2Þ
(lower plot) with respect to the HERAPDF2.0_NLO_EIG PDF
set in Fig. 3. Again, the agreement is excellent for the
complete range of Q considered in this analysis.

D. Strange-quark distribution

For the strange quark, we took the usual assumption that
s̄≡ s, a common choice for PDFs at NLO that is also

imposed for charm and bottom PDFs. After unsuccessfully
trying several functional forms based on Euler beta
functions, we noticed that the behaviors below and above
Q ¼ 4.5 GeV were slightly different. Thus, we used this
threshold and split the Q analysis into two regions:

R1 ¼ fQ0 ≤ Q ≤ 4.5 GeVg; ð28Þ

R2 ¼ f4.5 GeV ≤ Q ≤ 1000 GeVg: ð29Þ

We defined

xsðx;Q2Þ ¼ AsðQ2ÞxBsðQ2Þð1 − xÞCsðQ2Þ

− ΘðxC;sðR1Þ − xÞA0
sðQ2ÞxB0

sðQ2Þ

× ð1 − xÞC0
sðQ2Þ ð30Þ

and

xsðx;Q2Þ ¼ AsðQ2ÞxBsðQ2Þð1 − xÞCsðQ2Þ

− ΘðxC;sðR2Þ − xÞA0
sðQ2ÞxB0

sðQ2Þ

× ð1 − xÞC0
sðQ2Þ½1þD0

sðQ2Þx2&; ð31Þ

FIG. 3. Comparison between our analytic ML-PDF approx-
imations (dashed lines) and HERAPDF2.0 (solid dots), for xuv
(upper plot) and xū (lower plot), at three different values of Q.
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xd̄ðx;Q2Þ (lower plot) and the HERAPDF2.0_NLO_EIG PDF
set. We appreciate a very good agreement for different
values of Q.

C. Up-quark distributions

The optimal fit was found by considering uv and ū
distributions. To this end, we proposed

xuvðx;Q2Þ ¼ AuvðQ
2ÞxBuv ðQ

2Þð1 − xÞCuv ðQ
2Þ

× ½1þDuvðQ
2Þxþ EuvðQ

2Þx2

þ FuvðQ
2Þx3 þGuvðQ

2Þx4 þHuvðQ
2Þx5&

ð23Þ

to approximate uv, while a slightly more complicated
Ansatz was used for ū. In that case, we split the analysis
into two regions:

R1 ¼ fQ0 ≤ Q ≤ 10 GeVg; ð24Þ

R2 ¼ f10 GeV ≤ Q ≤ 1000 GeVg: ð25Þ

Then, we defined

xūðx;Q2Þ ¼ AūðQ2ÞxBūðQ2Þð1 − xÞCūðQ2Þ

× ½1þDūðQ2Þxþ EūðQ2Þx2

þ FūðQ2Þx3 þGūðQ2Þx4 þHūðQ2Þx5&

for Q∈R1, and

xūðx;Q2Þ ¼ AūðQ2ÞxBūðQ2Þð1 − xÞCūðQ2Þ

× ½1þDūðQ2Þxþ EūðQ2Þx3&

− ΘðxC;ū − xÞA0
ūðQ2ÞxB0

ūðQ2Þ

× ð1 − xÞC0
ūðQ2Þ½1þD0

ūðQ2Þx2& ð26Þ

for Q∈R2. Here, we used the cut xC;d̄ ¼ 0.01, inspired by
the gluon PDF parametrization defined by HERAPDF. After
fitting these two distributions, we can define

uðx;Q2Þ ¼ ūðx;Q2Þ þ uvðx;Q2Þ ð27Þ

and obtain the u-quark distribution.
We show the comparison between our analytic ML-PDF

approximations to xuvðx;Q2Þ (upper plot) and xūðx;Q2Þ
(lower plot) with respect to the HERAPDF2.0_NLO_EIG PDF
set in Fig. 3. Again, the agreement is excellent for the
complete range of Q considered in this analysis.

D. Strange-quark distribution

For the strange quark, we took the usual assumption that
s̄≡ s, a common choice for PDFs at NLO that is also

imposed for charm and bottom PDFs. After unsuccessfully
trying several functional forms based on Euler beta
functions, we noticed that the behaviors below and above
Q ¼ 4.5 GeV were slightly different. Thus, we used this
threshold and split the Q analysis into two regions:

R1 ¼ fQ0 ≤ Q ≤ 4.5 GeVg; ð28Þ

R2 ¼ f4.5 GeV ≤ Q ≤ 1000 GeVg: ð29Þ

We defined

xsðx;Q2Þ ¼ AsðQ2ÞxBsðQ2Þð1 − xÞCsðQ2Þ

− ΘðxC;sðR1Þ − xÞA0
sðQ2ÞxB0

sðQ2Þ

× ð1 − xÞC0
sðQ2Þ ð30Þ

and

xsðx;Q2Þ ¼ AsðQ2ÞxBsðQ2Þð1 − xÞCsðQ2Þ

− ΘðxC;sðR2Þ − xÞA0
sðQ2ÞxB0

sðQ2Þ

× ð1 − xÞC0
sðQ2Þ½1þD0

sðQ2Þx2&; ð31Þ

FIG. 3. Comparison between our analytic ML-PDF approx-
imations (dashed lines) and HERAPDF2.0 (solid dots), for xuv
(upper plot) and xū (lower plot), at three different values of Q.
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For 𝑅):

For 𝑅+:

Charm distribution
For 𝑅):

For 𝑅), 𝑅+:

where xC;sðR1Þ ¼ 0.25 and xC;sðR2Þ ¼ 0.1 in R1 and R2,
respectively. Once again, these values were determined by
exploring a range of values and choosing the best ones (i.e.,
the ones that gave a smaller value for the integral error).
In Fig. 4, we show our analytic ML-PDF approximation

to xsðx;Q2Þ (dashed lines) with respect to the correspond-
ing strange PDF from HERAPDF2.0_NLO_EIG (solid dots).
At low x (i.e., below 10−3), our fit slightly undershoots the
prediction from HERAPDF. Still, the agreement is very good
for x > 10−3, and in particular, for different values of Q.

E. Charm-quark distribution

As mentioned above, we considered the heavy quarks as
generated radiatively by the gluons, and thus fixed their
distributions to zero when the scale is below their respective
production threshold. Above it, in the case of the charm
quark, we split the analysis into two different regions in Q.
Explicitly, we considered

R1 ¼ f1.47 GeV < Q ≤ 3 GeVg; ð32Þ

R2 ¼ f3 GeV ≤ Q ≤ 1000 GeVg; ð33Þ

since mpole
c ¼ 1.47 GeV according to the HERAPDF2.0 fit

including NLO QCD corrections [25]. Thus, we defined

xcðx;Q2Þ ¼ AcðQ2ÞxBcðQ2Þð1 − xÞCcðQ2Þ½1þDcðQ2Þx2&

− ΘðxC;cðR1Þ − xÞA0
cðQ2ÞxB0

cðQ2Þ

× ð1 − xÞC0
cðQ2Þ½1þD0

cðQ2Þx2& ð34Þ

and

xcðx;Q2Þ ¼ AcðQ2ÞxBcðQ2Þð1 − xÞCcðQ2Þ

× ð1þDcðQ2Þxþ EcðQ2Þx2Þ

− ΘðxC;cðR2Þ − xÞA0
cðQ2ÞxB0

cðQ2Þ

× ð1 − xÞC0
cðQ2Þð1þD0

cðQ2Þx2Þ ð35Þ

where xC;cðR1Þ ¼ 0.1 and xC;cðR2Þ ¼ 0.05 in R1 and R2,
respectively.
We present a comparison between our analytic ML-PDF

approximation to xcðx;Q2Þ (dashed lines) versus the values
provided by HERAPDF2.0_NLO_EIG (solid dots) in Fig. 5. The
agreement is impressive, both in x and in Q.

F. Bottom-quark distribution

Finally, we studied the bottom-quark distribution.
Similarly to the case of the charm quark, we started the
fitting for values of Q above the mass of the bottom—i.e.,
Q > 4.5 GeV. We noticed that the quality of our fit
significantly increased if we divided the Q range into
two regions:

R1 ¼ f4.5 GeV ≤ Q ≤ 15 GeVg; ð36Þ

R2 ¼ f15 GeV ≤ Q ≤ 1000 GeVg: ð37Þ

As we did for the other flavors, we then proposed

xbðx;Q2Þ ¼ AbðQ2ÞxBbðQ2Þð1 − xÞCbðQ2Þ½1þDbðQ2Þx2&

− ΘðxC;bðR1Þ − xÞA0
bðQ2ÞxB0

bðQ
2Þ

× ð1 − xÞC0
bðQ

2Þ½1þD0
bðQ2Þx2& ð38Þ

and

FIG. 5. Comparison between our analytic ML-PDF charm
distribution approximation (dashed lines) and HERAPDF2.0 (solid
dots). We considered three different values of Q.

FIG. 4. Comparison between our analytic ML-PDF strange
distribution approximation (dashed lines) and HERAPDF2.0 (solid
dots). We considered three different values of Q.
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where xC;sðR1Þ ¼ 0.25 and xC;sðR2Þ ¼ 0.1 in R1 and R2,
respectively. Once again, these values were determined by
exploring a range of values and choosing the best ones (i.e.,
the ones that gave a smaller value for the integral error).
In Fig. 4, we show our analytic ML-PDF approximation

to xsðx;Q2Þ (dashed lines) with respect to the correspond-
ing strange PDF from HERAPDF2.0_NLO_EIG (solid dots).
At low x (i.e., below 10−3), our fit slightly undershoots the
prediction from HERAPDF. Still, the agreement is very good
for x > 10−3, and in particular, for different values of Q.

E. Charm-quark distribution

As mentioned above, we considered the heavy quarks as
generated radiatively by the gluons, and thus fixed their
distributions to zero when the scale is below their respective
production threshold. Above it, in the case of the charm
quark, we split the analysis into two different regions in Q.
Explicitly, we considered

R1 ¼ f1.47 GeV < Q ≤ 3 GeVg; ð32Þ

R2 ¼ f3 GeV ≤ Q ≤ 1000 GeVg; ð33Þ

since mpole
c ¼ 1.47 GeV according to the HERAPDF2.0 fit

including NLO QCD corrections [25]. Thus, we defined

xcðx;Q2Þ ¼ AcðQ2ÞxBcðQ2Þð1 − xÞCcðQ2Þ½1þDcðQ2Þx2&

− ΘðxC;cðR1Þ − xÞA0
cðQ2ÞxB0

cðQ2Þ

× ð1 − xÞC0
cðQ2Þ½1þD0

cðQ2Þx2& ð34Þ

and

xcðx;Q2Þ ¼ AcðQ2ÞxBcðQ2Þð1 − xÞCcðQ2Þ

× ð1þDcðQ2Þxþ EcðQ2Þx2Þ

− ΘðxC;cðR2Þ − xÞA0
cðQ2ÞxB0

cðQ2Þ

× ð1 − xÞC0
cðQ2Þð1þD0

cðQ2Þx2Þ ð35Þ

where xC;cðR1Þ ¼ 0.1 and xC;cðR2Þ ¼ 0.05 in R1 and R2,
respectively.
We present a comparison between our analytic ML-PDF

approximation to xcðx;Q2Þ (dashed lines) versus the values
provided by HERAPDF2.0_NLO_EIG (solid dots) in Fig. 5. The
agreement is impressive, both in x and in Q.

F. Bottom-quark distribution

Finally, we studied the bottom-quark distribution.
Similarly to the case of the charm quark, we started the
fitting for values of Q above the mass of the bottom—i.e.,
Q > 4.5 GeV. We noticed that the quality of our fit
significantly increased if we divided the Q range into
two regions:

R1 ¼ f4.5 GeV ≤ Q ≤ 15 GeVg; ð36Þ

R2 ¼ f15 GeV ≤ Q ≤ 1000 GeVg: ð37Þ

As we did for the other flavors, we then proposed

xbðx;Q2Þ ¼ AbðQ2ÞxBbðQ2Þð1 − xÞCbðQ2Þ½1þDbðQ2Þx2&

− ΘðxC;bðR1Þ − xÞA0
bðQ2ÞxB0

bðQ
2Þ

× ð1 − xÞC0
bðQ

2Þ½1þD0
bðQ2Þx2& ð38Þ

and

FIG. 5. Comparison between our analytic ML-PDF charm
distribution approximation (dashed lines) and HERAPDF2.0 (solid
dots). We considered three different values of Q.

FIG. 4. Comparison between our analytic ML-PDF strange
distribution approximation (dashed lines) and HERAPDF2.0 (solid
dots). We considered three different values of Q.
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Functional Forms

Bottom distribution

For 𝑅):

For 𝑅+:

R3 ¼ f5 GeV ≤ Q ≤ 150 GeVg; ð16Þ

R4 ¼ f150 GeV ≤ Q ≤ 1000 GeVg; ð17Þ

which we determined by examining the Q behavior of the
gluon density. Consequently, we defined

xgðx;Q2Þ ¼ AgðQ2ÞxBgðQ2Þð1 − xÞCgðQ2Þ

− ΘðxC;g − xÞA0
gðQ2ÞxB0

gðQ2Þ

× ð1 − xÞC0
gðQ2Þ ð18Þ

for Q∈R1, and

xgðx;Q2Þ ¼ AgðQ2ÞxBgðQ2Þð1 − xÞCgðQ2Þ

− ΘðxC;g − xÞA0
gðQ2ÞxB0

gðQ2Þ

× ð1 − xÞC0
gðQ2Þ½1þD0

gðQ2Þx2& ð19Þ

for Q∈ fR2; R3; R4g, together with xC;g ¼ 0.1. Again, this
last value was fixed by an exploratory procedure.
We emphasize that, since the analysis was done inde-

pendently for each region, the functions fAgðQ2Þ;
BgðQ2Þ; CgðQ2Þg and fA0

gðQ2Þ; B0
gðQ2Þ; C0

gðQ2Þ; D0
gðQ2Þg

in Eq. (19) have different behaviors in R2, R3, and R4.
In Fig. 1, we show our analytic ML-PDF approximation

to xgðx;Q2Þ with respect to the corresponding gluon PDF
from HERAPDF2.0_NLO_EIG at 10 GeV (blue), 100 GeV
(green), and 1000 GeV (orange). Even if small fluctuations
occur at low x, the overall agreement is very good.
Furthermore, the agreement remains when choosing differ-
ent values of Q, thanks to splitting the analysis into four
regions.

B. Down-quark distributions

In this case, the optimal fit was achieved by considering
dv and d̄ distributions. Therefore, we wrote

xdvðx;Q2Þ ¼ AdvðQ
2ÞxBdv ðQ

2Þð1 − xÞCdv ðQ
2Þ

× ½1þDdvðQ
2Þx2 þ EdvðQ

2Þx4

þ FdvðQ
2Þx6&; ð20Þ

xd̄ðx;Q2Þ ¼ Ad̄ðQ2ÞxBd̄ðQ2Þð1 − xÞCd̄ðQ2Þ

− ΘðxC;d̄ − xÞA0
d̄ðQ

2ÞxB
0
d̄
ðQ2Þð1 − xÞC

0
d̄
ðQ2Þ

× ½1þD0
d̄ðQ

2Þx2 þ E0
d̄ðQ

2Þx4&; ð21Þ

with xC;d̄ ¼ 0.04. We deemed this value to be the best
choice to describe the PDFs by repeating the procedure for
a range of xC;d̄ and selecting the optimal. Then, the d-quark
distribution can be recovered by computing

dðx;Q2Þ ¼ dvðx;Q2Þ þ d̄ðx;Q2Þ: ð22Þ

In Fig. 2, we present a comparison between our analytic
ML-PDF approximations to xdvðx;Q2Þ (upper plot) and

FIG. 1. Comparison between our analytic ML-PDF approxi-
mation (dashed lines) and HERAPDF2.0 (solid dots) for gluon
distributions, at three different values of Q. Notice that the gluon
PDFs are multiplied by a factor of 0.05 in order to better
appreciate the differences among them at different scales.

FIG. 2. Comparison between our analytic ML-PDF approx-
imations (dashed lines) and HERAPDF2.0 (solid dots), for xdv
(upper plot) and xd̄ (lower plot), at three different values of Q.
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R3 ¼ f5 GeV ≤ Q ≤ 150 GeVg; ð16Þ

R4 ¼ f150 GeV ≤ Q ≤ 1000 GeVg; ð17Þ

which we determined by examining the Q behavior of the
gluon density. Consequently, we defined

xgðx;Q2Þ ¼ AgðQ2ÞxBgðQ2Þð1 − xÞCgðQ2Þ

− ΘðxC;g − xÞA0
gðQ2ÞxB0

gðQ2Þ

× ð1 − xÞC0
gðQ2Þ ð18Þ

for Q∈R1, and

xgðx;Q2Þ ¼ AgðQ2ÞxBgðQ2Þð1 − xÞCgðQ2Þ

− ΘðxC;g − xÞA0
gðQ2ÞxB0

gðQ2Þ

× ð1 − xÞC0
gðQ2Þ½1þD0

gðQ2Þx2& ð19Þ

for Q∈ fR2; R3; R4g, together with xC;g ¼ 0.1. Again, this
last value was fixed by an exploratory procedure.
We emphasize that, since the analysis was done inde-

pendently for each region, the functions fAgðQ2Þ;
BgðQ2Þ; CgðQ2Þg and fA0

gðQ2Þ; B0
gðQ2Þ; C0

gðQ2Þ; D0
gðQ2Þg

in Eq. (19) have different behaviors in R2, R3, and R4.
In Fig. 1, we show our analytic ML-PDF approximation

to xgðx;Q2Þ with respect to the corresponding gluon PDF
from HERAPDF2.0_NLO_EIG at 10 GeV (blue), 100 GeV
(green), and 1000 GeV (orange). Even if small fluctuations
occur at low x, the overall agreement is very good.
Furthermore, the agreement remains when choosing differ-
ent values of Q, thanks to splitting the analysis into four
regions.

B. Down-quark distributions

In this case, the optimal fit was achieved by considering
dv and d̄ distributions. Therefore, we wrote

xdvðx;Q2Þ ¼ AdvðQ
2ÞxBdv ðQ

2Þð1 − xÞCdv ðQ
2Þ

× ½1þDdvðQ
2Þx2 þ EdvðQ

2Þx4

þ FdvðQ
2Þx6&; ð20Þ

xd̄ðx;Q2Þ ¼ Ad̄ðQ2ÞxBd̄ðQ2Þð1 − xÞCd̄ðQ2Þ

− ΘðxC;d̄ − xÞA0
d̄ðQ

2ÞxB
0
d̄
ðQ2Þð1 − xÞC

0
d̄
ðQ2Þ

× ½1þD0
d̄ðQ

2Þx2 þ E0
d̄ðQ

2Þx4&; ð21Þ

with xC;d̄ ¼ 0.04. We deemed this value to be the best
choice to describe the PDFs by repeating the procedure for
a range of xC;d̄ and selecting the optimal. Then, the d-quark
distribution can be recovered by computing

dðx;Q2Þ ¼ dvðx;Q2Þ þ d̄ðx;Q2Þ: ð22Þ

In Fig. 2, we present a comparison between our analytic
ML-PDF approximations to xdvðx;Q2Þ (upper plot) and

FIG. 1. Comparison between our analytic ML-PDF approxi-
mation (dashed lines) and HERAPDF2.0 (solid dots) for gluon
distributions, at three different values of Q. Notice that the gluon
PDFs are multiplied by a factor of 0.05 in order to better
appreciate the differences among them at different scales.

FIG. 2. Comparison between our analytic ML-PDF approx-
imations (dashed lines) and HERAPDF2.0 (solid dots), for xdv
(upper plot) and xd̄ (lower plot), at three different values of Q.
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Gluon distribution
For 𝑅):

For 𝑅), 𝑅+ and 𝑅, :

xbðx;Q2Þ ¼ AbðQ2ÞxBbðQ2Þð1 − xÞCbðQ2Þ

× ½1þDbðQ2Þxþ EbðQ2Þx2&

− ΘðxC;bðR2Þ − xÞA0
bðQ2ÞxB0

bðQ
2Þ

× ð1 − xÞC0
bðQ

2Þ½1þD0
bðQ2Þx2&; ð39Þ

where xC;bðR1Þ ¼ 0.1 and xC;bðR2Þ ¼ 0.05 in R1 and R2,
respectively.
As for the other flavors, in Fig. 6, we show our analytic

ML-PDF approximation to xbðx;Q2Þ (dashed lines)
with respect to the corresponding bottom PDF from
HERAPDF2.0_NLO_EIG (solid dots). The agreement is very
good for different values ofQ, from 10 to 500 GeV. Even if
some discrepancies arise for x < 5 × 10−4, we can state that
our formulas globally provide a reliable approximation to
the bottom PDF.

V. EFFICIENCY AND QUALITY BENCHMARKS

In this section, we discuss quantitatively the quality of
the ML-PDF approximations found in Sec. IVand compare
the time required to compute some chosen observables.
In order to estimate the discrepancies between our

analytic ML-PDFs and the original HERAPDF2.0 distribu-
tions in a phenomenologically relevant way, we rely on our
definition of integral error given in Eq. (10). In Fig. 7, we
show that the integral error for almost all the distributions
(i.e., uv, dv, ū, d̄, c, b, and g) is below 0.5% in the
Q∈ ½Q0; 1000 GeV& range. For the strange-quark PDF, we
appreciate a larger deviation at higher values ofQ, reaching
up to 1.5% error for Q ≈ 1000 GeV. Although it is not
present in the plots, we want to highlight that the integral
error for u and d is also well under control, being below the
percent level for the whole range ofQ values explored. This
is expected from Eqs. (22) and (27), propagating the errors
shown in Fig. 7.

As we explained in Sec. III, the integral error is expected
to provide a more reliable estimation on the impact of using
our ML-PDFs instead of the original PDF set in a physical
calculation. Still, for the sake of completeness, we present
here an analysis of the approximation error as a function
of x. For this purpose, we sample with an exponential
distribution the range Q∈ ½10 GeV; 1000 GeV& using
N ¼ 50;000 random points. Then, we define

Δ̄iðxÞ ¼
1

N

XN

j¼1

!!!!1 −
fML
i ðx;Q2

jÞ
fHERAi ðx;Q2

jÞ

!!!! ð40Þ

as an estimator of the error in x. This definition is similar to
the error shape mentioned in Sec. III, and it corresponds to
an average of the relative errors as a function of x. In Fig. 8,
we show the results for up and down quarks (upper plot),
for strange, charm, and bottom quarks, and for the gluon
(lower plot). For uv, dv, ū and d̄ quarks, Δ̄ is below 10%
for x∈ ½10−3; 0.3&. Similarly, for the other quark flavors,
the error is below 20% in x∈ ½10−3; 0.3&. For the gluon,
the error is slightly larger, Oð10%–25%Þ in the central

FIG. 6. Comparison between our analytic bottom ML-PDF
approximation (dashed lines) and HERAPDF2.0 (solid dots). We
considered three different values of Q.

FIG. 7. Integral error for our analytic ML-PDF approximations
with respect to HERAPDF distributions. In the upper plot, we show
up- and down-quark distributions, while s, c, b, and gluon PDFs
are presented in the lower plot.
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where xC;sðR1Þ ¼ 0.25 and xC;sðR2Þ ¼ 0.1 in R1 and R2,
respectively. Once again, these values were determined by
exploring a range of values and choosing the best ones (i.e.,
the ones that gave a smaller value for the integral error).
In Fig. 4, we show our analytic ML-PDF approximation

to xsðx;Q2Þ (dashed lines) with respect to the correspond-
ing strange PDF from HERAPDF2.0_NLO_EIG (solid dots).
At low x (i.e., below 10−3), our fit slightly undershoots the
prediction from HERAPDF. Still, the agreement is very good
for x > 10−3, and in particular, for different values of Q.

E. Charm-quark distribution

As mentioned above, we considered the heavy quarks as
generated radiatively by the gluons, and thus fixed their
distributions to zero when the scale is below their respective
production threshold. Above it, in the case of the charm
quark, we split the analysis into two different regions in Q.
Explicitly, we considered

R1 ¼ f1.47 GeV < Q ≤ 3 GeVg; ð32Þ

R2 ¼ f3 GeV ≤ Q ≤ 1000 GeVg; ð33Þ

since mpole
c ¼ 1.47 GeV according to the HERAPDF2.0 fit

including NLO QCD corrections [25]. Thus, we defined

xcðx;Q2Þ ¼ AcðQ2ÞxBcðQ2Þð1 − xÞCcðQ2Þ½1þDcðQ2Þx2&

− ΘðxC;cðR1Þ − xÞA0
cðQ2ÞxB0

cðQ2Þ

× ð1 − xÞC0
cðQ2Þ½1þD0

cðQ2Þx2& ð34Þ

and

xcðx;Q2Þ ¼ AcðQ2ÞxBcðQ2Þð1 − xÞCcðQ2Þ

× ð1þDcðQ2Þxþ EcðQ2Þx2Þ

− ΘðxC;cðR2Þ − xÞA0
cðQ2ÞxB0

cðQ2Þ

× ð1 − xÞC0
cðQ2Þð1þD0

cðQ2Þx2Þ ð35Þ

where xC;cðR1Þ ¼ 0.1 and xC;cðR2Þ ¼ 0.05 in R1 and R2,
respectively.
We present a comparison between our analytic ML-PDF

approximation to xcðx;Q2Þ (dashed lines) versus the values
provided by HERAPDF2.0_NLO_EIG (solid dots) in Fig. 5. The
agreement is impressive, both in x and in Q.

F. Bottom-quark distribution

Finally, we studied the bottom-quark distribution.
Similarly to the case of the charm quark, we started the
fitting for values of Q above the mass of the bottom—i.e.,
Q > 4.5 GeV. We noticed that the quality of our fit
significantly increased if we divided the Q range into
two regions:

R1 ¼ f4.5 GeV ≤ Q ≤ 15 GeVg; ð36Þ

R2 ¼ f15 GeV ≤ Q ≤ 1000 GeVg: ð37Þ

As we did for the other flavors, we then proposed

xbðx;Q2Þ ¼ AbðQ2ÞxBbðQ2Þð1 − xÞCbðQ2Þ½1þDbðQ2Þx2&

− ΘðxC;bðR1Þ − xÞA0
bðQ2ÞxB0

bðQ
2Þ

× ð1 − xÞC0
bðQ

2Þ½1þD0
bðQ2Þx2& ð38Þ

and

FIG. 5. Comparison between our analytic ML-PDF charm
distribution approximation (dashed lines) and HERAPDF2.0 (solid
dots). We considered three different values of Q.

FIG. 4. Comparison between our analytic ML-PDF strange
distribution approximation (dashed lines) and HERAPDF2.0 (solid
dots). We considered three different values of Q.
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Another Cost-Function
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Error Shape

fΔ. 𝑥 =
1
𝑁j
/0)

1

1 −
𝑓.23(𝑥, 𝑄/+)
𝑓.4567(𝑥, 𝑄/+)

𝑁 = 50,000 and 𝑄 ∈ {10 GeV, 1000 GeV}
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Validity of the sum rules
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Sume rules for any energy scale 𝑸

𝑆! 𝑄" = *
#

!
𝑑𝑥 𝑢$(𝑥, 𝑄") = 2 𝑆" 𝑄" = *

#

!
𝑑𝑥 𝑑$(𝑥, 𝑄") = 1 𝑆% 𝑄" = *

#

!
𝑑𝑥 𝑥 𝑔 𝑥, 𝑄" + 5

&∈{), +)}

𝑓& 𝑥, 𝑄" = 1
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