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Overview

❖ Brief description of the heterotic string

❖ Orbifolds: a geometric description

❖ Why to focus on the non-Abelian case?

❖ Generalization of the Abelian formalism

❖ Results on specific geometries: 

❖ Conclusions and future work

S3, D4 and (ℤ4 × ℤ2) ⋊ ℤ2
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Motivation
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[The power of mirror symmetry, Robbert Dijkgraaf]



Framework: Heterotic string theory

❖ 10 dimensional theory

❖ Supersymmetric theory

❖ Fixed gauge group:    
 E8 × E8 o SO(32)
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❖ 4 dimensional theory

❖ Supersymmetric theory (?)

❖ SM gauge group: 
SU(3) × SU(2) × U(1)

We have: We desire:

[Ibañez Uranga,  String theory and particle physics]

The spacetime dimension and the rank of the gauge groups does not match!



Dimensional reduction

❖ Need to go from a 10 dim theory to a 4 dim one

❖ Ansatz 

❖ In general  should be a Calabi-Yau manifold

❖ In this talk,   is a toroidal orbifold

ℳ10 → ℳ4 × X6

X6

X6
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[Ibañez Uranga,  String theory and particle physics]



Orbifolds: a geometric description

❖ An orbifold is defined as the quotient 

❖ We are interested on the case                  
, 

❖

❖ Hence, 

𝒪 = M/P

M = 𝕋6 P ⊂ SU(3)

𝕋6 = ℝ6/Γ

𝒪 = ℝ6/S, S = P ⋉ Γ
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Why non-Abelian ?P

❖ From the bottom-up perspective, it is possible to obtain rank reduction 
from non-Abelian twists [Hebecker-Ratz 2003]

❖ Rank reduction evidence from the top-down approach [Konopka 2013] 
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Which non-Abelian groups?
❖ There are 35 inequivalent point groups compatibles with 4 dim. SUSY , 

  
 
 
 
 
 
 

❖ 331 non equivalent geometries arise from them

𝒩 = 1

                                                                                                                                              [Fischer, Ratz, Torrado, Vaudrevange 2013]
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Abelian vs non-Abelian
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Abelian vs non-Abelian

❖ In the Abelian case,  is a subgroup of the  Cartan subalgebraP SO(6)
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Abelian vs non-Abelian

❖ In the Abelian case,  is a subgroup of the  Cartan subalgebraP SO(6)

❖ This can’t happen in the non-Abelian scenario 😔
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Abelian vs non-Abelian

❖ In the Abelian case,  is a subgroup of the  Cartan subalgebraP SO(6)

❖ This can’t happen in the non-Abelian scenario 😔

❖ This fact gives rise to rank reduction 😁
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Generalization to the non-Abelian case
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Generalization to the non-Abelian case

❖ Tasks:                                                                                                                  
Embed  in the geometric degrees of freedom  and in the 
gauge degrees of freedom                                                                            
Compute the 4 dim spectrum

P SO(6) ⊂ SO(8)
SO(32)
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Generalization to the non-Abelian case

❖ Tasks:                                                                                                                  
Embed  in the geometric degrees of freedom  and in the 
gauge degrees of freedom                                                                            
Compute the 4 dim spectrum

P SO(6) ⊂ SO(8)
SO(32)

❖ Difficulties:                                                                                                             
Write  elements as rotations (block diagonal matrices)                                 
Treat simultaneously with different choices for the Cartan basis (different roots systems)

P
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P ↪ SO(6)

❖ To achieve the embedding, we have to assign a twist vector 
  to each        is in the  Cartan basis

❖ The components of the twist vector of a given , are such that 
for some  (  generators)

❖ So, we need a basis  such that 

❖ Successfully done for    y 

v = (0,v1, v2, v3) ∈ ΛSO(8) g ∈ P v SO(8)

g
g = exp [2πivkJk], Jk SO(6)

βg, g = exp [2πivkJk]
S3, D4 (Z4 × Z2) ⋊ Z2
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Block diagonalization 

❖ We developed an algorithm for this task 

 

 
by solving the equations 

    
for  and .   [Eisenfeld 76]

(
Ep Fq×p

Gp×q Hq ) → (
Dp 0q×p

0p×q Dq ),

R(E + FR) = G + HR, (E + FR)X − X(H − RF) = − F,
R X
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Block diagonalization
❖ If there are solutions  and , the transformation that block diagonalize our 

original matrix is                                                                     

 [Eisenfeld 76] 

 
This  was found in 12 cases  
 

R X

W = (
𝕀p X
R XR + 𝕀q) .

W

P̃ = {S3, D4, A4, D6, (ℤ4 × ℤ2) ⋊ ℤ2, ℤ4 ⋊ S3, S4,
(ℤ4 × ℤ4) ⋊ ℤ2, ℤ3 × (ℤ3 ⋊ ℤ4), Δ(27), Δ(54), Δ(96)} .
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Block diagonalization

❖ One last step 

❖ Say that the full transformation is , we restricted to the case where  is orthogonal.   
This condition reduced our previous list to  

.  
 

(
Ep Fq×p

Gp×q Hq ) → (
Dp 0q×p

0p×q Dq ) →
R(θ)2 0 0

0 R(−θ)2 0
0 0 𝕀2

,

Q Q

P ∈ {S3, D4, (ℤ4 × ℤ2) ⋊ ℤ2}
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4 dim. gauge group G
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4 dim. gauge group G
❖ To achieve we have to assign a shift vector 

 to each     is in the  Cartan basis
P ↪ SO(32),

V = (V1, V2, …, V16) ∈ ΛSO(32) g ∈ P V SO(32)
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4 dim. gauge group G
❖ To achieve we have to assign a shift vector 

 to each     is in the  Cartan basis
P ↪ SO(32),

V = (V1, V2, …, V16) ∈ ΛSO(32) g ∈ P V SO(32)

❖ Solution:  [Standard embedding]V = (v1, v2, v3, 0,…, 0)
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4 dim. gauge group G
❖ To achieve we have to assign a shift vector 

 to each     is in the  Cartan basis
P ↪ SO(32),

V = (V1, V2, …, V16) ∈ ΛSO(32) g ∈ P V SO(32)

❖ Solution:  [Standard embedding]V = (v1, v2, v3, 0,…, 0)

❖ This gives  
 SO(32) → SO(6) × SO(26) → G × SO(26)
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4 dim. gauge group G
❖ To achieve we have to assign a shift vector 

 to each     is in the  Cartan basis
P ↪ SO(32),

V = (V1, V2, …, V16) ∈ ΛSO(32) g ∈ P V SO(32)

❖ Solution:  [Standard embedding]V = (v1, v2, v3, 0,…, 0)

❖ This gives  
 SO(32) → SO(6) × SO(26) → G × SO(26)

❖  such that .  
Therefore 
  😁

G, rank(G) < 3

rank(G × SO(26)) < 16
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Spectrum: untwisted sector

❖
Work with the  weights,  and  

 roots, 

❖ We build states , such that  
    

❖ This require us to work with different Cartan bases simultaneously   
Trouble!

SO(8) |q⟩ ∈ {((±1)2,02)}
SO(32) |p⟩ ∈ {((±1)2,014)}

|q⟩ ⊗ |p⟩
p ⋅ Vg − q ⋅ vg = 0, mod 1 ∀g ∈ S
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Spectrum: twisted sectors

❖ We look for  in the  weight lattice, and  in the  root lattice 
such that, they satisfy the physical condition for their respective equivalence 
class  and its centralizer 

❖ It reduces to the Abelian techniques (if  is Abelian)  
Fine!

|q⟩ SO(8) |p⟩ SO(32)

[g] 𝒞S (g)

𝒞S (g)
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Dealing with different Cartan bases
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Dealing with different Cartan bases
❖ Take two different  Cartan bases,  

 y  ordered bases 
SO(6)

H = {H1, H2, H3} H′ = {H′ 1, H′ 2, H′ 3}
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Dealing with different Cartan bases
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 y  ordered bases 
SO(6)
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Dealing with different Cartan bases
❖ Take two different  Cartan bases,  

 y  ordered bases 
SO(6)

H = {H1, H2, H3} H′ = {H′ 1, H′ 2, H′ 3}

❖  and  have identical roles Hi H′ i

❖  and  give rise to different root systems                                           
 and  

H H′ 

R = {R1, R2, …, R6} R′ = {R′ 1, R′ 2, …, R′ 6}
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Dealing with different Cartan bases
❖ Take two different  Cartan bases,  

 y  ordered bases 
SO(6)

H = {H1, H2, H3} H′ = {H′ 1, H′ 2, H′ 3}

❖  and  have identical roles Hi H′ i

❖  and  give rise to different root systems                                           
 and  

H H′ 

R = {R1, R2, …, R6} R′ = {R′ 1, R′ 2, …, R′ 6}

❖  there are  such that  is the raising operator and  is the 
lowering operator for 
∀Hi, Rl, Rm ∈ R Rl Rm

Hi
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Dealing with different Cartan bases
❖ Take two different  Cartan bases,  

 y  ordered bases 
SO(6)

H = {H1, H2, H3} H′ = {H′ 1, H′ 2, H′ 3}

❖  and  have identical roles Hi H′ i

❖  and  give rise to different root systems                                           
 and  

H H′ 

R = {R1, R2, …, R6} R′ = {R′ 1, R′ 2, …, R′ 6}

❖  there are  such that  is the raising operator and  is the 
lowering operator for 
∀Hi, Rl, Rm ∈ R Rl Rm

Hi

❖ This is also true for some  for each  R′ l, R′ m ∈ R′ H′ i
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Dealing with different Cartan bases

❖ Solution: We propose a bijection   

❖ With this, we can manipulate twist and shift vectors in different basis!😁

Rl ∼ R′ l Rm ∼ R′ m
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Specific models 

❖ We studied the geometries  y  

❖ These are completely inequivalent geometries, with different number of 
twisted sectors and fixed points.  
Therefore, their study will allow us to check our method in truly different 
scenarios and verify that rank reduction is indeed a feature of every non-
Abelian orbifold 

S3, D4 (Z4 × Z2) ⋊ Z2
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 orbifoldS3

❖  has two generators, of order 2 and 3 respect. Say 

❖  is the symmetry group of an equilateral triangle

❖ It has two non trivial conjugation classes:  y 

❖ This orbifold has 13 fixed points, 4 related to the  sector and 9 for the  
sector

S3 {θ, ω}

S3

[θ] [ω]

[θ] [ω]

21



 orbifoldS3

❖ Fixed points

❖

22

theta sector fixed points

omega sector fixed points

× ×

× ×



 orbifoldS3

❖ Through one single basis transformation, we found  
 

                    θ = exp [ 2πi
2 (J4,6 − J7,8)], ω = exp [ 2πi

3 (J3,4 − J5,6)]

23



 orbifoldS3

❖ 4 dim gauge group:   

❖ 4 modules (in agreement with [Fischer, Ramos, Vaudrevange 2013])  

❖ We found the  irrep with the following multiplicity in each sector                            
(generalizes  results [Fischer, Ramos, Vaudrevange 2013])  

G = U(1) × U(1) × SO(26)

26
4 ∈ [e], 8 ∈ [θ], 18 ∈ [σ] E8 × E8
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 orbifoldS3
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4 dimensional spectrum



 orbifoldD4

❖  has 2 order 2 generators, 

❖  is the symmetry group of a square 

❖ 4 non trivial conjugacy classes:    

❖ 34 fixed points 

D4 {θ, ω}

D4

[θ], [ω], [θω], [θωθω]
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 orbifoldD4
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theta sector fixed points omega sector fixed points

theta*omega sector fixed points

theta*omega*theta*omega sector fixed points

× × × ×

× × × × × ×+



 orbifoldD4

❖ We require two different transformaciones to arrive to the following 
expressions  
 

                

 

 .

θ = exp [ 2πi
2 (J3,6 − J7,8)], ω = exp [ 2πi

3 (J4,6 − J7,8)],

θω = exp [ 2πi
4 (−J3,4 + J5,6)], θωθω = exp [ 2πi

2 (J3,4 − J5,6)]
28



 orbifoldD4

❖ 4 dim gauge group  

❖ 4 modules (in agreement with [Fischer, Ramos, Vaudrevange 2013]) 

❖  irreps with the following multiplicity in each sector:                            
                        

(generalizes results for  [Fischer, Ramos, Vaudrevange 2013])  

G = U(1) × SO(26)

26
4 ∈ [e], 4 ∈ [θ], 16 ∈ [ω], 8 ∈ [θω], 10 ∈ [θωθω]

E8 × E8
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 orbifoldD4
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4 dimensional spectrum



 orbifold(ℤ4 × ℤ2) ⋊ ℤ2

❖ 3 generators with order 4, 2 and 2 respect. 

❖ This group can be understood as a discrete version of 

❖ 8 non trivial conjugacy classes:        

❖ 35 fixed points 

{ρ, θ, ω}
SU(2)

[ρ], [θ], [ω], [θω], [θρ], [ωρ], [θωρ3], [ρ2]
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 orbifold(ℤ4 × ℤ2) ⋊ ℤ2

❖ We found 5 different transformations that lead us to 
 

                             

 

                        

 

          

 

                 .

ρ = exp [ 2πi
4 (J5,6 − J4,7)], θ = exp [ 2πi

2 (J3,4 − J7,8)],

ω = exp [ 2πi
2 (J3,7 − J4,8)], θω = exp [ 2πi

4 (−J4,5 − J6,7 + 2J3,8)],

θρ = exp [ 2πi
4 (J3,4 + J6,7 − 2J5,8)], ωρ = exp [ 2πi

2 (J3,4 − J6,8)],

θωρ3 = exp [ 2πi
4 (J4,5 − J6,7)], ρ2 = exp [ 2πi

2 (J5,6 − J4,7)]
32



 orbifold(ℤ4 × ℤ2) ⋊ ℤ2

❖ 4 dim gauge group   (max rank reduction from standard embedding) 

❖ 3 modules (in agreement with [Fischer, Ramos, Vaudrevange 2013]) 

❖  irreps with the following multiplicity in each sector                             
                                                    

(generalizes results for  [Fischer, Ramos, Vaudrevange 2013])  

G = SO(26)

26
3 ∈ [e], 4 ∈ [θ], 4 ∈ [ω], 10 ∈ [ρ], 2 ∈ [θω],
2 ∈ [θρ], 2 ∈ [ωρ], 6 ∈ [θωρ3], 3 ∈ [ρ2]

E8 × E8
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 orbifold(ℤ4 × ℤ2) ⋊ ℤ2
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4 dimensional spectrum



Conclusions 
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Conclusions 
❖ We successfully extended the Abelian formalism for the non-Abelian case2 
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Conclusions 
❖ We successfully extended the Abelian formalism for the non-Abelian case2 

❖ We developed an algorithm that works in some geometries

❖ We found rank reduction in every case, whiteout summoning additional 
mechanisms  

:     
:      

:      (max rank reduction for standard embedding) 

S3 SO(32) → U(1) × U(1) × SO(26)
D4 SO(32) → U(1) × SO(26)
(ℤ4 × ℤ2) ⋊ ℤ2 SO(32) → SO(26)
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Conclusions 
❖ We successfully extended the Abelian formalism for the non-Abelian case2 

❖ We developed an algorithm that works in some geometries

❖ We found rank reduction in every case, whiteout summoning additional 
mechanisms  

:     
:      

:      (max rank reduction for standard embedding) 

S3 SO(32) → U(1) × U(1) × SO(26)
D4 SO(32) → U(1) × SO(26)
(ℤ4 × ℤ2) ⋊ ℤ2 SO(32) → SO(26)

❖ We found less modules that the usual for the Abelian case [Ibañez, Lust 92] 
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Future work

❖ Take into account Wilson loops

❖ Compute the flavor symmetries that arise from non-Abelian geometries 
(geometric and modular ones)

❖ Extend the formalism to non standard embedding Model building from our 
non-Abelian geometries (interesting gauge groups and flavor symmetries 
(modular) )
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Thanks for your attention!
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Space group S

❖ Conjugacy classes 

❖ Fixed points, for each   there are some  such that  

❖ In general, for each  we solve 

❖ Abelian case also need to embed  in 

[g] = {hgh−1 |h ∈ S}
[g] z gz = z

g ∈ S z = (𝕀 − g)−1nαeα

P SO(6)
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Abelian techniques 
❖  is contained in the  Cartan subalgebra , i.e. every  is an 

exponential map of linear combinations of elements of , say 
 

❖ Every conjugación class is define by a twist vector  
,      is in the  Cartan basis 

such that  
.  

❖ This define the embedding of  in the geometric dof

P SO(6) H g ∈ P
H

g = exp [2πiαjHj] .

v = (α1, α2, α3) v SO(6)

α1 + α2 + α3 = 0

P
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Abelian techniques
❖ To embed  in the gauge dof, we map 

  
 is the so called shift vector, and  are Wilson loops 
 is such that    the  weight lattice

❖ Modular invariance requires  
   (no Wilson loops) 

 
Simplest solution: standard embedding 

                              is in the  Cartan basis

S
(θk, nαeα) → (kV, nαAα),
V Aα
V NV ∈ Λ, Λ SO(32)

N (V2 − v2) = 0 mod 2,

V = (v1, v2, v3,013) . V G
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Abelian techniques

❖ For computing the spectrum, there are two cases

❖ Untwisted sector   

States  such that   

Solutions if  y   
while  y  (Cartan generators, sugra multiplet, modules)  
or   y  (every other gauge group generators)  
Physical states, those that    

[e]

q⟩
R

⊗ p⟩
L
, 0 =

q2

2
+ N − 1/2, 0 =

p2

2
+ Ñ − 1.

N = 0 q2 = 1
Ñ = 1 p = (016)

Ñ = 0 p2 = 2
p ⋅ Vg − q ⋅ vg = 0, mod 1 ∀g ∈ S
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Abelian techniques
❖ Twisted sectors   

States  such that   

  
 and  in  and  respect. 

❖ Physical states if  
   ,                                                           

with    
States in this sectors are matter fields

[g]

qsh⟩R
⊗ psh⟩L

q2
sh

2
−

1
2

+ δg = 0,
p2

sh

2
− 1 + Ñ + δg = 0,

qsh = q + vg, psh = p + Vg .
q p ΛSO(8) ΛSO(32)

psh ⋅ Vh − R ⋅ vh = 0, mod 1 ∀g ∈ 𝒞S (g)
Ri = qi

sh − Ñi + Ñ*ī, i ∈ {0,1,…,3} .
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