Novel approaches to unveil the origin of collective-like behavior in pp and p-Pb collisions using the ALICE detector at the LHC

XV Latin American Symposium on High Energy Physics November 4-8, 2024, Cinvestav, Mexico City

Paola Vargas, for the ALICE collaboration

Introduction

- **■** QGP-like effects in small systems
- ■Underlying event and multiparton interactions
- Selection biases in pp collisions
- The ALICE detector in Run 2

•Relative transverse activity classifier $R_{\rm T}$

- **•** $R_{\rm T}$ definition
- $\bullet p_{T}$ -spectra as a function of R_{T}
- $\langle p_{\rm T} \rangle$ as a function of $R_{\rm T}$
- ***** Normalized Integrated yields as a function of $R_{\rm T}$

•Charged-particle flattenicity ρ

- **Flattenicity definition**
- $Q_{\rm pp}$ as a function of $p_{\rm T}$
- **•** $Q_{\rm pp}$ data vs MC predictions

Paola Vargas

QGP-like effects in small systems

SILAFAE 2024

Paola Vargas

The effects can be explained qualitatively by two schemes:

QGP formation

Ann.Rev.Nucl.Part.Sci. 68 (2018) 211-235

Multiparton interactions (MPI) and color string interaction

In pp collisions:

- Underlying event (UE): refers to everything that does not come from the hard partonic scattering
- Multiparton interactions (MPI): Several parton scattering occurring in the same pp collision

collisions with high charged-particle multiplicities are dominantly those with larger-than-average MPIs

Instituto de 🌘 Underlying event and Multiparton interactions Ciencias Nucleares

Phys. Rev. Lett. 111, 042001 (2013)

Hard process

The selection of high-multiplicity events affects the distribution for recoil jets showing a higher rate of hard-recoil jets in HM events compared to MB events

Selection bias in pp collisions

Charged particles

The neutral-to-charged particle yield is biased by requiring high charge-particle multiplicity dN/dy (|y|<0.5) ------2K_S[∪] (a) -- K⁺ + K pp $\sqrt{s} = 7$ TeV, PYTHIA8 20 40 60 80 $\langle dN_{ch}/d\eta \rangle (|\eta| < 0.5)$ Phys. Rev. C 99 (2019) 024906

SILAFAE 2024

Paola Vargas

Selection bias in pp collisions

Hard process

SILAFAE 2024

Charged particles

The neutral-to-charged particle yield is biased by requiring high charge-particle multiplicity (a) pp $\sqrt{s} = 7$ TeV, PYTHIA8 20 60 $\langle dN_{ch}/d\eta \rangle (|\eta| < 0.5)$ Phys. Rev. C 99 (2019) 024906

Paola Vargas

The ALICE detector in Run 2

Instituto de 🧲 Ciencias Nucleares UNAM

SILAFAE 2024

Paola Vargas

Relative transverse activity classifier $R_{\rm T}$

momentum (p_{T}^{trig}) in the event

- biased at high- $R_{\rm T}$ values

Instituto de (Ciencias Nucleares

SILAFAE 2024

Paola Vargas

SILAFAE 2024

Paola Vargas

Instituto de (Ciencias Nucleares UNAM

Instituto de (Ciencias Nucleares UNAM

Instituto de Ciencias Nucleares UNAM

SILAFAE 2024

Instituto de Ciencias Nucleares **UNAM**

Paola Vargas

$p_{\rm T}$) as a function of $R_{\rm T}$

ALI-PUB-567949

Low $R_{\rm T}$: The jet contribution dominates at low $R_{\rm T}$, as expected for $R_{\rm T} \rightarrow 0$

Instituto de 🌘 Ciencias **Nucleares UNAM**

$p_{\rm T}$) as a function of $R_{\rm T}$

ALI-PUB-567949

Low $R_{\rm T}$:

• The jet contribution dominates at low $R_{\rm T}$, as expected for $R_{\rm T} \rightarrow 0$ High $R_{\rm T}$:

The $\langle p_{\rm T} \rangle$ is dominated by bulk contribution and exhibits a system size ordering

Instituto de 🌘 Ciencias Nucleares **UNAM**

SILAFAE 2024

Paola Vargas

Instituto de Normalized integrated yield as a function of $R_{\rm T}$ Ciencias Nucleares p-Pb *s*_{NN} = 5.02 TeV pp $\sqrt{s} = 5.02 \text{ TeV}$ ALICE Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 0.5<*p*_<8 GeV/*c*, |η|<0.8 Yield / $\langle N_{ch}^{T}$ Toward Away The event selection based on $R_{\rm T}$ is still sensitive to biases from local multiplicity fluctuations originating from jets R_{T} ALI-PUB-567959 More activity in the **UE** is isotropically transverse region

distributed

SILAFAE 2024

Paola Vargas

large $R_{\rm T}$

08/11/2024

Flattenicity is a measurement of the local multiplicity fluctuations

Event-by-event selection based on the relative standard deviation of the multiplicity measured in the 64 V0channels

Phys. Rev. D 107 (2023) 076012

$$\rho = \frac{\sqrt{\sum_{i=1}^{64} \left(N_{\rm ch}^{\rm cell,i} - \langle N_{\rm ch}^{\rm cell} \rangle\right)^2 / N_{\rm cell}^2}}{\langle N_{\rm ch}^{\rm cell} \rangle}$$

with $N_{ch}^{cell,i}$: particle multiplicity in the i-th cell $\langle N_{ch}^{cell} \rangle$: average multiplicity per event over the all 64 cells

Charged-particle flattenicity ρ

High flattenicity $(1 - \rho \rightarrow 0)$:

 Large local multiplicity fluctuations • \downarrow Low multiplicity $\rightarrow \downarrow$ MPIs

Low flattenicity $(1 - \rho \rightarrow 1)$:

 Small local multiplicity fluctuations • \uparrow High multiplicity $\rightarrow \uparrow$ MPIs

SILAFAE 2024

Paola Vargas

08/11/2024

Instituto de

Nucleares

Ciencias

UNAM

Q_{pp} demonstrates the evolution of the $p_{\rm T}$ -spectral shapes with flattenicity and illustrate the sensitivity to MPI and CR effects arxiv.2407.20037

Instituto de Ciencias **Nucleares** UNAM

Intermediate $p_{\rm T}$:

a bump structure is developed with increasing multiplicity

arxiv.2407.20037

SILAFAE 2024

Ciencias Nucleares UNAM

08/11/2024

Intermediate $p_{\rm T}$:

arxiv.2407.20037

Instituto de 🌎 Ciencias Nucleares UNAM

Intermediate

a bump

Instituto de 🌘 Ciencias Nucleares UNAM

seems to approach the unity

SILAFAE 2024

Paola Vargas

Q_{pp} data vs MC predictions

- Overestimates Q_{pp} ratios at intermediate $p_{\rm T}$
- Underestimates Q_{pp} ratios at high p_{T}

arxiv.2407.20037

Instituto de 🌎 Ciencias Nucleares UNAM

\mathcal{Q}_{pp} data vs MC predictions

- Overestimates Q_{pp} ratios at intermediate $p_{\rm T}$
- Underestimates Q_{pp} ratios at high $p_{\rm T}$

arxiv.2407.20037

- unity

Instituto de 🌎 Ciencias Nucleares UNAM

• $Q_{\rm pp}$ ratios consistent with

It does not describe the data

\mathcal{Q}_{pp} data vs MC predictions

arxiv.2407.20037

Instituto de 🌎 Ciencias Nucleares UNAM

SILAFAE 2024

Paola Vargas

Summary

Relative transverse activity classifier $R_{\rm T}$:

- For $R_T < 2$, the activity in the transverse region is a good proxy for UE
- For $R_T > 2$, the activity in the transverse region gets biased towards multi-jet final states (probably from hard Bremsstrahlung radiation)
- The transverse region is affected by autocorrelations: the $p_{\rm T}$ spectra get harder with increasing $R_{\rm T}$. Similar behavior is seen using the track multiplicity instead of $R_{\rm T}$

Charged particle flattenicity $1 - \rho$:

- Flattenicity is sensitive to MPIs and is less affected by biases towards larger $p_{\rm T}$ due to local multiplicity fluctuations in the V0 acceptance
- The good description of PYTHIA 8 with CR suggests that a simple superposition of independent parton-parton scatterings cannot describe pp data. Final-state interactions are needed.

Backup

SILAFAE 2024

Paola Vargas

