XV Latin American Symposium on High Energy Physics November 4 - 8, 2024, Cinvestav, Mexicocity

Instituto de Ciencias Nucleares UNAM

ALICE overview

Antonio Ortiz, for the ALICE Collaboration (Instituto de Ciencias Nucleares, UNAM)

Outline

- Introduction
- ALICE upgrade for the LHC Run 3
- ALICE performance during the LHC Run 3
- pp results (selected list)
- Heavy-ion results (selected list)
- Upgrades: LS3 and LS4 (ALICE 3)
- The MID subsystem
- Summary

Instituto de Ciencias Nucleares UNAM

Heavy-ion collisions

ALICE, EPJ C84 (2024) 813

ALI-PUB-528781 Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

~10 fm/*c*

~10¹⁵ fm/*c*

The ALICE Collaboration

40 countries, 171 institutes, 1967 members

Latin America:

Brazil (29 members, 4 institutes)

Mexico (52 members, 5 institutes)

Peru (3 members, 1 institute)

ALICE experiment at the LHC

ALICE 1

ALICE 2

Major upgrade

Intermediate upgrade

Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

ALICE 2.1

ALICE 3

LS2 upgrade

Run 3

ALICE 2

Inner Tracking System (ITS2): full pixel layers New Muon Forward Tracker (MFT)

Continuous readout at high rate / Time Projection Chamber (GEM readout) / new event processing farm / Upgraded readout for most detectors

η_{\min}	η_{\max}
3.5	4.9
-2.1	-3.3
4.8	6.3
-4.9	-7.0
2.2	5.0

Run 3 data taking

pp (2024): 53.1 pb⁻¹, efficiency: 95%

 $\approx 11.5 \times 10^9$ minimum-bias collisions

Run-3 physics performance

pp physics program

J/w production

ALI-PREL-571917

ALI-PREL-548566

Baryon enhancement also present in

Ω_{c}^{0} branching ratios

ALI-PUB-584407

Long range angular correlations in low- and high-Materia Continuity (HM) pp collisions

13

Bias due to local mult. fluctuations

Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

Ciencias Nucleares UNAM

Multiparton interactions (MPI): more than one partonparton scattering occurring in the same pp collision. Color reconnection (CR) produce collective-like effects

Bias due to local mult. fluctuations

 $\hat{p}_{\pi}^{\text{main}}$

Ciencias Nucleares UNAM

- Multiparton interactions (MPI): more than one partonparton scattering occurring in the same pp collision. Color reconnection (CR) produce collective-like effects
 - The more central the pp collision, the higher the probability to find a high-p_T parton

Bias due to local mult. fluctuations

nstituto Ciencias Nucleares UNAM

- Multiparton interactions (MPI): more than one partonparton scattering occurring in the same pp collision. Color reconnection (CR) produce collective-like effects
 - ALICE simulation HM VOM pp $\sqrt{s} = 13 \text{ TeV}$ The more central PYTHIA 8.244 (Monash) Ū the pp collision, the higher the probability to find a high-p_T parton
 - The high-VOM multiplicity class selects pp collisions with jets in the forward detector ALICE, JHEP 05 (2024) 229

-SIMUL-57154

Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

Flattenicity

We Event-by-event selection based on the relative standard deviation of the multiplicity measured in the 64 V0 channels, N^(ch. i)

<u>A. Ortiz et αl., PRD 107 (2023) 7, 076012</u>

PYTHIA 8.303 (Monash 2013), pp $\sqrt{s} = 13$ TeV, $N_{mpi} = 24$

Small local N^(ch. i) fluctuations in the VO acceptance: small flattenicity values "isotropic" distribution of particles in the VO acceptance (large multiplicities)

$$o = \sqrt{\sum_{i}^{64} \left(N^{(\text{ch.}i)} - \langle N^{(\text{ch})} \rangle \right)^2 / 64^2} /$$

p_T spectra as a function of flattenicity

Intermediate p_T : a bump structure is developed with increasing multiplicity Whigh p_T : Q_{pp} seems to approach to the vicinity of one

Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

Instituto de Ciencias Nucleares UNAM

Flattenicity: data vs models

See Paola Vargas talk: 8/11/24 12:15 h (QCD4)

Epos LHC does not describe data, PYTHIA w/o CR, flat Qpp

21

Pb-Pb physics program

Multiplicity: Run 3 Pb-Pb collisions

Multiplicity measured using tracks (TPC, ITS)

Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

Results in line with extrapolation from lower energies

Hadronic phase: resonance production

Scattering of decay daughters of short-lived resonances reduces apparent yield K^*/K ratio decreases with centrality: duration of hadronic phase increases with centrality $K^*/K^0_{kin} = K^*/K^0_{chem} \times e^{-\tau/\tau_{K^*}}$

Light nuclei

Light nuclei

³He elliptic flow

ALI-PREL-570403

Inv v2 sensitive to geometry: largest for semicentral Pb-Pb collisions small in central Pb-Pb collisions

Coalescence model describes better the data than "thermal freeze out model"

Speed of sound?

-> measure speed of sound"

\otimes Slope depends on centrality estimator: E_T -based selection give larger c_s than multiplicity-based estimator Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

See Omar Vázquez talk: 8/11/24 11:35 h (QCD4)

Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

LS3 upgrades

Goal: determine small-x gluon density in the nucleus by measuring forward production of isolated direct photons, π^0 , jets

3.2<*η*<5.8

Highly granular Si+W electromagnetic calorimeter (FoCal-E)

Cu+scintillating-fiber hadronic calorimeter (FoCal-H)

Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

Final prototype of FoCal (tested at SPS)

FoCal-E Pixels

FoCal-E Pads

FoCal-H

FoCal-E Pads

- 18 layers Si pad sensors
- wafers of 9 x 8 cm²
- pad size 1 cm²
- readout with HGCROC v2

FoCal-E Pixels

- 2 ALPIDE pixel layers
- Monolithic Active Pixel Sensors
- pixel size of ~30 x 30 µm²
- two tested prototypes (HIC,pCT)

FoCal-H

- 9 Cu-scintillating fiber modules
- towers size ~ 6.5 x 6.5 cm²
- length ~110 cm
- readout with CAEN DT5202

TDR approved <u>CERN-LHCC-2024-004</u>, <u>ALICE-TDR-022</u>

ITS3: replace the 3 inner-most vertexing layers of ALICE with ultra-light tracking layers $(0.07\% X_0 \text{ per layer})$

Improved pointing resolution for heavy flavour reconstruction

Di-lepton measurements

Digital pixel test structure

TDR approved <u>CERN-LHCC-2024-003</u>; ALICE-TDR-021

31

Runs 3 and 4

Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

Ciencias Nucleares UNAN

- What is the nature of interactions between highly energetic quarks and gluons and the quark-gluon plasma?
- To what extent do quarks of different mass reach thermal equilibrium?
- How do quarks and gluons transition to hadrons as the quark-gluon plasma cools down?
 - What are the mechanisms for the restoration of chiral symmetry in the quark-gluon plasma?

Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

Upgrades beyond LS4

Measurements beyond Run 4

Further progress relies on Precision measurements of dileptons evolution of the QGP / mechanisms of chiral symmetry restoration in the QGP

Systematic measurements of (multi-)heavy-flavoured hadrons It the the the the the the the test of hadronisation from the QGP

Collectivity in small systems ALICE 3 would open an unique opportunity to fully understand the origin of collectivity in small systems

Probes

We Heavy-flavour hadrons ($p_T \rightarrow 0$, wide η range) vertexing, tracking, hadron ID

 $^{\text{O}}$ Dileptons ($p_{\rm T} \approx 0.1 - 3$ GeV/c, $M_{ee} \approx 0.1 - 4$ GeV/c²) vertexing, tracking, lepton ID

Photons (0.1 – 50 GeV/c, wide η range) electromagnetic calorimetry

Quarkonia and Exotica $(p_T \rightarrow 0)$ muon ID

Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

Qualitative steps needed in detector performance and statistics next-generation heavy-ion experiment

Detector requirements (Lol)

Component	Observables	Barrel ($ \eta < 1.75$)
Vertexing	(Multi-) charm baryons, dielectrons	Best possible DCA resolution $\sigma_{\rm DCA} \approx 1 \mu{\rm m}$ at $p_{\rm T} = 200$ MeV/c, $\eta = 0$
Tracking	(Multi-) charm baryons, dielectrons, photons	$\sigma_{p_{\rm T}}/p_{\rm T} \approx 1 - 2\%$
Hadron ID	(Multi-) charm baryons	$\pi/K/p$ separation up to a fermi
Electron ID	Dielectrons, quarkonia, $\chi_{cl}(3872)$	Pion rejection by 1000x top to 2-3 GeV/c
Muon ID	Quarkonia, $\chi_{cl}(3872)$	Reconstruction of J/ψ at resident i.e. muons from $p_{\rm T} \approx 1.5~{\rm GeV}$

Instituto de Ciencias Nucleares UNAM

Forward (1.75 < $|\eta| < 4$)

Best possible DCA resolution, $\sigma_{\rm DCA} \approx 30\,\mu{\rm m}$ at $p_{\rm T} = 200 \, {\rm MeV/c}, \eta = 3$

w GeV/c

eV/c at $\eta = 0$

Detectors

Retractable Si-pixel tracker: $\sigma_{\rm pos} \approx 2.5 \,\mu{\rm m},$ $R_{\rm in} \approx 5$ mm, $X/X_0 \approx 0.1 \%$ for the first layer Silicon pixel tracker: $\sigma_{\rm pos} \approx 10\,\mu{\rm m},$ $R_{\rm out} \approx 80$ cm, $L \approx \pm 4 \text{ m},$ $X/X_0 \approx 1\%$ per layer Time of flight: $\sigma_{\rm tof} \approx 20 \ {\rm ps}$ RICH: $n \approx 1.006 - 1.030$, $\sigma_{\theta} \approx 1.5$ rad Time of flight: $\sigma_{\rm tof} \approx 20 \ {\rm ps}$ RICH: $n \approx 1.006 - 1.030$, $\sigma_{\theta} \approx 1.5$ rad Steel absorber: $L \approx 70 \text{ cm}$ muon chambers (scintillators, **RPCs or MWPC**)

ALICE 3

Novel and innovative detector concept

Compact and lightweight all-silicon tracker

Retractable vertex detector
Particle identification systems
Large acceptance

Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

Superconducting magnet system / Continuous read-out and online processing

Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

MID subsystem

Magnetic iron absorber, ~4 nuclear interaction lengths

10-2 hadron rejection factor

Scattering within the absorber: ~5 cm for p=1.5 GeV/c (granularity of $5x5 \text{ cm}^2$ is enough for 1.5-5 GeV/c)

for the MID chambers Plastic sc intillators and silicon photomultiplier (SiPM)

e Proportional Chambers (MWPCs) Plate Chambers (RPCs)

Physics performance studies, see Jesús Muñoz talk: 4/11/24 19:15 h (QCD1)

Test beam results (2023)

Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

40

See Antonio Paz talk: 5/11/24 19:15 h (QCD2)

Successful LS2 upgrades - high data taking efficiency in 2024

pp and heavy-ion physics programs: several new results using Run 3 data

construction

ALICE 3 preparation, progressing well

Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

LS3 upgrades (FoCal and ITS3) moving towards detector

Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

Backup

Time evolution & chiral symmetry

Understand time evolution and mechanisms of chiral symmetry restoration: high-precision measurements of dileptons, also multi-differentially further reduced material; excellent heavy-flavour rejection

100

80

Antonio Ortiz (SILAFAE 2024, CdMx, Mexico)

dissociation of e.g. X(3872) in HIC at thermal momentum scales. CMS: $p_{\rm T} > 10$ GeV/c.

strangeness tracking

Figure 5: Temperature evolution of vector and axial-vector spectral functions (non-linear realization) [132].

