Quantization of a Klein-Gordon spin j = 1 field

Armando De La Cruz Rangel Pantoja, Dr. Carlos Alberto Vaquera Araujo.

> División de Ciencias e Ingenierías. Universidad de Guanajuato.

> > XV SILAFAE

June 7th, 2024

- 1 Homogeneous Lorentz Group
- 2 Klein-Gordon j = 1/2 field
 - Klein-Gordon vs Dirac
 - KG hermitian theory
 - KG pseudohermitian theory
- 3 Klein-Gordon j=1 field
 - j = 1 Dirac-like field
 - ullet Covariant basis for $(1,0) \oplus (0,1)$
 - Mauro equation
 - Klein-Gordon vs Mauro
 - KG hermitian theory
 - KG pseudohermitian theory
- Conclusions

- 1 Homogeneous Lorentz Group
- ② Klein-Gordon j = 1/2 field
 - Klein-Gordon vs Dirac
 - KG hermitian theory
 - KG pseudohermitian theory
- \bigcirc Klein-Gordon i=1 field
 - j = 1 Dirac-like field
 - Covariant basis for $(1,0) \oplus (0,1)$
 - Mauro equation
 - Klein-Gordon vs Mauro
 - KG hermitian theory
 - KG pseudohermitian theory
- Conclusion:

The Homogeneous Lorentz Group (HLG) is the group O(1,3), whose elements, $L^{\mu}{}_{\rho}$, are defined by

$$L^{\mu}{}_{\rho}g_{\mu\nu}L^{\nu}{}_{\sigma}=g_{\rho\sigma}.\tag{1}$$

This group can be separated into 4 disconnected components:

- Proper ortochronous: $\det L=1$ & $L^0{}_0>0$. It's the subgroup $SO^+(1,3)$, aka **Restricted Lorentz Group (RLG)**. Its elements are $\Lambda^\mu{}_\nu$.
- Improper ortochronous: $\det L = -1 \& L^0_0 > 0$. Its elements are

$$[\mathcal{P}\Lambda]^{\mu}_{\ \nu}, \qquad \qquad \mathcal{P} = \mathsf{Diag}(1, -1, -1, -1).$$
 (2)

• Improper heterochronous: $\det L = -1 \& L^0_0 < 0$. Its elements are

$$[\mathcal{T}\Lambda]^{\mu}_{\ \nu}, \qquad \qquad \mathcal{T} = \mathsf{Diag}(-1, 1, 1, 1). \tag{3}$$

ullet Proper heterochronous: det $L=1~\&~L^0_{~0}<0$. Its elements are

$$[\mathcal{PT}\Lambda]^{\mu}_{\ \nu}, \qquad \qquad \mathcal{PT} = \mathsf{Diag}(-1, -1, -1, -1). \tag{4}$$

In general, the RLG is a six-parameter Lie group whose elements can be written as $\frac{1}{2}$

$$\Lambda(\boldsymbol{\theta}, \boldsymbol{\phi}) = \exp\left[-\frac{i}{2}\Omega_{\mu\nu}J^{\mu\nu}\right] \tag{5}$$

where the generators $J^{\mu
u}$ satisfy the algebra

$$[J^{\mu\nu}, J^{\rho\sigma}] = i(\eta^{\nu\rho}J^{\mu\sigma} - \eta^{\mu\rho}J^{\nu\sigma} + \eta^{\nu\sigma}J^{\mu\rho} - \eta^{\mu\sigma}J^{\nu\rho}). \tag{6}$$

It can be rewritten as

$$[J^{i}, J^{j}] = i\varepsilon^{ijk}J^{k}, \qquad [J^{i}, K^{j}] = i\varepsilon^{ijk}K^{k}, \qquad [K^{i}, K^{j}] = -i\varepsilon^{ijk}J^{k}, \qquad (7)$$

where $J^i = \frac{1}{2} \varepsilon^{ijk} J^{jk}$, $K^i = J^{i0}$. Defining the operators $\boldsymbol{A}, \boldsymbol{B}$ as

$$\mathbf{A} = \frac{1}{2} (\mathbf{J} - i\mathbf{K}), \qquad \mathbf{B} = \frac{1}{2} (\mathbf{J} + i\mathbf{K}), \qquad (8)$$

it simplifies to two copies of the SU(2) algebra

$$[A^i, A^j] = i\varepsilon^{ijk}A^k, \qquad [A^i, B^j] = 0, \qquad [B^i, B^j] = i\varepsilon^{ijk}B^k. \tag{9}$$

In this sense

$$SO^+(1,3) \simeq SU(2)_A \otimes SU(2)_B$$
 (10)

The irreps of the RLG are therefore

- Defined by (a, b), where $a, b = 0, 1/2, 1, 3/2, \cdots$.
- Have dimension (2a+1)(2b+1).
- Have eigenstates $\{|a, b, m_a, m_b\rangle = |a, m_a\rangle |b, m_b\rangle \}$, with

$$\mathbf{A}^{2}|a,m_{a}\rangle = a(a+1)|a,m_{a}\rangle \qquad \qquad \mathbf{B}^{2}|b,m_{b}\rangle = b(b+1)|b,m_{b}\rangle \qquad (11)$$

$$A_3 |a, m_a\rangle = m_a |a, m_a\rangle \qquad \qquad B_3 |b, m_b\rangle = m_b |b, m_b\rangle \qquad (12)$$

$$(0,0)$$

$$(\frac{1}{2},0) \quad (0,\frac{1}{2})$$

$$(1,0) \quad (\frac{1}{2},\frac{1}{2}) \quad (0,1)$$

$$(\frac{3}{2},0) \quad (1,\frac{1}{2}) \quad (\frac{1}{2},1) \quad (0,\frac{3}{2})$$

$$\vdots \qquad \vdots \qquad \vdots$$

There is an infinite number of irreps for the RLG, however, the Standard Model only uses a few of them:

- (0,0): Higgs.
- $(\frac{1}{2},0),(0,\frac{1}{2})$: Leptons and quarks.
- $(\frac{1}{2}, \frac{1}{2})$: Gauge bosons.

- Homogeneous Lorentz Group
- 2 Klein-Gordon j = 1/2 field
 - Klein-Gordon vs DiracKG hermitian theory
 - KG pseudohermitian theory
- \bigcirc Klein-Gordon i-1 field
 - j = 1 Dirac-like field
 - ullet Covariant basis for $(1,0) \oplus (0,1)$
 - Mauro equation
 - Klein-Gordon vs Mauro
 - KG hermitian theory
 - KG pseudohermitian theory
- Conclusions

- Homogeneous Lorentz Group
- 2 Klein-Gordon j = 1/2 field
 - Klein-Gordon vs Dirac
 - KG hermitian theory
 - KG pseudohermitian theory
- \bigcirc Klein-Gordon i=1 field
 - j = 1 Dirac-like field
 - Covariant basis for $(1,0) \oplus (0,1)$
 - Mauro equation
 - Klein-Gordon vs Mauro
 - KG hermitian theory
 - KG pseudohermitian theory
- Conclusions

Klein-Gordon j = 1/2 field. Klein-Gordon vs Dirac

The dynamics of a spin j=1/2 field $\psi\in\left(\frac{1}{2},0\right)\oplus\left(0,\frac{1}{2}\right)$ are conventionally described by the Dirac equation

$$(i\gamma^{\mu}\partial_{\mu}-m)\psi(x)=0. \tag{13}$$

Dirac solution ⇒ KG solution.

Every solution of the Dirac equation solves the Klein-Gordon equation

$$(-i\gamma^{\mu}\partial_{\mu}-m)(i\gamma^{\mu}\partial_{\mu}-m)\psi(x)=(\partial^{2}+m^{2})\psi(x)=0. \tag{14}$$

However the converse is not true, i.e. not every solution of the Klein-Gordon equation is a solution to the Dirac equation.

The most general solution of the Klein-Gordon equation is not a solution of the Dirac equation, but can be written in terms of two Dirac solutions¹

$$\psi = \frac{1}{2} \left(1 + \frac{\cancel{\vartheta}}{m} \right) \psi + \frac{1}{2} \left(1 - \frac{\cancel{\vartheta}}{m} \right) \psi = \frac{1}{2} \left(1 + \frac{\cancel{\vartheta}}{m} \right) \psi + \gamma^5 \frac{1}{2} \left(1 + \frac{\cancel{\vartheta}}{m} \right) \gamma^5 \psi = \psi_1 + \gamma^5 \psi_2$$
(15)

Is it possible to describe the dynamics of a spin j=1/2 particle $\psi\in\left(\frac{1}{2},0\right)\oplus\left(0,\frac{1}{2}\right)$ by using just the Klein-Gordon equation?

DCI (UG)

 $^{^{1}}$ N. Cufaro Petroni et al. "Second order wave equation for spin 1/2 fields". In: Phys. Rev. D 31 (1985), pp. 3157–3161. DOI: 10.1103/PhysRevD.31.3157.

- Homogeneous Lorentz Group
- 2 Klein-Gordon j = 1/2 field
 - Klein-Gordon vs Dirac
 - KG hermitian theoryKG pseudohermitian theory
- \bigcirc Klein-Gordon i=1 field
 - j = 1 Dirac-like field
 - Covariant basis for $(1,0) \oplus (0,1)$
 - Mauro equation
 - Klein-Gordon vs Mauro
 - KG hermitian theory
 - KG pseudohermitian theory
- Conclusions

The Klein-Gordon Lagrangian for the spin j=1/2 field $\psi\in\left(\frac{1}{2},0\right)\oplus\left(0,\frac{1}{2}\right)$ is

$$\mathcal{L} = \partial^{\mu} \bar{\psi} \partial_{\mu} \psi - \mathbf{m}^2 \bar{\psi} \psi, \tag{16}$$

where the Dirac dual is $\bar{\psi}=\psi^\dagger\gamma^0.$ The conjugated momenta $\pi_\psi,\pi_{\bar{\psi}}$ are

$$\pi_{\psi} = \frac{\partial \mathcal{L}}{\partial (\partial_0 \psi)} = \dot{\bar{\psi}}, \qquad \qquad \pi_{\bar{\psi}} = \frac{\partial \mathcal{L}}{\partial (\partial_0 \bar{\psi})} = \dot{\psi}. \tag{17}$$

Observations

- The field has 8 degrees of freedom, twice those of the Dirac field.
- \bullet The mass dimension of this field is 1, not the 3/2 dimension of the Dirac field.

The Dirac decomposition of the Klein-Gordon solution is

$$\psi = \frac{1}{\sqrt{2m}} \left(\psi_1 + \gamma^5 \psi_2 \right), \qquad \bar{\psi} = \frac{1}{\sqrt{2m}} \left(\bar{\psi}_1 - \bar{\psi}_2 \gamma^5 \right), \qquad (18)$$

$$\begin{split} \psi(x) &= \frac{1}{\sqrt{2m}} \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_p}} \sum_{s=1}^2 \left\{ \left[a_{p,s}^1 + a_{p,s}^2 \gamma^5 \right] u_{p,s} e^{-ip \cdot x} + \left[b_{p,s}^{1\dagger} + b_{p,s}^{2\dagger} \gamma^5 \right] v_{p,s} e^{ip \cdot x} \right\} \Big|_{p^0 = E_p}, \\ \bar{\psi}(x) &= \frac{1}{\sqrt{2m}} \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_p}} \sum_{s=1}^2 \left\{ \bar{u}_{p,s} \left[a_{p,s}^{1\dagger} - a_{p,s}^{2\dagger} \gamma^5 \right] e^{ip \cdot x} + \bar{v}_{p,s} \left[b_{p,s}^1 - b_{p,s}^2 \gamma^5 \right] e^{-ip \cdot x} \right\} \Big|_{p^0 = E_p}. \end{split}$$

The canonical quantization starts by imposing the anticommutation relations at equal times

$$\left\{\psi_{a}(\mathbf{x},t),\pi_{\psi,b}(\mathbf{y},t)\right\} = -\left\{\bar{\psi}_{a}(\mathbf{x},t),\pi_{\bar{\psi},b}(\mathbf{y},t)\right\} = i\delta_{ab}\delta^{(3)}(\mathbf{x}-\mathbf{y}),\tag{19}$$

which imply anticommutation relations with the wrong sign ⇒ negative-norm states

$$\{a_{\boldsymbol{p},s}^{1}, a_{\boldsymbol{q},r}^{1\dagger}\} = (2\pi)^{3} \delta_{sr} \delta^{(3)}(\boldsymbol{p} - \boldsymbol{q}), \qquad \{b_{\boldsymbol{p},s}^{1}, b_{\boldsymbol{q},r}^{1\dagger}\} = (2\pi)^{3} \delta_{sr} \delta^{(3)}(\boldsymbol{p} - \boldsymbol{q}), \qquad (20)$$

$$\{a_{\mathbf{p},s}^2, a_{\mathbf{q},r}^{2\dagger}\} = -(2\pi)^3 \delta_{sr} \delta^{(3)}(\mathbf{p} - \mathbf{q}), \qquad \{b_{\mathbf{p},s}^2, b_{\mathbf{q},r}^{2\dagger}\} = -(2\pi)^3 \delta_{sr} \delta^{(3)}(\mathbf{p} - \mathbf{q}).$$
 (21)

It has been shown recently² that this problem can be fixed, and the Klein-Gordon j=1/2 field can be consistently quantized as a pseudohermitian QFT.

DCI (UG)

²Rodolfo Ferro-Hernández et al. "Quantization of second-order fermions". In: Phys. Rev. D 109 (8 Apr. 2024), p. 085003. DOI: 10.1103/PhysRevD.109.085003. URL: https://link.aps.org/doi/10.1103/PhysRevD109≠085003∉ 등 → ← 등 → ⊝ Q Q

- Homogeneous Lorentz Group
- 2 Klein-Gordon j = 1/2 field
 - Klein-Gordon vs Dirac
 - KG hermitian theoryKG pseudohermitian theory
- \bigcirc Klein-Gordon i = 1 field
 - j = 1 Dirac-like field
 - Covariant basis for $(1,0) \oplus (0,1)$
 - Mauro equation
 - Klein-Gordon vs Mauro
 - KG hermitian theory
 - KG pseudohermitian theory
- Conclusions

 $\textbf{Pseudohermiticity} \text{ in quantum theories was proposed and studied in}^{3}. \text{ An operator H is pseudohermitian if it satisfies}$

$$H^{\#} = \eta^{-1} H^{\dagger} \eta = H, \tag{22}$$

where η is a linear and invertible operator. By redefining the inner product between two states as

$$\langle a(t)|b(t)\rangle_{\eta} = \langle a(t)|\eta|b(t)\rangle,$$
 (23)

two features emerge:

The probability amplitudes are preserved in time

$$\langle a(t)|b(t)\rangle_{\eta} = \langle a|e^{-iH^{\dagger}t}\eta e^{iHt}|b\rangle = \langle a|\eta e^{-iHt}e^{iHt}|b\rangle = \langle a|b\rangle_{\eta}. \tag{24}$$

The energy spectrum is real

$$(E - E^*) \langle a_E | a_E \rangle_{\eta} = \langle a_E | (\eta H - H^{\dagger} \eta) | a_E \rangle = 0.$$
 (25)

where $|a_E\rangle$ are energy eigenestates: $H|a_E\rangle = E|a_E\rangle$.

³Ali Mostafazadeh. "Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian". In: Journal of Mathematical Physics 43.1 (Jan. 2002), pp. 205–214. ISSN: 0022-2488. DOI: 10.1063/1.1418246. eprint: https://pubs.aip.org/aip/jmp/article-pdf/43/1/205/19019524/205_1_online.pdf. URL: https://doi.org/10.1063/1.1418246.

The Klein-Gordon theory can be turned pseudohermitian by redefining the dual of the field ψ as $\hat{\psi}$

$$\hat{\psi} = \eta^{-1} \bar{\psi} \eta, \qquad \mathcal{L} = \partial^{\mu} \hat{\psi} \partial_{\mu} \psi - m^{2} \hat{\psi} \psi, \qquad \mathcal{L}^{\#} = \eta^{-1} \mathcal{L}^{\dagger} \eta = \mathcal{L}.$$
 (26)

The fields are now

$$\begin{split} \psi(x) = & \frac{1}{\sqrt{2m}} \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_p}} \sum_{s=1}^2 \left\{ \left[a_{p,s}^1 + a_{p,s}^2 \gamma^5 \right] u_{p,s} e^{-ip \cdot x} + \left[b_{p,s}^{1\dagger} + b_{p,s}^{2\dagger} \gamma^5 \right] v_{p,s} e^{ip \cdot x} \right\}, \\ \hat{\psi}(x) = & \frac{1}{\sqrt{2m}} \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_p}} \sum_{s=1}^2 \left\{ \bar{u}_{p,s} \left[\eta^{-1} a_{p,s}^{1\dagger} \eta - \eta^{-1} a_{p,s}^{2\dagger} \eta \gamma^5 \right] e^{ip \cdot x} \right. \\ & \left. + \bar{v}_{p,s} \left[\eta^{-1} b_{p,s}^1 \eta - \eta^{-1} b_{p,s}^2 \eta \gamma^5 \right] e^{-ip \cdot x} \right\}. \end{split}$$

Defining the action of η on the creation/anihilation operators as

$$\eta^{-1}a_{\boldsymbol{\rho},s}^{1}\eta = a_{\boldsymbol{\rho},s}^{1}, \qquad \eta^{-1}b_{\boldsymbol{\rho},s}^{1\dagger}\eta = b_{\boldsymbol{\rho},s}^{1\dagger}, \qquad \eta^{-1}a_{\boldsymbol{\rho},s}^{2}\eta = -a_{\boldsymbol{\rho},s}^{2}, \qquad \eta^{-1}b_{\boldsymbol{\rho},s}^{2\dagger}\eta = -b_{\boldsymbol{\rho},s}^{2\dagger}, \qquad (27)$$

the dual becomes

$$\hat{\psi}(x) = \frac{1}{\sqrt{2m}} \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_p}} \sum_{s=1}^{2} \left\{ \bar{u}_{p,s} \left[a_{p,s}^{1\dagger} + a_{p,s}^{2\dagger} \gamma^5 \right] e^{ip \cdot x} + \bar{v}_{p,s} \left[b_{p,s}^1 + b_{p,s}^2 \gamma^5 \right] e^{-ip \cdot x} \right\}. \quad (28)$$

An explicit expression for this operator η is

$$\eta = \exp\left[i\pi \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \sum_{s} \left(a_{\mathbf{p},s}^{2\dagger} a_{\mathbf{p},s}^2 + b_{\mathbf{p},s}^{2\dagger} b_{\mathbf{p},s}^2\right)\right], \qquad \eta^{\dagger} = \eta \qquad \eta^{\dagger} \eta = 1.$$
 (29)

June 7th 2024

The Klein-Gordon Lagrangian is now

$$\mathcal{L} = \partial^{\mu}\hat{\psi}\partial_{\mu}\psi - \mathbf{m}^{2}\bar{\psi}\psi,\tag{30}$$

where $\hat{\psi} = \eta^{-1} \bar{\psi} \eta$. The conjugated momenta $\pi_{\psi}, \pi_{\hat{\psi}}$ are

$$\pi_{\psi} = \frac{\partial \mathcal{L}}{\partial (\partial_0 \psi)} = \dot{\hat{\psi}}, \qquad \qquad \pi_{\hat{\psi}} = \frac{\partial \mathcal{L}}{\partial (\partial_0 \hat{\psi})} = \dot{\psi}. \tag{31}$$

The canonical anticommutation relations at equal times

$$\left\{\psi_{a}(\mathbf{x},t),\pi_{\psi,b}(\mathbf{y},t)\right\} = -\left\{\hat{\psi}_{a}(\mathbf{x},t),\pi_{\hat{\psi},b}(\mathbf{y},t)\right\} = i\delta_{ab}\delta^{(3)}(\mathbf{x}-\mathbf{y}),\tag{32}$$

imply now the anticommutation relations with the right sign \Rightarrow no negative-norm states

$$\{a_{\boldsymbol{p},s}^{1}, a_{\boldsymbol{q},r}^{1\dagger}\} = (2\pi)^{3} \delta_{sr} \delta^{(3)}(\boldsymbol{p} - \boldsymbol{q}), \qquad \{b_{\boldsymbol{p},s}^{1}, b_{\boldsymbol{q},r}^{1\dagger}\} = (2\pi)^{3} \delta_{sr} \delta^{(3)}(\boldsymbol{p} - \boldsymbol{q}), \qquad (33)$$

$$\{a_{\boldsymbol{p},s}^2, a_{\boldsymbol{q},r}^{2\dagger}\} = (2\pi)^3 \delta_{sr} \delta^{(3)}(\boldsymbol{p} - \boldsymbol{q}), \qquad \{b_{\boldsymbol{p},s}^2, b_{\boldsymbol{q},r}^{2\dagger}\} = (2\pi)^3 \delta_{sr} \delta^{(3)}(\boldsymbol{p} - \boldsymbol{q}).$$
 (34)

In addition, this pseudohermitian QFT has the following features

Microcausality

$$\{\psi_a(x), \hat{\psi}_b(y)\} = \Delta(x - y)\delta_{ab}, \qquad \{\psi_a(x), \psi_b(y)\} = 0, \qquad \{\hat{\psi}_a(x), \hat{\psi}_b(y)\} = 0,$$
 (35)

where $\Delta(x-y)$ is the Lorentz invariant and causal Schwinger's Green function

$$\Delta(x-y) = \int \frac{d^3p}{(2\pi)^3 2E_{\boldsymbol{p}}} \left[e^{-ip\cdot(x-y)} - e^{ip\cdot(x-y)} \right]$$
 (36)

Hamiltonian

$$H = : \int d^{3}x \left(\partial_{0}\hat{\psi}\partial_{0}\psi + \partial_{i}\hat{\psi}\partial_{i}\psi + m^{2}\hat{\psi}\psi \right) :$$

$$= \int \frac{d^{3}q}{(2\pi)^{3}} E_{q} \sum_{r=1}^{2} \left\{ a_{q,r}^{1\dagger} a_{q,r}^{1} + a_{q,r}^{2\dagger} a_{q,r}^{2} + b_{q,r}^{1\dagger} b_{q,r}^{1} + b_{q,r}^{2\dagger} b_{q,r}^{2} \right\}$$
(37)

Momentum

DCI (UG)

$$P_{i} = : -\int d^{3}x \left(\partial_{0} \hat{\psi} \partial_{i} \psi + \partial_{i} \hat{\psi} \partial_{0} \psi \right) :$$

$$= \int \frac{d^{3}q}{(2\pi)^{3}} \mathbf{q} \sum_{r=1}^{2} \left\{ a_{\mathbf{q},r}^{1\dagger} a_{\mathbf{q},r}^{1} + a_{\mathbf{q},r}^{2\dagger} a_{\mathbf{q},r}^{2} + b_{\mathbf{q},r}^{1\dagger} b_{\mathbf{q},r}^{1} + b_{\mathbf{q},r}^{2\dagger} b_{\mathbf{q},r}^{2} \right\}$$
(38)

18 / 41

U(1)-charge

$$Q_{U(1)} = : i \int d^3x \left(\hat{\psi} \partial_0 \psi - \partial_0 \hat{\psi} \psi \right) :$$

$$= \int \frac{d^3q}{(2\pi)^3} \sum_{r=1}^2 \left\{ a_{\mathbf{q},r}^{1\dagger} a_{\mathbf{q},r}^1 + a_{\mathbf{q},r}^{2\dagger} a_{\mathbf{q},r}^2 - b_{\mathbf{q},r}^{1\dagger} b_{\mathbf{q},r}^1 - b_{\mathbf{q},r}^{2\dagger} b_{\mathbf{q},r}^2 \right\}$$
(39)

Discrete symmetries

$$P\psi(x)P^{-1}=i\gamma^0\psi(\mathcal{P}x), \qquad C\psi(x)C^{-1}=\mathcal{C}\hat{\psi}^T(x), \qquad T\psi(x)T^{-1}=\mathcal{C}\gamma^5\psi(\mathcal{T}x),$$

where $C = -i\gamma^2\gamma^0$. The theory is invariant under C, P, and T.

Can have dimension-4 fermion self-interactions

$$\mathcal{L}_{int} = \frac{\lambda_1}{2} \left(\hat{\psi} \psi \right)^2 + \frac{\lambda_2}{2} \left(\hat{\psi} \gamma^5 \psi \right) \left(\hat{\psi} \gamma^5 \psi \right) + \frac{\lambda_3}{2} \left(\hat{\psi} M^{\mu\nu} \psi \right) \left(\hat{\psi} M_{\mu\nu} \psi \right) \tag{40}$$

 Renormalizable. It has been shown in⁴ that its electrodynamics and self-interactions are renormalizable at one-loop.

DCI (UG) Quantization of a KG spin i = 1 field

⁴Carlos A. Vaguera-Araujo, Mauro Napsuciale, and René Ángeles-Martinez. "Renormalization of the QED of self-interacting second order spin 1/2 fermions." In: Journal of High Energy Physics 2013.1 (Jan. 2013), p. 11. ISSN: 1029-8479. DOI:

- Homogeneous Lorentz Group
- ② Klein-Gordon j = 1/2 field
 - Klein-Gordon vs Dirac
 - KG hermitian theory
 - KG pseudohermitian theory
- 3 Klein-Gordon j = 1 field
 - \bullet j=1 Dirac-like field
 - Covariant basis for $(1,0) \oplus (0,1)$
 - Mauro equation
 - Klein-Gordon vs Mauro
 - KG hermitian theory
 - KG pseudohermitian theory
- Conclusions

- Homogeneous Lorentz Group
- ② Klein-Gordon j = 1/2 field
 - Klein-Gordon vs Dirac
 - KG hermitian theory
 - KG pseudohermitian theory
- Is Klein-Gordon j = 1 field
 - j = 1 Dirac-like field
 - Covariant basis for $(1,0) \oplus (0,1)$
 - Mauro equation
 - Klein-Gordon vs Mauro
 - KG hermitian theory
 - KG pseudohermitian theory
- Conclusions

Klein-Gordon j = 1 field. j = 1 Dirac-like field

Is it possible to describe the dynamics of a spin j=1 matter particle $\Psi\in(1,0)\oplus(0,1)$ by using the Klein-Gordon equation?

Observations:

ullet It is analogous to a Dirac field, but for spin j=1

Dirac:
$$\psi(x) \in \left(\frac{1}{2}, 0\right) \oplus \left(0, \frac{1}{2}\right)$$
 \sim $\Psi(x) \in (1, 0) \oplus (0, 1)$ $\psi(x) : 4$ -dim spinor object $\Psi(x) : 6$ -dim spinor-like object

• Free EOM:

Dirac:
$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$$
 \sim $\mathcal{O}(\partial)\Psi(x) = 0$?

- Homogeneous Lorentz Group
- 2 Klein-Gordon j = 1/2 field
 - Klein-Gordon vs Dirac
 - KG hermitian theory
 - KG pseudohermitian theory
- - j = 1 Dirac-like field
 - ullet Covariant basis for $(1,0) \oplus (0,1)$
 - Mauro equation
 - Klein-Gordon vs Mauro
 - KG hermitian theory
 - KG pseudohermitian theory
- Conclusions

Klein-Gordon j=1 field. Covariant basis for $(1,0)\oplus (0,1)$

There exists a covariant basis for operators in the $(1,0)\oplus(0,1)$ rep.

- $\bullet \ \ \text{For the} \ \big(\tfrac{1}{2},0\big) \oplus \big(0,\tfrac{1}{2}\big) \ \text{rep: Dirac basis} \ \big\{\mathbb{1},\gamma^5,\gamma^\mu,\gamma^5\gamma^\mu,\sigma^{\mu\nu}\big\}.$
- $\bullet \ \ \text{For the } (1,0) \oplus (0,1) \ \text{rep: basis} \ \big\{\mathbb{1},\chi,S^{\mu\nu},\chi S^{\mu\nu},M^{\mu\nu},C^{\mu\nu\alpha\beta}\big\}^5.$
- A comparison of these two bases:

Operator	Rep $(rac{1}{2},0)\oplus (0,rac{1}{2})$	Rep $(1,0)\oplus (0,1)$
Dimension	4 × 4	6 × 6
Unit	1	1
Chirality	γ^5	χ
Vector/tensor	γ^{μ}	$\mathcal{S}^{\mu u}$
Pseudo vector/tensor	$\gamma^5 \gamma^\mu$	$\chi \mathcal{S}^{\mu u}$
Lorentz-generators	$M^{\mu u}$	$M^{\mu u}$
Four-rank tensor	_	$C^{\mu ulphaeta}$

Table: Comparison of covariant basis for the $(\frac{1}{2},0)\oplus(0,\frac{1}{2})$ and $(1,0)\oplus(0,1)$ reps.

https://link.aps.org/doi/10.1103/PhysRevD.88.096012.

Quantization of a KG spin i = 1 field

⁵Selim Gómez-Ávila and M. Napsuciale. "Covariant basis induced by parity for the $(j, 0) \oplus (0, j)$ representation". In: *Phys. Rev. D* 88 (9 Nov. 2013), p. 096012. DOI: 10.1103/PhysRevD.88.096012. URL:

- Homogeneous Lorentz Group
- 2 Klein-Gordon j = 1/2 field
 - Klein-Gordon vs Dirac
 - KG hermitian theory
 - KG pseudohermitian theory
- 3 Klein-Gordon j = 1 field
 - j = 1 Dirac-like field
 - Covariant basis for $(1,0) \oplus (0,1)$
 - Mauro equation
 - Klein-Gordon vs Mauro
 - KG hermitian theory
 - KG pseudohermitian theory
- Conclusions

Klein-Gordon j = 1 field. Mauro equation

It has been shown in 67 that the free EOM for this spin j=1 field $\Psi\in(1,0)\oplus(0,1)$ is

$$(\Sigma^{\mu\nu}\partial_{\mu}\partial_{\nu} + m^2)\Psi(x) = 0, \tag{41}$$

which we will call Mauro equation for simplicity, where

$$\Sigma^{\mu\nu} \equiv \frac{1}{2} \left(g^{\mu\nu} + S^{\mu\nu} \right), \tag{42}$$

and $S^{\mu
u}$ is the tensor operator of the basis. Its components are given by the SU(2) generators J^i for j=1

$$S^{00} = \Pi = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix}, \quad S^{0i} = \begin{pmatrix} 0 & J^{i} \\ -J^{i} & 0 \end{pmatrix}, \quad S^{ij} = \begin{pmatrix} 0 & g^{ij} + \{J^{i}, J^{j}\} \\ g^{ij} + \{J^{i}, J^{j}\} & 0 \end{pmatrix}.$$
(43)

The classical aspects and canonical quantization have been already studied. It has been found that it yields a well defined QFT.

DCI (UG)

 $^{^{6}}$ M. Napsuciale et al. "Spin one matter fields". In: *Phys. Rev. D* 93.7 (2016), p. 076003. DOI: 10.1103/PhysRevD.93.076003. arXiv: 1509.07938 [hep-ph].

Mauro Napsuciale. "Space-time origin of gauge symmetry". In: Physica Scripta 98.9 (Aug. 2023), p. 095305. DOI: 10.1088/1402-4896/acecb5.□ ▶ ← ♠ ▶ ← ♠ ▶ ◆ ♠ ▶ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ♠ ▶ ♠ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ▶ ♠ ♠ ♠ ▶ ♠ ♠ ♠ ▶ ♠ ▶ ♠

- Homogeneous Lorentz Group
- ② Klein-Gordon j = 1/2 field
 - Klein-Gordon vs Dirac
 - KG hermitian theory
 - KG pseudohermitian theory
- 3 Klein-Gordon j = 1 field
 - j = 1 Dirac-like field
 - Covariant basis for $(1,0) \oplus (0,1)$
 - Mauro equation
 - Klein-Gordon vs Mauro
 - KG hermitian theory
 - KG pseudohermitian theory
- Conclusions

Klein-Gordon j = 1 field. Klein-Gordon vs Mauro

The dynamics of a spin j=1 field $\Psi\in(1,0)\oplus(0,1)$ are described by the Mauro equation

$$(\Sigma^{\mu\nu}\partial_{\mu}\partial_{\nu} + m^2)\Psi(x) = 0. \tag{44}$$

Mauro solution ⇒ KG solution.

Every solution of the Mauro equation solves the Klein-Gordon equation

$$(R^{\mu\nu}\partial_{\mu}\partial_{\nu}+m^2)(\Sigma^{\mu\nu}\partial_{\mu}\partial_{\nu}+m^2)\Psi(x)=m^2(\partial^2+m^2)\Psi(x)=0, \tag{45}$$

where $R_{\mu\nu}=\frac{1}{2}(g_{\mu\nu}+S_{\mu\nu})$ and $(S^{\mu\nu}\partial_{\mu}\partial_{\nu})^2=\partial^4$. However the converse is not true, i.e. not every solution of the Klein-Gordon equation is a solution to the Mauro equation.

The most general solution of the Klein-Gordon equation is not a solution of the Mauro equation, but can be written in terms of two Mauro solutions $(S(\partial) = S^{\mu\nu}\partial_{\mu}\partial_{\nu})$

$$\Psi = \left[1 + \frac{1}{2m^2} \left(\partial^2 - S(\partial)\right)\right] \Psi + \left[1 + \frac{1}{2m^2} \left(\partial^2 + S(\partial)\right)\right] \Psi$$

$$= \left[1 + \frac{1}{2m^2} \left(\partial^2 - S(\partial)\right)\right] \Psi + \chi \left[1 + \frac{1}{2m^2} \left(\partial^2 - S(\partial)\right)\right] \chi \Psi = \Psi_1 + \chi \Psi_2$$
(46)

Is it possible to describe the dynamics of a spin j=1 particle $\Psi\in(1,0)\oplus(0,1)$ by using just the Klein-Gordon equation?

June 7th 2024

- Homogeneous Lorentz Group
- ② Klein-Gordon j = 1/2 field
 - Klein-Gordon vs Dirac
 - KG hermitian theory
 - KG pseudohermitian theory
- 3 Klein-Gordon j = 1 field
 - j = 1 Dirac-like field
 - Covariant basis for $(1,0) \oplus (0,1)$
 - Mauro equation
 - Klein-Gordon vs Mauro
 - KG hermitian theory
 - KG pseudohermitian theory
- Conclusions

The Klein-Gordon Lagrangian for the spin j=1 field $\Psi\in(1,0)\oplus(0,1)$ is

$$\mathcal{L} = \partial^{\mu} \bar{\Psi} \partial_{\mu} \Psi - m^2 \bar{\Psi} \Psi, \tag{47}$$

where the dual is $\bar{\Psi}=\Psi^{\dagger}S^{00}.$ The conjugated momenta $\Pi_{\Psi},\Pi_{\bar{\Psi}}$ are

$$\Pi_{\Psi} = \frac{\partial \mathcal{L}}{\partial (\partial_0 \Psi)} = \dot{\bar{\Psi}}, \qquad \qquad \Pi_{\bar{\Psi}} = \frac{\partial \mathcal{L}}{\partial (\partial_0 \bar{\Psi})} = \dot{\Psi}. \tag{48}$$

Observation

- The field has 12 degrees of freedom, twice those of the Mauro field.
- The mass dimension of this field is 1, the same as the Mauro field.

The Mauro decomposition of the Klein-Gordon solution is

$$\Psi = \Psi_1 + \chi \Psi_2, \qquad \bar{\Psi} = \bar{\Psi}_1 - \bar{\Psi}_2 \chi, \tag{49}$$

$$\Psi(x) = \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_p}} \sum_{s=1}^3 \left\{ \left[a_{p,s}^1 + a_{p,s}^2 \chi \right] U_{p,s} e^{-ip \cdot x} + \left[b_{p,s}^{1\dagger} + b_{p,s}^{2\dagger} \chi \right] U_{p,s}^c e^{ip \cdot x} \right\} \Big|_{p^0 = E_p}, \quad (50)$$

$$\bar{\Psi}(x) = \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_p}} \sum_{s=1}^3 \left\{ \bar{U}_{p,s} \left[a_{p,s}^{1\dagger} - a_{p,s}^{2\dagger} \chi \right] e^{ip \cdot x} + \bar{U}_{p,s}^c \left[b_{p,s}^1 - b_{p,s}^2 \chi \right] e^{-ip \cdot x} \right\} \Big|_{p^0 = E_p} . \tag{51}$$

The canonical quantization starts by imposing the commutation relations at equal times

$$\left[\Psi_{a}(\mathbf{x},t),\Pi_{\Psi,b}(\mathbf{y},t)\right] = i\delta_{ab}\delta^{(3)}(\mathbf{x}-\mathbf{y}), \qquad \left[\bar{\Psi}_{a}(\mathbf{x},t),\Pi_{\bar{\Psi},b}(\mathbf{y},t)\right] = i\delta_{ab}\delta^{(3)}(\mathbf{x}-\mathbf{y}); \qquad (52)$$

which imply commutation relations with the wrong sign ⇒ negative-norm states

$$[a_{\boldsymbol{p},s}^{1}, a_{\boldsymbol{q},r}^{1\dagger}] = (2\pi)^{3} \delta_{sr} \delta^{(3)}(\boldsymbol{p} - \boldsymbol{q}), \qquad [b_{\boldsymbol{p},s}^{1}, b_{\boldsymbol{q},r}^{1\dagger}] = (2\pi)^{3} \delta_{sr} \delta^{(3)}(\boldsymbol{p} - \boldsymbol{q}), \tag{53}$$

$$[a_{\boldsymbol{p},s}^2, a_{\boldsymbol{q},r}^{2\dagger}] = -(2\pi)^3 \delta_{sr} \delta^{(3)}(\boldsymbol{p} - \boldsymbol{q}), \qquad [b_{\boldsymbol{p},s}^2, b_{\boldsymbol{q},r}^{2\dagger}] = -(2\pi)^3 \delta_{sr} \delta^{(3)}(\boldsymbol{p} - \boldsymbol{q}). \tag{54}$$

⇒ same problem as second-order fermions

Is it possible to consistently quantize this theory as a pseudohermitian QFT?

June 7th, 2024

- Homogeneous Lorentz Group
- 2 Klein-Gordon j = 1/2 field
 - Klein-Gordon vs Dirac
 - KG hermitian theory
 - KG pseudohermitian theory
- 3 Klein-Gordon j = 1 field
 - j = 1 Dirac-like field
 - Covariant basis for $(1,0) \oplus (0,1)$
 - Mauro equation
 - Klein-Gordon vs Mauro
 - KG hermitian theory
 - KG pseudohermitian theory
- Conclusions

The Klein-Gordon theory can be turned pseudohermitian by redefining the dual of the field Ψ as $\hat{\Psi}$

$$\hat{\Psi} = \eta^{-1} \bar{\Psi} \eta, \qquad \qquad \mathcal{L} = \partial^{\mu} \hat{\Psi} \partial_{\mu} \Psi - m^{2} \hat{\Psi} \Psi, \qquad \qquad \mathcal{L}^{\#} = \eta^{-1} \mathcal{L}^{\dagger} \eta = \mathcal{L}.$$
 (55)

The fields are now

$$\begin{split} \Psi(x) &= \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_p}} \sum_{s=1}^3 \left\{ \left[a_{p,s}^1 + a_{p,s}^2 \chi \right] U_{p,s} e^{-ip \cdot x} + \left[b_{p,s}^{1\dagger} + b_{p,s}^{2\dagger} \chi \right] U_{p,s}^c e^{ip \cdot x} \right\}, \\ \hat{\Psi}(x) &= \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_p}} \sum_{s=1}^3 \left\{ \bar{U}_{p,s} \left[\eta^{-1} a_{p,s}^{1\dagger} \eta - \eta^{-1} a_{p,s}^{2\dagger} \eta \chi \right] e^{ip \cdot x} \right. \\ &+ \bar{U}_{p,s}^c \left[\eta^{-1} b_{p,s}^1 \eta - \eta^{-1} b_{p,s}^2 \eta \chi \right] e^{-ip \cdot x} \right\}. \end{split}$$

Defining the action of η on the creation/anihilation operators as

$$\eta^{-1}a_{\boldsymbol{\rho},s}^{1}\eta = a_{\boldsymbol{\rho},s}^{1}, \qquad \eta^{-1}b_{\boldsymbol{\rho},s}^{1\dagger}\eta = b_{\boldsymbol{\rho},s}^{1\dagger}, \qquad \eta^{-1}a_{\boldsymbol{\rho},s}^{2}\eta = -a_{\boldsymbol{\rho},s}^{2}, \qquad \eta^{-1}b_{\boldsymbol{\rho},s}^{2\dagger}\eta = -b_{\boldsymbol{\rho},s}^{2\dagger}, \tag{56}$$

the dual becomes

$$\hat{\Psi}(x) = \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_p}} \sum_{s=1}^3 \left\{ \bar{U}_{p,s} \left[a_{p,s}^{1\dagger} + a_{p,s}^{2\dagger} \chi \right] e^{ip \cdot x} + \bar{U}_{p,s}^c \left[b_{p,s}^1 + b_{p,s}^2 \chi \right] e^{-ip \cdot x} \right\}$$
(57)

An explicit expression for this operator η is

$$\eta = \exp\left[i\pi \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \sum_{s} \left(a_{\mathbf{p},s}^{2\dagger} a_{\mathbf{p},s}^2 + b_{\mathbf{p},s}^{2\dagger} b_{\mathbf{p},s}^2\right)\right], \qquad \eta^{\dagger} = \eta \qquad \eta^{\dagger} \eta = 1.$$
 (58)

The Klein-Gordon Lagrangian is now

$$\mathcal{L} = \partial^{\mu} \hat{\Psi} \partial_{\mu} \Psi - m^2 \bar{\psi} \Psi, \tag{59}$$

where $\hat{\Psi} = \eta^{-1} \bar{\Psi} \eta$. The conjugated momenta $\Pi_{\Psi}, \Pi_{\hat{\Psi}}$ are

$$\Pi_{\psi} = \frac{\partial \mathcal{L}}{\partial (\partial_0 \Psi)} = \dot{\hat{\Psi}}, \qquad \qquad \Pi_{\hat{\Psi}} = \frac{\partial \mathcal{L}}{\partial (\partial_0 \hat{\Psi})} = \dot{\Psi}. \tag{60}$$

The canonical commutation relations at equal times

$$\left[\Psi_{a}(\mathbf{x},t),\Pi_{\Psi,b}(\mathbf{y},t)\right] = i\delta_{ab}\delta^{(3)}(\mathbf{x}-\mathbf{y}), \qquad \left[\bar{\Psi}_{a}(\mathbf{x},t),\Pi_{\bar{\Psi},b}(\mathbf{y},t)\right] = i\delta_{ab}\delta^{(3)}(\mathbf{x}-\mathbf{y}); \qquad (61)$$

imply now the commutation relations with the right sign \Rightarrow no negative-norm states

$$[a_{\boldsymbol{p},s}^{1}, a_{\boldsymbol{q},r}^{1\dagger}] = (2\pi)^{3} \delta_{sr} \delta^{(3)}(\boldsymbol{p} - \boldsymbol{q}), \qquad [b_{\boldsymbol{p},s}^{1}, b_{\boldsymbol{q},r}^{1\dagger}] = (2\pi)^{3} \delta_{sr} \delta^{(3)}(\boldsymbol{p} - \boldsymbol{q}), \qquad (62)$$

$$[a_{p,s}^2, a_{q,r}^{2\dagger}] = (2\pi)^3 \delta_{sr} \delta^{(3)}(\mathbf{p} - \mathbf{q}), \qquad [b_{p,s}^2, b_{q,r}^{2\dagger}] = (2\pi)^3 \delta_{sr} \delta^{(3)}(\mathbf{p} - \mathbf{q}). \tag{63}$$

In addition, this pseudohermitian QFT has the following features

Microcausality

$$[\Psi_{a}(x), \hat{\Psi}_{b}(y)] = \Delta(x - y)\delta_{ab}, \qquad [\Psi_{a}(x), \Psi_{b}(y)] = 0, \qquad [\hat{\Psi}_{a}(x), \hat{\Psi}_{b}(y)] = 0, \tag{64}$$

where $\Delta(x-y)$ is the Lorentz invariant and causal Schwinger's Green function

$$\Delta(x-y) = \int \frac{d^3p}{(2\pi)^3 2E_p} \left[e^{-ip\cdot(x-y)} - e^{ip\cdot(x-y)} \right]$$
 (65)

Hamiltonian

$$H = : \int d^{3}x \left(\partial_{0} \hat{\Psi} \partial_{0} \Psi + \partial_{i} \hat{\Psi} \partial_{i} \Psi + m^{2} \hat{\Psi} \Psi \right) :$$

$$= \int \frac{d^{3}q}{(2\pi)^{3}} E_{q} \sum_{r=1}^{3} \left\{ a_{q,r}^{1\dagger} a_{q,r}^{1} + a_{q,r}^{2\dagger} a_{q,r}^{2} + b_{q,r}^{1\dagger} b_{q,r}^{1} + b_{q,r}^{2\dagger} b_{q,r}^{2} \right\}$$
(66)

Momentum

DCI (UG)

$$P_{i} = : -\int d^{3}x \left(\partial_{0}\hat{\Psi}\partial_{i}\Psi + \partial_{i}\hat{\Psi}\partial_{0}\Psi\right):$$

$$= \int \frac{d^{3}q}{(2\pi)^{3}} \mathbf{q} \sum_{r=1}^{3} \left\{ a_{\mathbf{q},r}^{1\dagger} a_{\mathbf{q},r}^{1} + a_{\mathbf{q},r}^{2\dagger} a_{\mathbf{q},r}^{2} + b_{\mathbf{q},r}^{1\dagger} b_{\mathbf{q},r}^{1} + b_{\mathbf{q},r}^{2\dagger} b_{\mathbf{q},r}^{2} \right\}$$
(67)

35 / 41

U(1)-charge

$$Q_{U(1)} = : i \int d^3x \left(\hat{\Psi} \partial_0 \Psi - \partial_0 \hat{\Psi} \Psi \right) :$$

$$= \int \frac{d^3q}{(2\pi)^3} \sum_{r=1}^3 \left\{ a_{q,r}^{1\dagger} a_{q,r}^1 + a_{q,r}^{2\dagger} a_{q,r}^2 - b_{q,r}^{1\dagger} b_{q,r}^1 - b_{q,r}^{2\dagger} b_{q,r}^2 \right\}$$
(68)

Discrete symmetries (up to a phase)

$$P\Psi(x)P^{-1} = S^{00}\Psi(\mathcal{P}x), \quad C\Psi(x)C^{-1} = -S^{22}S^{00}\hat{\Psi}^{T}(x), \quad T\Psi(x)T^{-1} = S^{11}S^{33}\Psi(\mathcal{T}x),$$

The theory is invariant under C, P, and T.

• Can have dimension-4 self-interactions

$$\mathcal{L}_{\text{int}} = \frac{\lambda_1}{2} \left(\hat{\Psi} \Psi \right)^2 + \frac{\lambda_2}{2} \left(\hat{\Psi} \chi \Psi \right) \left(\hat{\Psi} \chi \Psi \right) + \frac{\lambda_3}{2} \left(\hat{\Psi} M^{\mu\nu} \Psi \right) \left(\hat{\Psi} M_{\mu\nu} \Psi \right) + \frac{\lambda_3}{2} \left(\hat{\Psi} S^{\mu\nu} \Psi \right) \left(\hat{\Psi} S_{\mu\nu} \Psi \right)$$

 Renormalizable. It has been shown in⁸ that the electrodynamics and self-interactions are renormalizable at one-loop.

⁸Ailier Rivero-Acosta and Carlos A. Vaquera-Araujo. "Renormalization of a model for spin-1 matter fields". In: The European Physical Journal C 80.7 (July 2020), p. 618. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-020-8190-5. URL: https://doi.org/10.1140/epjc/s10052-020-8190-5.

- Homogeneous Lorentz Group
- ② Klein-Gordon j = 1/2 field
 - Klein-Gordon vs Dirac
 - KG hermitian theory
 - KG pseudohermitian theory
- \bigcirc Klein-Gordon i=1 field
 - j = 1 Dirac-like field
 - Covariant basis for $(1,0) \oplus (0,1)$
 - Mauro equation
 - Klein-Gordon vs Mauro
 - KG hermitian theory
 - KG pseudohermitian theory
- Conclusions

Conclusions

For the KG hermitian theory:

The theory has negative-norm states. Inconsistent QFT.

Alternative approach: pseudohermiticity

- An operator H is pseudohermitian if it satisfies $H^{\#}=\eta^{-1}H^{\dagger}\eta=H.$
- Redefinition of the inner product of states $\langle a(t)|b(t)\rangle_n = \langle a(t)|\eta|b(t)\rangle$.
- Real energy spectrum.
- Unitary time evolution.

For the KG pseudohermitian theory:

- The theory doesn't have negative-norm states.
- Causal theory.
- Real energy spectrum.
- Unitary time evolution.
- Hamlitonian bounded from below.
- C,P,T invariant.
- Renormalizable.

Thanks

- Homogeneous Lorentz Group
- ② Klein-Gordon j = 1/2 field
 - Klein-Gordon vs Dirac
 - KG hermitian theory
 - KG pseudohermitian theory
- \bigcirc Klein-Gordon i=1 field
 - j = 1 Dirac-like field
 - Covariant basis for $(1,0) \oplus (0,1)$
 - Mauro equation
 - Klein-Gordon vs Mauro
 - KG hermitian theory
 - KG pseudohermitian theory
- Conclusion:

Backup

The commutation relations for bosons are not the same as the anticommutation relations for fermions. However, the relations needed to calculate the commutators/anticommutators of creation and anihilation operators (shown in blue) are exactly the same for bosons and fermions, this is why both theories are quite similar.

 $(1/2,0)\oplus (1/2,0)$ Fermions

$$\left\{\psi_{a}(\mathbf{x},t),\pi_{\psi,b}(\mathbf{y},t)\right\} = i\delta_{ab}\delta^{(3)}(\mathbf{x}-\mathbf{y}) \qquad \left\{\bar{\psi}_{a}(\mathbf{x},t),\pi_{\bar{\psi},b}(\mathbf{y},t)\right\} = -i\delta_{ab}\delta^{(3)}(\mathbf{x}-\mathbf{y}) \qquad (69)$$

$$\left\{\pi_{\psi,b}(\mathbf{y},t),\psi_{a}(\mathbf{x},t)\right\} = i\delta_{ab}\delta^{(3)}(\mathbf{x}-\mathbf{y}) \qquad \left\{\pi_{\bar{\psi},b}(\mathbf{y},t),\bar{\psi}_{a}(\mathbf{x},t)\right\} = -i\delta_{ab}\delta^{(3)}(\mathbf{x}-\mathbf{y}) \tag{70}$$

 $(1,0)\oplus(1,0)$ Bosons

$$\left[\Psi_{a}(\mathbf{x},t),\Pi_{\Psi,b}(\mathbf{y},t)\right] = i\delta_{ab}\delta^{(3)}(\mathbf{x}-\mathbf{y}) \qquad \left[\bar{\Psi}_{a}(\mathbf{x},t),\Pi_{\bar{\Psi},b}(\mathbf{y},t)\right] = i\delta_{ab}\delta^{(3)}(\mathbf{x}-\mathbf{y}) \qquad (71)$$

$$\left[\Pi_{\Psi,b}(\mathbf{y},t),\Psi_{a}(\mathbf{x},t)\right] = -i\delta_{ab}\delta^{(3)}(\mathbf{x}-\mathbf{y}) \qquad \left[\Pi_{\bar{\Psi},b}(\mathbf{y},t),\bar{\Psi}_{a}(\mathbf{x},t)\right] = -i\delta_{ab}\delta^{(3)}(\mathbf{x}-\mathbf{y}) \qquad (72)$$