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Homogeneous Lorentz Group

The Homogeneous Lorentz Group (HLG) is the group O(1,3), whose elements, L*,, are defined
by

Lupg/,uijo = 8po- (1)
This group can be separated into 4 disconnected components:

o Proper ortochronous: detlL = 1 & L% > 0. It's the subgroup SO*(1,3), aka Restricted
Lorentz Group (RLG). lts elements are A#,,.

o Improper ortochronous: detl = —1 & L% > 0. lts elements are
[PA]*,, P =Diag(1,-1,—-1,—1). (2)
o Improper heterochronous: detl = —1 & L% < 0. lts elements are
[TA]HI_/7 T:Diag(flzlvlvl)' (3)

o Proper heterochronous: detL =1 & L% < 0. Its elements are

[PTA",, PT =Diag(-1,-1,—-1,-1). (4)
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Homogeneous Lorentz Group

In general, the RLG is a six-parameter Lie group whose elements can be written as
A(O, p) = exp [—éﬂ,wﬂ“’] (5)
where the generators JHV satisfy the algebra
[, JP7) = (P I — 0 77 g IO — gt ), (6)
It can be rewritten as
[J, M) =ielk Jk, [V, K] =ie Kk, KT, K] = — ik Jk, (7)
where J/ = %a‘jkﬂk, K’ = J0. Defining the operators A, B as

A:%(J—iK), B:%(J-ﬁ-iK), )

it simplifies to two copies of the SU(2) algebra
[A], Al] =ielk Ak, [AT B/] =0, [B', B/] =i B, (9)

In this sense
S0™(1,3) ~ SU(2)4 ® SU(2)5 (10)
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Homogeneous Lorentz Group

The irreps of the RLG are therefore
o Defined by (a, b), where a,b=10,1/2,1,3/2,---.
@ Have dimension (2a + 1)(2b + 1).
o Have eigenstates {|a, b, ma, mp) = |a, ma) |b, mp)}, with

A2|av m3> :a(a+1)|av ma> Bz|b7 mb> :b(b+1)|b7 mb> (11)
As|a, ma) =m;|a, ma) Bs |b, mp) =my |b, myp,) (12)
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Homogeneous Lorentz Group

There is an infinite number of irreps for the RLG, however, the Standard Model only uses a few of
them:

e (0,0): Higgs
° (2

0), (0, 3): Leptons and quarks.
(% %) Gauge bosons.
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Klein-Gordon j = 1/2 field. Klein-Gordon vs Dirac

The dynamics of a spin j = 1/2 field ¢ € (%, 0) ¢ (0, %) are conventionally described by the Dirac
equation
(i7" — m)y(x) = 0. (13)

o Dirac solution = KG solution.
Every solution of the Dirac equation solves the Klein-Gordon equation

(—iv"* 8y — m)(ivH 8y — m)(x) =(8° + m*)h(x) = 0. (14)
However the converse is not true, i.e. not every solution of the Klein-Gordon equation is a

solution to the Dirac equation.

o KG solution #- Dirac solution.
The most general solution of the Klein-Gordon equation is not a solution of the Dirac equation,
but can be written in terms of two Dirac solutions!

0= (14 D) w3 (1-Dw=1 1+ D)o (14 D) v = v b
(15)

Is it possible to describe the dynamics of a spin j = 1/2 particle ¢ € (%, 0) & (0, %) by using
just the Klein-Gordon equation?

IN. Cufaro Petroni et al. “Second order wave equation for spin 1/2 fields". In: Phys. Rev. D 31 (1985), pp. 3157-3161. Dol
10.1103/PhysRevD.31.3157.
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Klein-Gordon j = 1/2 field. KG hermitian theory

The Klein-Gordon Lagrangian for the spin j = 1/2 field ¢ € (%, 0) & (0, %) is

L= 010y — m*, (16)
where the Dirac dual is ) = 1T~%. The conjugated momenta Ty, Ty are
oL B oL .
Ty = =1, T =———= = 1. 17
¥ = a0 7 = o00) ()

Observations
o The field has 8 degrees of freedom, twice those of the Dirac field.

© The mass dimension of this field is 1, not the 3/2 dimension of the Dirac field.
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Klein-Gordon j = 1/2 field. KG hermitian theory

The Dirac decomposition of the Klein-Gordon solution is

- 1 _ _
Y= (¥1 + ), P =—=— (Y1 — ¥27°), (18)

1
v2m

|:all775 + 3}2’,575] L’Pyse_ipAX + [bll’TS + bF27T575] Vp,s elp X}‘ o_g, ’
P =Ep

1 Bp 2
) _m/ (2Tr)3\/2Ep Z: {

h(x) = \/7/ ) \/E Z {Up, [a,,Ts apl® ] PX 4 Vp s [bm - b2, ] e_ip'XHPO:Ep'
The canonical quantization starts by imposing the anticommutation relations at equal times
{ta(x, 1), 7y b(y, 1)} = — {ia(n t), 75 5(¥s t)} =803 (x — y), (19)
which imply anticommutation relations with the wrong sign = negative-norm states
{35 2q!r} =(2m)*65:6P (p — q), {bps, b3l } =(2m)%05 6% (p — @), (20)
{35,533} =—(2m)*6::0(p — q), {65, bf,T,} =—(2m)*50P(p —q).  (21)

It has been shown recently? that this problem can be fixed, and the Klein-Gordon j = 1/2 field
can be consistently quantized as a pseudohermitian QFT.

2Rodolfo Ferro-Hernandez et al. “Quantization of second-order fermions”. In: Phys. Rev. D 109 (8 Apr. 2024), p. 085003. DOI:
10.1103/PhysRevD.109.085003. URL: https://link.aps.org/doi/10.1103/PhysRevDi 109085003+
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Klein-Gordon j = 1/2 field. KG pseudohermitian theory

3

Pseudohermiticity in quantum theories was proposed and studied in>. An operator H is pseudo-

hermitian if it satisfies
H# =n~'H'n=H, (22)
where 7 is a linear and invertible operator. By redefining the inner product between two states as

(a(1)|b(t)),, = (a(t)Inlb(t)), (23)

two features emerge:

@ The probability amplitudes are preserved in time
(a(t)|b(t)),, = (ale™™" *ne™|b) = (alne™""e™|b) = (a|b),, . (24)
o The energy spectrum is real
(E — E*)(ag|ae), = (ae| (nH — H'n) |ag) = 0. (25)

where |ag) are energy eigenestates: H|ag) = E |ag).

3 Ali Mostafazadeh. “Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a
non-Hermitian Hamiltonian”. In: Journal of Mathematical Physics 43.1 (Jan. 2002), pp. 205-214. 1ssN: 0022-2488. por:
10.1063/1.1418246. eprint: https://pubs.aip.org/aip/jmp/article-pdf/43/1/205/19019524/205\_1\_online.pdf. URI
https://doi.org/10.1063/1.1418246.
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Klein-Gordon j = 1/2 field. KG pseudohermitian theory

The Klein-Gordon theory can be turned pseudohermitian by redefining the dual of the field v as 121
b =01, L =01 a1 — m*p, LF=nlLlyp=L. (26)

The fields are now

[ p,s T ap,S'V ] Up,se x4 [b;Ts + bIZ’TSVS] prseip'x} )

¥ F/(zw)WEZ{

2 .
lastU’Y ] ip-x

-1
alt gy —
F/(zn)a\/EZ{ pis [ 3ken =
+Vp.s [n‘ by sn — n‘lbﬁ,sms] e"""x}~
Defining the action of 1 on the creation/anihilation operators as

n=byls,  nlapm=—a nthplon =—bpls,  (27)

—1.1 al —1 1t
b p.s p.s

N "8psT = p,s

the dual becomes

~ 1 P 2 _ in- _ —ip-
500 o | a3 (oo [0 7 s ] ) o

An explicit expression for this operator 7 is

) d®p
7 =exp |:I7T/ o) Z <35Tsa2 + b2T b2 )], nt=n nin=L1. (29)
s
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Klein-Gordon j = 1/2 field. KG pseudohermitian theory

The Klein-Gordon Lagrangian is now
L= "oy — m* P, (30)
where 1/3 = n~1¢mn. The conjugated momenta Ty, T, are

oL

™ :7:12, Ty = — = 1. (31)
7 o(00w) P o(00d)

The canonical anticommutation relations at equal times
{UJa(X, t)vﬂw,b(yv t)} = - ﬁa(x, t)yﬂ” b(y: t) = i53b6(3)(x7}')’ (32)

b,

imply now the anticommutation relations with the right sign = no negative-norm states

{ap.5 3} =(27)%65:0) (p — @), {bh.s by} =(21)°05,6P (p—q),  (33)
{355 3qr} =(27)*55:6%) (p — q), {625, bglr} =(27)%6, 6% (p—q).  (34)
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Klein-Gordon j = 1/2 field. KG pseudohermitian theory

In addition, this pseudohermitian QFT has the following features

@ Microcausality

{a(x), P(V)} =A(x = y)ap,  {Wa(x),¥6(¥)} =0,  {da(x),Ps(y)} =0,  (35)

where A(x — y) is the Lorentz invariant and causal Schwinger's Green function

d®p : .
Alx — y) = —ip-(x—y) _ gip-(x—y)
== [ GayaE, | e )] (36)

@ Hamiltonian

H=: / o (00000t + Drbr + mP)

(37)
2t 2 1t 41 21 b2
/(27r)3 qg {aq,a% + ag)rag,r + by, bg,r + bylrbyg }

o Momentum

RY
Il

- / Px (901218;111 + )
(38)

1 2 1 2
/(27r)3q > {adhag, +aglal, + bal by, + bl 0, )
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Klein-Gordon j = 1/2 field. KG pseudohermitian theory

U(1)-charge

*x (Boow — dovbe) -

I
=
Q

Qua) =

Bq gt 2% 2 1t 1 g2t g2 (39)
:/ (27)3 Z {awaq -+ ag,rag,r — bg,rbg , — bq,rbq,r}
p

@ Discrete symmetries
Ph(x)P~H = in%u(Px),  CH()CTI=CdT(x),  TY()T 1 =Cr°u(Tx),

where C = —iy?~%. The theory is invariant under C, P, and T.

o Can have dimension-4 fermion self-interactions
Lo =22 (30) 4 22 (3%0) (3%0) + 2 (9M0) (SMuw) — (40)

o Renormalizable. It has been shown in* that its electrodynamics and self-interactions are
renormalizable at one-loop.

4Carlos A. Vaquera-Araujo, Mauro Napsuciale, and René Angeles-Martinez. “Renormalization of the QED of self-interacting
second order spin 1/2 fermions.”. In: Journal of High Energy Physics 2013.1 (Jan. 2013), p. 11. 1ssx: 1029-8479. Dol
10.1007/JHEP01(2013)011. URL: https://doi.org/10.1007/JHEP01(2013)011.
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Klein-Gordon j =1 field. j = 1 Dirac-like field

Is it possible to describe the dynamics of a spin j = 1 matter particle W € (1,0) & (0,1) by
using the Klein-Gordon equation?

(0,0)

Observations:
o It is analogous to a Dirac field, but for spin j =1

1 1
Dirac: ’lZJ(X) S (5,0) ® (0, 5) ~ \U(X) S (170) D (0’ 1)
1¥(x) : 4-dim spinor object W(x) : 6-dim spinor-like object
o Free EOM:
Dirac: (iv#9, — m)y =0 ~ O(0)V(x) =07
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Klein-Gordon j = 1 field
J

o Covariant basis for (1,0) @& (0,1)
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Klein-Gordon j = 1 field. Covariant basis for (1,0) & (0,1)

There exists a covariant basis for operators in the (1,0) @ (0, 1) rep.
o For the (%, 0) @ (0, %) rep: Dirac basis {1,75,7”,757”,0””}.
o For the (1,0) & (0,1) rep: basis {1, x, S*,xSHV, MV CrvaB 15,

@ A comparison of these two bases:

Operator Rep (%, 0) & (0, %) Rep (1,0) & (0,1)
Dimension 4 x4 6 X6
Unit 1 1
Chirality ~° b%
Vector /tensor P Swv
Pseudo vector/tensor ARk xSHY
Lorentz-generators My My
Four-rank tensor — crveB

Table: Comparison of covariant basis for the (3,0) @ (0, 3) and (1,0) @ (0, 1) reps.

5Selim Gémez-Avila and M. Napsuciale. “Covariant basis induced by parity for the (j, 0) €(0, j) representation”. In: Phys
Rev. D 88 (9 Nov. 2013), p. 096012. poOI: 10.1103/PhysRevD.88.096012. URI

https://link.aps.org/doi/10.1103/PhysRevD.88.096012.
June 7th, 2024

DCl (UG) Quantization of a KG spin j = 1 field


https://doi.org/10.1103/PhysRevD.88.096012
https://link.aps.org/doi/10.1103/PhysRevD.88.096012

Outline

Klein-Gordon j = 1 field
J

@ Mauro equation

Quantization of



Klein-Gordon j = 1 field. Mauro equation

It has been shown in®7 that the free EOM for this spin j = 1 field W € (1,0) @ (0,1) is
(ZH 8,0, + m*)W(x) = 0, (41)
which we will call Mauro equation for simplicity, where

1
0= (g + 5M), (42)

and SH¥ is the tensor operator of the basis. Its components are given by the SU(2) generators J'
forj=1

00 _ M1 0 1 0i __ 0 Ji i _ 0 gij+{Ji,Jj}
s —“—(1 o)’ S _<7J" o)’ =g+ (U, 4} 0 - @9

The classical aspects and canonical quantization have been already studied. It has been found that
it yields a well defined QFT.

5Mm. Napsuciale et al. “Spin one matter fields”. In: Phys. Rev. D 93.7 (2016), p. 076003. DOI: 10.1103/PhysRevD.93.076003.
arXiv: 1509.07938 [hep-ph].

"Mauro Napsuciale. “Space-time origin of gauge symmetry”. In: Physica Scripta 98.9 (Aug. 2023), p. 095305. DOl
10.1088/1402-4896/acecb5. URL: https://dx.doi.org/10.1088/1402-4896/acecb5!
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Klein-Gordon j = 1 field. Klein-Gordon vs Mauro

The dynamics of a spin j =1 field ¥ € (1,0) & (0, 1) are described by the Mauro equation

(ZHY 8,8, + m?)W(x) = 0. (44)

@ Mauro solution = KG solution.
Every solution of the Mauro equation solves the Klein-Gordon equation

(RM 8,0, + m?) (M 0,8, + m?)W(x) =m2(8% + m?)W(x) = 0, (45)

where R, = %(gm, + Suv) and (5‘“’8u81,)2 = 9*. However the converse is not true, i.e. not
every solution of the Klein-Gordon equation is a solution to the Mauro equation.

o KG solution % Mauro solution.
The most general solution of the Klein-Gordon equation is not a solution of the Mauro equation,
but can be written in terms of two Mauro solutions (S(9) = $#¥9,.0,)

v = {1+ﬁ (82 —5(6))] v+ {1+ ﬁ (82+5(a))} v
1
2m?

i (46)
(62 - 5(8))} v X{1 +55 (02 - 5(8))} XV = Wy + X,

Is it possible to describe the dynamics of a spin j = 1 particle ¥ € (1,0) & (0,1) by using just
the Klein-Gordon equation?
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Klein-Gordon j = 1 field. KG hermitian theory

The Klein-Gordon Lagrangian for the spin j = 1 field W € (1,0) & (0,1) is
L=0"Ud, ¥ — m?Uy, (47)
where the dual is ¥ = WTS%, The conjugated momenta My, Mg are

My =25 3§, Mg == = V. (48)
9(doV) 9(doV)

Observation
@ The field has 12 degrees of freedom, twice those of the Mauro field.

@ The mass dimension of this field is 1, the same as the Mauro field.
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Klein-Gordon j = 1 field. KG hermitian theory

The Mauro decomposition of the Klein-Gordon solution is

V=V 4 xV,, V=0 — Uy, (49)

d3P 3 1 2 —ip- 1t 2f ip-
v = [ s 3o [obs + ] Upee [l ] e, L 60

500 = [ Gt 3 e s ] 7 05, [~ 630] ), - 50

The canonical quantization starts by imposing the commutation relations at equal times

[wa(xv f)ynw,b(% t)] :’.Jabé(:&)(xfy)? [\Tja(xv t)vn\Tl,b(yv t):| :i65b6(3)(x7y); (52)
which imply commutation relations with the wrong sign = negative-norm states

[a;]; sy atllfr] :(27()365"6(3)(’3 - q)v [ p,s’ q r _(27T)355f6(3 (P q) (53)

[2p.5> 33 r] =—(2m)%6::5C) (p — ), [bj < bair] =—(27)°05,6P)(p —q).  (54)

= same problem as second-order fermions
Is it possible to consistently quantize this theory as a pseudohermitian QFT?
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Klein-Gordon j = 1 field. KG pseudohermitian theory

The Klein-Gordon theory can be turned pseudohermitian by redefining the dual of the field W as U
U =n~ Uy, £ =009,V — m* v, c#* =n~1ctn=1r. (55)
The fields are now
Bp S 4 b2
_ 1 2 —ip~x 1 2 c Lip-x
/*Fm] e [ ] .00
/ Z { p,s [ 13,, sm—n laitsnx]
(27r)3\ [2Ep ’
+Uf o [0 bp e — 0 B anx] e 7P}
Defining the action of 1 on the creation/anihilation operators as

n=bpls,  n lad.n=—a> n~tbplin =—bpls,  (56)

—1.1 1 —1 1t
b P,s P,s’

N "8psT = p,s
the dual becomes

\TJ(X) :/ 27r)3\/f Z {Up7 [ap s+ap sx] ipx 4 U;s [b,l,7s+b,2,7sx] e_ip'x} (57)

An explicit expression for this operator 7 is

o [P 2 22 4 2 p t i
n=ep |in [ 553 > (ap sa5 s+ bplsby ) , nt =n nfn=1.  (58)
s
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Klein-Gordon j = 1 field. KG pseudohermitian theory

The Klein-Gordon Lagrangian is now
L =0"Va, v — m*pv, (59)
where U = 1n~1Wn. The conjugated momenta MMy, My are

oL

N, = =, My == — . 60
v = o(a0v) v (60)

The canonical commutation relations at equal times
[Wa(xv t)yn\U,b(y7 t)] :i52b6(3)(xfy)» [\T,a(x’ t)7n\TJ,b(.y7 t)] :iéabé(?’)(xfy); (61)

imply now the commutation relations with the right sign = no negative-norm states

[a} <. agl] =(27)335:6 (p — q), (b} . byl =(2m)%6.63) (p — ), (62)
[a2 .. agl] =(2m)335:6 (p — q), [b2 .., b3t ] =(21)%65:6®) (p — q). (63)
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Klein-Gordon j = 1 field. KG pseudohermitian theory

In addition, this pseudohermitian QFT has the following features

@ Microcausality

[Wa (), Ws ()] =A(x = ¥)dabs  [Walx), Ws(1)] =0,  [Wa(x), ¥p(y)] =0,  (64)

where A(x — y) is the Lorentz invariant and causal Schwinger's Green function

d®p : .
Alx — y) = —ip-(x—y) _ gip-(x—y)
== [ GayaE, | e )] (65)

@ Hamiltonian
H=: /d3x (aoxifaow +8,09,w + m2ﬁnu) :
(66)
22t 2 1t 41 21 b2
(%)3 qZ{aqV,a +a2ta2, + bl bl + b2f b2 }
o Momentum

P =- —/d3x aoﬁla,-w+a,-®aow) :
(67)

a2t 2 11 41 2’r 2
(2F)3q2{aq,,a ag.rag , + bg'rbg . + by, by }
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Klein-Gordon j = 1 field. KG pseudohermitian theory

U(1)-charge

QU(I) = i/d3X (@'80\11 - 80‘1)\") :
(68)

- f L Gy Do (oAbl il = il — B3]}

o Discrete symmetries (up to a phase)
W(x)P~! = SOU(Px), CW(x)C!=-825"0T(x), TU(x)T !=S5"sBu(Tx),

The theory is invariant under C, P, and T.

Can have dimension-4 self-interactions

L= (ww)ﬂﬁ (@X\u) (@Xw)+’\3 <\UM‘“’\U> (@MW\U)-i-% (\i:s#"w) (\T:sww)

@ Renormalizable. It has been shown in® that the electrodynamics and self-interactions are
renormalizable at one-loop.

8 Ailier Rivero-Acosta and Carlos A. Vaquera-Araujo. “Renormalization of a model for spin-1 matter fields". In: The European
Physical Journal C 80.7 (July 2020), p. 618. 1sSN: 1434-6052. DOI: 10.1140/epjc/s10052-020-8190-5. URL:
https://doi.org/10.1140/epjc/s10052-020-8190-5.
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Conclusions

For the KG hermitian theory:
@ The theory has negative-norm states. Inconsistent QFT.
Alternative approach: pseudohermiticity
o An operator H is pseudohermitian if it satisfies H# = n~1HTn = H.
o Redefinition of the inner product of states (a(t)|b(t)),, = (a(t)|n|b(t)).
@ Real energy spectrum.
@ Unitary time evolution.
For the KG pseudohermitian theory:
o The theory doesn’t have negative-norm states.
Causal theory.
Real energy spectrum.
Unitary time evolution.
Hamlitonian bounded from below.
e C,P,T invariant.

@ Renormalizable.
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The commutation relations for bosons are not the same as the anticommutation relations for
fermions. However, the relations needed to calculate the commutators/anticommutators of creation
and anihilation operators (shown in blue) are exactly the same for bosons and fermions, this is why
both theories are quite similar.
(1/2,0) & (1/2,0) Fermions
{Tlla(xz t)vﬂ-w,b(y» t)} :i63b6(3)(x7y) {d_)a(xr t)vﬂ-'(z,b(y7 t)} :7i6ab6(3)(xfy) (69)
{Ww,b(.ya f)ﬂl’a(X, t)} :i53b6(3)(x_y) {ﬂ-d_;,b(yv t)a'lz)a(xu t)} :—i63b6(3)(x—y) (70)

(1,0) ® (1,0) Bosons

[Walx, 0, Moy, 6)] =i0ap0@ (x—y)  [Walx,8), Mg by, )] =i6ap6@(x—y)  (71)

[n\ll,b(yv t)’ \Ila(x, t)] = - i(sab‘;(?’)(x - y) [H\TJ,b(y’ t): \T}a(xv t)] :7iéab6(3)(x - y) (72)
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