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Abstract

During this thesis, we have studied different hadronic form factors, and we have
used them to compute contributions to the Hadronic Light-by-Light piece of the
muon anomalous magnetic moment (this work has deserved the author member-
ship of the Theory Initiative, thanks to his contributions to the second White Paper).
Specifically, for the HLbL section, we have computed the pseudoscalar pole contri-
butions in the first hybrid analysis (adding lattice to experimental data); we also
computed the first baryonic contribution to HLbL, the proton-box; finally, we com-
puted the tensor meson pole contributions, as a timely third determination due to
the strong tension in previous determinations, claiming for the first time concrete
evidence of new form factors in this sector, which shall require the development of a
new basis in future complete evaluations of this contribution. We used Resonance
Chiral Theory, dispersive representations, rational approaches, and parametrizations
of experimental data, together with lattice QCD calculations, to describe these form
factors, having thus made use of extensive theoretical resources for this thesis. All
this work resulted in 3 papers, 1 short review, 1 collaboration report, and 1 project to
be completed soon.





Resumen

Durante esta tesis, estudiamos distintos factores de forma hadrónicos, y los usamos
para calcular contribuciones a la dispersión luz-por-luz hadrónica del momento
magnético anómalo del muón como miembros de la Iniciativa Teórica, gracias al
impacto de los trabajos realizados y a la contribución al segundo White Paper. Conc-
retamente, en la sección de la dispersión luz-por-luz, calculamos las contribuciones
de polos pseudoescalares en el primer análisis híbrido (añadiendo datos de lat-
tice a los experimentales); también calculamos la primera contribución bariónica
en HLbL, la caja de protones; finalmente, calculamos las contribuciones de polos
tensoriales, como una determinación oportuna debido a la fuerte tensión entre de-
terminaciones previas, declarando por primera vez evidencia concreta de nuevos
factores de forma en este sector, que requerirán una nueva base para el cálculo
completo de estas contribuciones en el futuro. Hemos usado Teoría de Resonancias
Quirales, representaciones dispersivas, métodos racionales y parametrizaciones de
datos experimentales; junto a cálculos de lattice QCD, para describir estos factores
de forma, habiendo hecho uso de una extensa cantidad de recursos teóricos para
la elaboración de esta tesis. Este trabajo produjo 3 artículos, 1 de revisión corta, 1
reporte de colaboración y un proyecto próximo a concluir.
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Introduction

The Standard Model of Elementary Particles has been shown for the last 6 decades
to be consistent with the experimental evidence. However, the SM cannot account
for fundamental observations in the universe, as massive neutrinos, the matter-
antimatter asymmetry, or the nature of Dark Matter. This opens the door for key
searches for deviations from it, which we can separate into three kinds: precise
tests within the Standard Model, phenomenology of new particles, and beyond the
Standard Model physics parametrizations in Effective Field Theories.

The precise tests within the standard theory can be performed both in high-
energy observables at LHC and low-energy precision measurements at high-intensity
experiments, and require enormous efforts from the experimental and theory col-
laborations. Among the most relevant tensions between theory and experiment in
recent years –so-called anomalies–, we can mention the muon anomalous magnetic
moment [1–6], semi-leptonic B meson decays [7–16], measurements of the W boson
mass [17–23], and many others [24].

During the work towards this Ph.D., we focused mainly on improving the pre-
cision of the theoretical determination of the anomalous magnetic moment of the
muon within the Standard Model, contributing to the Theory Initiative and becom-
ing an author of the White Paper 2025 [25], as a recognition of the relevance of the
obtained results. The experimental uncertainty of the current experimental world
average is 145× 10−12 (124 ppb), which shows an enormous improvement with
respect to the first results at the beginning of the century, 630× 10−12 (540 ppb).
Within the Standard Model, the Theory Initiative reported a precision of 430×10−12

in their first report and of 620×10−12 1.

1The increase of the uncertainty in the theoretical determination is caused by the appearance of
new data for the e+e−→ hadrons, which worsened the tension between different datasets used to
determine the Hadronic Vacuum Polarization piece (particularly, its most important contribution,
coming from the di-pion cut) and made impossible a data-driven average at this point. The Lattice
QCD average was used instead, which improved a lot from WP2020 to WP2025, but its uncertainty is
still larger (though more reliable) than that of the data-driven average used in WP2020.
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In contrast with the experimental determination, where the total g−2 is measured,
the theory initiative uses the Standard Model to compute it, which is a Quantum
Field Theory. This implies (particularly for the Hadronic light-by-light piece, see
later discussion and the subsequent chapters) that contributions must be computed
individually and summed, avoiding double-counting (See Refs. [26–85].). To achieve
it, the contributions are separated into electromagnetic, electroweak, and QCD
contributions. The first ones dominate the magnitude of aµ , the second ones are
small in magnitude and in error and the last ones dominate the uncertainty, because
of two factors: having hadrons instead of gluons and quarks as intermediate states,
and having –consequently– to deal with the non-perturbative regime of QCD below
E < 2GeV.

The hadronic sector is divided into the dominant contribution –related to the
Green function of two electromagnetic currents in pure QCD–, called Hadronic
Vacuum Polarization (HVP) and the subdominant contribution –related to the
Green function of four electromagnetic currents in pure QCD–, called Hadronic
Light-by-Light (HLbL). From data-driven methods, the first one can be determined
by the precise measurement of the cross section σ(e+e−→ hadrons) or –by means
of an isospin rotation– the cross section of τ− → π−π0ντ [86–102] from datasets
from BaBar [103, 104], CMD-3 [105], KLOE [106–108], SND20 [109], followed by
CMD-2 [110–114], BESIII [115], and SND06 [116]); or ALEPH [117], CLEO [118],
OPAL [119] and Belle [120], for the tau case. The HLbL piece, in contrast, can-
not be obtained by measuring a single process. Instead, it has to be split into its
hadronic intermediate states, one by one, relating each of them to on-shell observ-
ables, depending on the form factors, which encapsulate all dependence on hadrons
production from QCD.

The tension between theory and experiment has changed more than once during
the last 5 years, starting at 3.7 σ in 2020 with the appearance of the Theory Initiative
White Paper [5], rising to 4.2σ when the first run of the FNAL was analyzed [2],
reaching its maximum of 5.1σ in 2023, when the run 1-3 were analyzed [3] to
finally decrease to its current status with the release of the final results of the FNAL
experiment [4] and the WP 2025 of the Theory Initiative [6]. The current value of the
(non-)tension is 38(63)×10−11, being compatible within 1 σ ; however, the Hadronic
Vacuum Polarization piece is still in internal tension between experimental inputs
and Lattice QCD ones [26, 34, 38, 32, 35, 39, 28].

The status of this tension and the increase of the uncertainty on the theory
side, does not mean –at all– that there have been no relevant improvements in
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the determination of this observable within the Standard Model. Piece by piece,
there have been significant advances. Three of them are included in this thesis: The
determination of the pseudoscalar pole contributions [62] to the HLbL, the first
determination of baryonic contributions to the Hadronic Light-by-Light piece [121],
and finally, a timely third determination of the tensor meson pole contributions to the
HLbL [122], which explored the gap between the other two determinations [67, 69].
We stress that the more reliable uncertainty of the second White Paper [6] should
also be seen as a remarkable collective advance.

As a result of these works, a full evaluation of aHLbL
µ within Resonance Chiral

Theory has become closer. The pseudoscalar-box contributions were computed for
this thesis as part of a Review that outlines the recent progress and remaining pieces
for achieving a full RχT determination of the HLbL piece [123].

All these works have a common necessary ingredient: an accurate description
of the hadronic form factors. These are the essential inputs to compute the HLbL
contributions to g−2 with high precision. The main procedure for doing so is:

1. Construct a model for the Form Factors: in the works of [62, 122, 123], a theory
based on the symmetries of QCD are used to construct a model for the form
factor, Resonance Chiral Theory 2.

2. Impose the short-distance constraints: OPE provides a tool for computing the
behavior of these form factors at high energies. Furthermore, the Light Cone
Expansion offers a generalization of these results[124].

3. Fitting the free parameters: the parameters which could not be constrained by
symmetries or SDCs, can be fitted –if available– to experimental information,
and in some cases, to LQCD calculations.

4. Computing the aµ contributions: With the help of computational tools such as
VEGAS integrator [125], and the Master Formula developed in Refs. [126, 46,
48, 61] a value for the individual contributions can be obtained with the form
factors.

5. Assessment of theory uncertainties: Most models cannot reproduce everything
that the known theory predicts. The assessment of the theory uncertainties is
fundamental for a computation to be reliable.

2In [121], accurate parametrizations of experimental data and LQCD calculations were available,
which made steps unnecessary for this work.
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As an extension of this thesis, an exploration of new physics contributions can be
performed in the hadronic τ decays, which also rely on form factors to describe the
processes. If we choose ideal angular observables, we can obtain an approximate
cancellation and go ’beyond form factors’, to study the effect of new physics directly
from the experimental input, which is a cleaner approach, if feasible. This is a work
in progress [127] in an advanced stage, which was presented at TAU2025 [128].

The outline of this thesis follows. We give an introductory overview to the tests
within and beyond the Standard Model that we have performed during my PhD
in Chapter 1. Later, we describe the Effective Field Theory that we have used for
describing QCD at low energies in terms of the meson states, RχT , in Chapter 2.
After the theoretical basis has been set, we describe our work on the pseudoscalar
pole contributions to aHLbL

µ in Chapter 3, on the proton-box in Chapter 4, on the
tensor meson poles in Chapter 5, and on the status of a full evaluation of aHLbL

µ

within RχT in Chapter 6. We finalize this thesis with the general conclusions and
the perspectives for future works in Chapter 7. Two appendices have been included,
completing the main material covered in this thesis. Appendix A details how to
employ the 3 main Python libraries used for this thesis. Appendix B explores how
to go beyond the form factors in hadronic tau decays (work in progress).
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1
Tests of The Standard Model

In this first chapter, we introduce our framework, the Standard Model of Elementary
Particles (SM). In this thesis, we conducted tests within and beyond SM through
phenomenological studies. The main part of this work, using the theory framework
introduced in chapter 2, consists of precision calculations of hadron contributions
to the hadronic light-by-light piece of muon g-2, which are discussed in chapters
3 to 6. We also introduce new physics tests in semileptonic tau decays (appendix
B), which are relatively independent of hadron input, thereby providing a clean
access to potential new physics contributions. For both types of applications, the
SM is the stepping stone, the reason for which is briefly introduced in the following.
Conclusions and perspectives of this Ph. D. Thesis are given in chapter 7. An
appendix A guiding to useful computing tools complements the main material.

1.1 The Standard Model

The Standard Model of Elementary Particles [129–131] requires three elements to be
defined: the interactions, the matter content, and the symmetries (including those
of the vacuum, if they are different from the ones in the Lagrangian). All of these
elements are related as the interactions are given by mediators which depend on
the representation of the symmetry groups, the matter content fills representations
of the symmetry groups, and all the physics is described by the possible operators
constructed with the matter content, which are singlets under all of the symmetry
groups of the SM. All these ideas are developed in several textbooks; I will follow
the ones of Paul Langacker[132], Palash B. Pal[133], and Peskin & Schroeder [134],
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which I strongly recommend for a PhD level of understanding of Particle Physics
and the Standard Model.

Fig. 1.1 The Standard Model of Elementary Particles and their interactions.

All the known universe –so far– has the particles displayed in the left-hand side
of Figure 1.1 as its elementary constituents. We can classify them as: quarks, gauge
bosons, leptons, and the Higgs boson. They interact as shown in the right-hand side
of Figure 1.1.

Some remarks on the elementary particle classification are relevant at this point:

• The photon is the mediator of the electromagnetic interactions, which are
experienced by all the charged particles. W± and Z0 are the mediators of the
weak interactions and are self-interacting, as coming from a non-Abelian theory.
Gluons are the mediators of the strong interactions and are also self-interacting,
for the same reason.

• The Higgs boson is the particle responsible for the mass of all particles via the
Higgs mechanism[135–137] but –perhaps– the neutrinos.

• The quarks are the only particles that experience electromagnetic, weak, and
strong interactions; however, they are not found free in nature due to a phe-
nomenon called color confinement. They all carry color, and all free parti-
cles are colorless, a property which can be achieved by combinations of two
(mesons) or three (baryons) (anti)quarks; these are called hadrons and are the
main object of study of this thesis.

• The leptons are classified by families: electron(e), muon(µ), and tau(τ). These
three families consist of a charged massive (MeV-GeV) particle and its neutrino,
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which is massless in the Standard Model, but neutrino oscillations provide
evidence of massive neutrinos, which can be accommodated in a minimal
extension of the SM. τ is the only lepton massive enough to have hadronic
decays, which provide a great scenario to test evidence of BSM physics (or to
learn about hadronization) as we have outlined in appendix B.

They can also be classified by their spin: bosons are integer spin particles (Higgs is
spin zero and mediators are spin one) and half spin particles (quarks and leptons
are spin 1/2).

1.1.1 Gauge Group of the Standard Model

After the brief introduction of the SM particles and their interactions, let us focus
on the reason for most of the facts previously mentioned, the symmetry group. As
mentioned above, the symmetry group of a field theory defines the interactions,
as the mediators are in the adjoint representation. Consequently, the number of
mediators (generators of the symmetry group) is equal to the dimension of the
adjoint representation.

When the symmetry of the interactions is promoted from global to local, a set of
new particles in the adjoint representation of the symmetry group is required to make
the Lagrangian invariant. The corresponding set of transformations is called gauge
transformations, and the group is now called the gauge group. The gauge group of
the standard model is the direct product of three groups SU(3)C×SU(2)L×U(1)Y .
The main ideas and consequences of these interactions will be discussed in sections
1.1.2 and 1.1.3.

A very relevant feature of the gauge group is the intensity of the interactions,
which is different for SU(3)C than for the other two and has fundamental implications
on how we do calculations in one or another. This [139, 140] is the gauge couplings’
energy dependence. The running of the effective gauge coupling is defined by
the renormalization group equation, which, for QCD only, results in a growing
coupling for low energies (see Figure 1.2), reaching a non-perturbative regime
below E < 2GeV. This, on the one hand leads to infrared slavery at low energies,
where strong interactions grow to be non-perturbative. On the other, it gives rise to
asymptotic freedom, which explains the success of the parton model.
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Fig. 1.2 The running of αs(s), shows stronger interactions at low energies [138]. This
results in a non-perturbative regime below energies of around 2 GeV.

1.1.2 Electro-weak interactions

The EW sector (SU(2)L ×U(1)Y ) has, as a key feature, different representations for
left and right particle chiralities. The description of one family of quarks can be
replicated to study the three of them, and the lepton sector as well. So, in general,
the representations of fermions in the theory are:

φ1(x) =

(
u
d

)
L

, φ2(x) = uR, φ3(x) = dR, (1.1)

meaning that the left-hand fields do interact under the SU(2)L sector and the right-
handed ones do not; also, their interactions are determined by their weak hyper-
charge, which is different for quarks, leptons, and the Higgs boson. Using these
representations, the most general fermion Lagrangian can be built, determined by
the invariance under global transformations of the EW group:

L =
3

∑
j=1

iφ̄ j(x)γµ
∂µφ j(x). (1.2)

In order to generate interactions, the global symmetry needs to be promoted to a
local one, according to the gauge principle. For this purpose, the theory requires one
boson per each symmetry generator of the theory, so that the covariant derivatives
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have the correct behavior under local transformations:

Dµφ1(x) =
[
∂µ + ig

σi

2
W i

µ(x)+ ig′y1Bµ(x)
]

φ1(x),

Dµφ2(x) = [∂µ + ig′y2Bµ(x)]φ2(x),

Dµφ3(x) = [∂µ + ig′y3Bµ(x)]φ3(x). (1.3)

Gauging the symmetry (making it local) gives rise to the right interactions, in agree-
ment with experiment, as we intended. An important feature of this group is that it
is non-abelian (their generators do not commute), so 3- and 4-boson interactions are
predicted by the theory. Another important feature is the fact that it is not W 0 (or W 3)
the weak neutral gauge boson, Z0, nor B is γ , but orthogonal combinations of them:
the weak eigenstates B and W 3 mix to yield the physical (mass eigenstates) γ and
Z0 states (with the mixing defined by the masslessness condition for the photon, in
terms of the weak-mixing angle). The electromagnetic interactions are thus included
in the EW theory. In fact, the pattern of spontaneous electroweak symmetry breaking
warrants that the electroweak gauge group is broken to the U(1) of QED at low
energies, which is the symmetry group of the electroweak vacuum.

Since the Higgs is a doublet under the EW gauge group, interactions with the
rest of the particles are allowed; the ones with the fermions are called Yukawa
interactions. The couplings of these interactions are directly related to the mass of
the fermions. The interactions with the gauge bosons come directly from gauging
the theory and result in renormalizable mass terms for the vector bosons; this is the
so-called Higgs mechanism.

With the three generations of matter (particularly of quarks) it is possible to
violate the combined symmetry of charge conjugation and parity [141], which is
one of the required conditions to understand our absolutely matter-dominated
universe [142]. However, it is not enough to explain the measured baryon asymmetry,
so new physics is required for this.

1.1.3 Strong Interactions

Strong interactions are the ones related to the stability of the atoms’ nucleus and
have a very rich phenomenology. Quantum Chromodynamics is the fundamental
theory of the strong interactions. In the mid of the 1960’s, working on the subject
was hard, both theoretically and experimentally, since all observed particles are
"colorless", meaning they are singlets under the gauge group. It is not intuitive
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to introduce a force to which all asymptotic states are invisible to? This apparent
paradox arises because the constituents of composite particles, protons and neutrons
in nuclei, are not blind to this force, and so, they do interact strongly. Considering the
fact that they interact but are confined inside the nucleons (and some other particles
too), very high-energy processes should be studied in order to see the effects of this
force. A historically important case exemplifying this need is the experimental ratio
between e−e+→ µ−µ+ to e−e+→ hadrons, which is sensitive to NC and verifies that
NC = 3. Also, spin 1

2 particles (quarks) in the fundamental representation and the
conjugate representation for antiquarks can, together, form bound colorless integer
spin particles (bosons). Also three spin 1

2 particles in the fundamental representation
can form bound colorless semi-integer spin particles (baryons) [133].
This success was both experimental and theoretical, and came in several pieces.
First the Feynman’s parton model [143] proposed that nucleons were constituted
by smaller spin 1

2 point-like particles which carry part of the nucleon’s momenta
(evidence of this statement was found in Deep Inelastic Scattering experiments) [132],
then the quark model was proposed, which correctly predicted magnetic moments
of nucleons. It, however, faced the challenge of the apparent non-existence of both
quarks and gluons, which were not detected directly [133]. Indirect evidence for
quarks and gluons eventually appeared, so that the theory could be considered
"complete". Notwithstanding, the elementary particles of the theory could not be
seen as free states (due to confinement). Despite of that, at very high energy, they
behave as free particles (asymptotic freedom), which could only be understood after
later work on quantum corrections in non-abelian field theories. These two facts
appeared as major issues because the fundamental theory was not useful, in practice,
from a QFT viewpoint [144], since perturbation theory could not be employed for
computations in some (low enough) energy regimes.

Despite perturbation theory cannot be used for some calculations, the QCD
Lagrangian can be the starting point to construct an EFT based on the symmetries
of the underlying theory and the degrees of freedom of the effectively interacting
particles (mesons and baryons), which can instead be used in these troublesome
energy regimes. The SU(3)C locally invariant Lagrangian [145] is (we neglect gauge-
fixing and ghost terms):

LQCD =−1
4

Gi
µνGµν i +∑

r
q̄α

r i /Dβ

αqrβ −∑
r

mrq̄α
r qrα +

θQCD

32π2 g2
s Gi

µνG̃µν i, (1.4)
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where the r index runs over the six quark flavors, α goes over three colors, and i
runs over the eight gauge bosons, the gluons; gs is the strong interaction coupling,
and the field strength tensor is given by:

Gi
µν = ∂µGi

ν −∂νGi
µ −gs fi jkG j

µGk
ν , (1.5)

where the quark gauge covariant derivative is:

Dµβ

α = ∂
µ

δ
β

α +
igs√

2
Gµβ

α , (1.6)

with

Gβ

α =
8

∑
i=1

Gi λ
iβ
α√
2
, (1.7)

and λ i are the eight hermitian generators of SU(3)C, the Gell-Mann matrices. More
details on the implications of the symmetries of QCD will be given in Chapter 3,
where a theory for hadrons in the non-perturbative regime is developed.

1.2 Tests within The Standard Model: muon’s anoma-
lous magnetic moment, aµ

Both in Classical Electromagnetism and in Quantum Mechanics, a particle with
an angular momentum interacts with a magnetic field. In the quantum case, it is
not restricted to the orbital angular momentum but also to the particle’s spin. The
frequency of the Classical precession and the quantum one is related by a factor of g,
which is called the gyromagnetic ratio.

In quantum field theory, for a charged lepton, this observable can be calculated
by computing the amplitude of the process ℓ→ γ ℓ as it can be seen in Figure. 1.3. The
tree-level diagram results in g = 2, however, precision calculations can be computed
with all possible intermediate states, which is represented by the blob in the right-
hand side of Figure 1.3.

Since the quantum corrections to the tree-level calculations are infinite, one must
truncate the calculation when the desired accuracy is achieved. Since this process is
an electromagnetic interaction, we know that all contributions should respect the
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ℓ+

γ

ℓ+

=⇒

ℓ+

γ

ℓ+

Fig. 1.3 l+ interaction with a photon at tree-level in QED and generalized to all SM
(and possibly BSM) interactions.

Ward identities, reducing the possible structure of all intermediate states to:

ū(p′)Γµ(p, p′)u(p) = e ū(p′)
[

γ
µF1(q2)+

iσ µν

2mℓ
qνF2(q2)

]
u(p), (1.8)

where the functions multiplying each possible tensor structure are called form factors.
The first one is normalized to the (non-renormalized) electromagnetic charge, and
the second one is related to the anomalous magnetic moment of the lepton by:

F2(q2 = 0) =
(g−2)ℓ

2
:= aℓ. (1.9)

The first and dominant quantum correction, was computed by Julian Schwinger [146]
and is the one related with the QED diagram shown in Figure 1.4. This term is equal
for each of the 3 charged leptons; however, this is not true for all contributions to
this process. Schwinger’s result was historically very important, as it explained the
recent Kusch-Foley measurement, being (together with the Lamb shift analogous cal-
culation and measurement) the extremely solid foundation for all loop computations
in QFT from then on.

ℓ+

γ

ℓ+

aℓ = α

2π
+ ...

≈0.00116
Schwinger’s Term.
LO contribution.

Fig. 1.4 First correction to gℓ−2. This is a photon exchange between the lepton in
the initial and final states. The computation of this loop diagram is standard in QFT
textbooks such as [147].



1.2 Tests within The Standard Model: muon’s anomalous magnetic moment, aµ 13

1.2.1 g−2 measurement: Past (CERN and BNL), Present (FNAL),
and Future (J-PARC)

To understand the tension between experiment and theory, we must first compre-
hend the ideas of the observable we are describing. From quantum mechanics, we
know that when a particle with spin interacts with a magnetic field, spin precession
occurs with frequency

ωs = gµ

eB
2mµ

+ smallcorrections. (1.10)

Given the initial spin direction, we can measure ωs and, consequently, gµ [148].

Pion decay π±→ µ±
(−)
νµ can help us to do it (it is easier to see it in pions rest frame).

And the latter decay (in-flight) µ+→ e+νeν̄µ (if we consider maximum energy e+’s)

π+νµ µ+

s⃗νµ
→ ← s⃗µ+

allows measuring µ’s spin direction directly, as it is inherited by the electron 1. In
general, the Michel distribution [149] is used, for the higher-energy positrons.

µ+(⃗sµ+)
ν̄µ

νe
e+

s⃗νe →

s⃗νµ
←

s⃗e+

At Brookhaven National Laboratory (BNL), the first measurement of aµ at the
level of ppm (parts per million) was performed [150–154, 1] 2. The statistical and
systematic errors have been greatly reduced at Fermi National Accelerator Labora-
tory (FNAL), reaching a final accuracy of 127 ppb [2–4]. The experimental setup was
similar, and the results are shown in Figure 1.5.

The experiment consists of a magnet with a highly calibrated magnetic field
which induces a circular motion of the muons (with angular frequency ω⃗c =− qB⃗

mµ γ
).

As mentioned above, this induces a precession on the muon’s spin with frequency
ω⃗s =−g qB⃗

2mµ
−(1−γ) qB⃗

γmµ
. Due to the particle selection, if g= 2, the relative orientation

of momentum and spin remains the same. Since this is not the case, there is a

1All neutrinos are left-handed (helicity and chirality are equal for massless particles) and antineu-
trinos are right-handed.

2Previous measurements on the muon g−2 were conducted at CERN in a series of three experi-
ments, improving from 4300 to 10 ppm [155–157].
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Fig. 1.5 Results for the experiment at BNL [1] and the different runs of FNAL [2–4]
for the muon anomalous magnetic moment.

difference between the frequencies, which is sensitive directly to aµ (working at the
’magic γ ’ value, ∼ 29.3, which cancels the dependence on residual electric fields, see
below):

ω⃗a = ω⃗s− ω⃗c =−aµ

qB⃗
mµ

. (1.11)

The spin precession frequency is affected by the electric quadrupoles used to provide
vertical focusing in the storage ring. In the presence of both electric and magnetic
fields, for β⃗ perpendicular to both of them, the expression for the anomalous preces-
sion frequency becomes:

ω⃗a =−
q

mµ

(
aµ B⃗−

(
aµ −

1
γ2−1

)
β⃗ × E⃗

c

)
, (1.12)

where the second term vanishes if γ = 29.3, this is the so-called magic momentum of
3.094 GeV/c. By measuring the magnitude of B⃗ and the difference of frequencies
ω⃗a, it is possible to get a precise determination of aµ . For the measurement of ωa,
the correlation between the spin of the parent muon and the daughter electron’s
direction should be used to infer the direction of muon’s spin. This correlation
function requires information on the 4-momentum of the produced electron. Since
the muons inserted in the storage ring (see Figure 1.6) are highly relativistic, most of
the decaying electrons are ultra-relativistic, and thus useful for the measurement.

Consequently, the electrons have high energies in the lab frame. By setting a
laboratory threshold, it is possible to select the angles of the emitted electrons above
this threshold, which is directly related with ωa. The distribution of the electron
counts over the threshold is shown in Figure 1.7, a fit to these data is performed
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Fig. 1.6 Accelerator at FNAL, which uses the same magnet as the experiment in
BNAL and a similar procedure to obtain aµ .

and the difference of frequencies is obtained. In the most recent publications, there
is not detailed information about the experiment, for understanding further the
experimental setup, I would recommend to read Ref. [1]. With the analysis of all
data, the experimental world average is:

aExp
µ = a(exp) = 1165920715(145)×10−12 (124ppb). (1.13)

• J-PARC experiment: plans for the future.
Since the program at FNAL has been completed, and the goal of reaching a 140

ppb precision has been achieved, there is no expected change in the experimental
value on the order of decades. However, the experiment muon g - 2/EDM E34 is
under construction at J-PARC in Japan [158, 159]. The experiment aims to perform
ultra-precision measurements of g−2 and the electric dipole moment of the muon
using a completely different method from those at BNL and FNAL, offering a test of
these results, particularly of their systematic uncertainties.

The experimental principle will be recapitulated next: It starts obtaining muons
from the decay of pions generated from the proton accelerator at J-PARC. By cooling
and later accelerating the muons, E34 aims to obtain a low-emittance beam, thereby
significantly reducing the systematics associated with a wide beam. An important
feature of this experiment is that it does not require the muons to be calibrated to be
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Fig. 1.7 Distribution of electrons as a function of time taken by the last analysis of the
last 3 runs out of 6 taken in FNAL[4] is shown in the right upper corner plot. The rest
of the plot displays the Fourier transforms of the residuals from the sum of the four
fits to the Run-4/5/6 . Similar plots can be found in the BNL reports [150–154, 1].

at the magic momentum. A diagram of the experiment is shown in Figure 1.8. Recent
progress on the experiment can be found in Ref. [160]. Currently, the muons are
being accelerated to 100 keV, while the goal is to achieve 210 MeV. The data taking
is expected to start in the next decade; currently, construction, design redefinition,
ionization tests, and installation are being performed for the building, source, linear
accelerator, storage ring, and detector 3.

1.2.2 Theory Initiative

The theory initiative is in charge of computing the anomalous magnetic moment of
the muon within the standard model [5, 6]. The essential inputs for the most recent
computation are found in Refs. [26–85]. However, with many computations still in
dispute, and many others still not being computed completely or at all, there are
more than 700 articles quoted, related to the calculation of this observable. This
gives an idea of the complexity of achieving such precise theoretical prediction.

3Just before submitting the final version of this thesis, ref. [161] appeared, proposing the CANTON-
µ experiment, that will reach the sub 0.1 ppm precision on the aµ measurement.
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Fig. 1.8 Ultra cold muon experiment at J-PARC under construction. Muons are
collected, cooled, accelerated, and inserted into a storage ring ∼20 times smaller
than the one at BNL and FNAL.

The calculation is organized by the kind of interactions involved: electromag-
netic, hadronic, and electroweak contributions. The electromagnetic contributions
hold almost all the total aµ , but the hadronic piece is responsible for most of the
uncertainty due to the presence of intermediate hadronic states, which require form
factors to be accounted for.

1.2.2.1 QED contributions

The QED contributions are organized by the lepton mass dependence, which means:

aQED
µ = A1 +A2(mµ/me)+A2(mµ/mτ)+A3(mµ/me,mµ/mτ), (1.14)

and at the same time, each one of these contributions is split in the well-converging
perturbative QED counting:

Ai =
(

α

π

)n
A

(2n)

i , (1.15)



18 Tests of The Standard Model

where the first contribution for A1 is the well known Schwinger contribution [146],
A(2)

1 = 1/2. By 2018, all terms up to eight orders have been computed by different
groups and have been cross-checked. The mass independent contributions consist
of 1, 7, 72, 891, and 12,672 diagrams for the first to fifth order in perturbation theory.
Examples of the fourth and sixth order diagrams are found in Figure 1.9. The values
for the A(2n)

i are of the same order, resulting in a smoothly convergent series in the
QED counting4.

Fig. 1.9 Diagrams (split in different topology classes) at two and three loops con-
tributing to the mass-independent parts of the QED piece of aµ .

The fine-structure constant is a fundamental input to the complete calculation. It
is taken from atom-interferometer experiments, resulting in tensions between the
values obtained from the cesium atom mass (133Cs) and the rubidium atom mass
(87Rb), with accuracies of ppb. In fact, the PDG review on the electroweak Standard
Model and constraints on new physics [217] advises to take the weighted average of
these measurements and the value coming from ae (solving it for α(me)) in order to
get the recommended value of α . These differences are irrelevant for the precision
needed in aQED

µ .
The current value for the QED contributions is

aQED
µ = 116584718.8(2)×10−11. (1.16)

1.2.2.2 EW contributions

The electroweak contributions are the smallest of all in the SM 5 and also have a
small error. The EW piece is composed by all SM contributions not included in

4See Refs. [146, 162–188] for the mass independent contributions, Refs. [189, 162, 190–193, 166,
194–216].

5This is important as they naturally set the expected size of NP contributions coming from chiral
gauge theories, upon quadratic rescaling of the energy scales involved, with some room for varying
the coupling strength with respect to the SM case.
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pure QED, that are not of hadronic type either. An example of these contributions is
shown in Figure 1.10. This computation is split perturbatively in EW by counting
one-loop contributions, two-loop contributions with bosons and fermions, and
higher-order corrections. The boson two-loop contributions consist of those without
closed fermion loops; the fermion two-loop ones do contain closed fermion loop
diagrams.

µ+

γ

µ+

µ+ µ+

H

Fig. 1.10 µ+ interaction with a photon including an µ−H−µ loop. The accuracy of
its contribution was greatly improved thanks to the Higgs boson discovery and its
precise mass measurement [218, 219].

Altogether, this results in the value of [83, 220, 221, 85]:

aEW
µ = 154.4(4)×10−11. (1.17)

1.2.2.3 QCD Contributions I: Hadronic Vacuum Polarization

The hadronic pieces are split into two contributions. The dominant one is the
Hadronic Vacuum Polarization, which contains all contributions coming from an
exchange of a photon between the muon’s external legs with intermediate hadronic
states in the middle, represented by the blob in Figure 1.11. The input for the
hadronic piece of this contribution can be obtained by data-driven methods or
Lattice-QCD calculations. Within the data-driven methods, we can separate between
collider inputs e+e−→ hadrons and τ decay inputs (τ → 2πντ mainly) [6].

The leading order contribution can be obtained by an HVP master formula [222–
225]:

aHVP,LO
µ =

(
αmµ

3π

)2 ∫ ∞

sthr

ds
K̂(s)

s2 Rhad(s), (1.18)

where the kernel K̂(s) is the electromagnetic one and Rhad(s)= 3s
4πα2 σ [e+e−→ hadrons(+γ)],

inclusive in final-state photon emission. Correspondingly, the lightest contributing
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µ+

γ

µ+

Fig. 1.11 Hadronic Vacuum Polarization diagram. These contributions consist of
the exchange of a photon by the incoming and outgoing muon, with an hadronic
intermediate state, represented by the blob.

cut is e+e−→ π0γ . This master formula is obtained by means of the optical theorem
[226].

The cross section of e+e−→ hadrons needs to be measured with high precision
in order to compete with the experimental accuracy. In Ref. [227], all available data
at the moment were analyzed to compute a data-driven evaluation of eq. (1.18).
This input for Rhad(s) is shown in Figure 1.12. It can be seen that the process is
dominated by the π+π− channel. This piece can be obtained, alternatively, by an
isospin rotation of the τ−→ π−π0ντ cross section[86–90]. Important discrepancies

Fig. 1.12 The hadronic R ratio, split in all contributions to the process e+e−→ hadrons.

between e+e− data sets and also with τ data have arisen, which can be appreciated
in Figure 1.13. This made impossible to report an average of the data-driven results
for aHVP,LO

µ at this point (White Paper 2, 2025 [6]). Proposals for solving this issue can
be studied in Ref. [91]. For this reason, for WP2025, the Theory Initiative reported
the LQCD average [26–42] as the value for aHVP,LO

µ (see also refs. [43–45]), resulting
in agreement between theory and experiment. However, it is still important to
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understand why a non-negligible difference exists between e+e− data, τ data, and
LQCD results.

Fig. 1.13 Results for the aSM
µ −aexp

µ difference with diverse HVP inputs. In green bars,
the e+e−→ hadrons results are displayed; in green lines, the τ data values are shown;
in blue, the value of the LQCD HVP average is represented, and finally, in red are
the experimental measurements.

By using the LQCD input for the leading contributions, it is obtained:

aHVP
µ = 7045(61)×10−11, (1.19)

which is higher than the value reported in WP2020 [5] and leads to agreement
between theory and experiment. The difference aSM

µ − aexp
µ has been used to set

constraints on heavy new physics explanations within the EFT framework [228–
235].

1.2.2.4 QCD Contributions II: Hadronic Light-by-Light

The Hadronic Light-by-Light (HLbL) piece of aµ contains two more electromagnetic
vertices than HVP, which makes it subleading. This process consists of three photons
interacting with the muon and an external photon. The first three are virtual particles,
and the last photon corresponds to the magnetic field that interacts with the muon.
In the middle, pure QCD happens, which means that all intermediate states in the
non-perturbative regime are hadrons (See Figure 1.14). In contrast to what happens
with HVP, a Data-Driven determination of this observable cannot be obtained by
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µ+ µ+

γ

Fig. 1.14 Hadronic Light-by-Light piece of aµ . Any intermediate hadron process can
occur as an intermediate state, which is represented by the blob.

means of measuring a single inclusive process (e+e−→ hadrons). Instead, it has to
be split into its hadronic intermediate states one by one, avoiding redundancies by
relating each of them to on-shell observables, depending on the form factors. For
this purpose, it is convenient to study the HLbL tensor instead of the contribution to
muon’s g−2.

Any representation of the HLbL tensor in the light quark sector (q = u,d,s) can
be computed from

Π
µνλσ (q1,q2,q3)=−i

∫
d4xd4yd4ze−i(q1·x+q2·y+ q3·z) ⟨0|T{ jµ

em(x) jν
em(y) jλ

em(z) jσ
em(0)}|0⟩ ,

(1.20)
where jem := q̄Qγνq and Q is the charge matrix. This object can be constructed
from the amplitudes of any representation of the HLbL with the photon helicities
amputated.

γ

µ+ µ+

=⇒

µ

ν λ

σq1

q2

−q3

q4

Fig. 1.15 The HLbL processes can be studied by means of the HLbL tensor, which
can take different representations depending on the intermediate state under consid-
eration.

On the contrary, a direct lattice calculation of the HLbL can be done –even though
some studies are done in specific intermediate state contributions, the viability of
computing a full contribution is convenient–. The counting is different in LQCD
HLbL determination compared to the data-driven ones, making it difficult to com-
pare something beyond the total HLbL contribution.
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In this thesis, we have focused on the data-driven determinations. According to
the second White Paper [6], the data-driven methods are split into four main sources:
dispersive approach, the holographic QCD, model evaluations, and Schwinger
Dyson/Bethe Salpeter equation solutions.

The full HLbL evaluations available are (in units of 10−11):

aHLbL:LQCD
µ = 122.5(9.0), (1.21)

aHLbL:Dispersive
µ = 105.9(8.8), (1.22)

aHLbL:RχT
µ = 106.1(9.0). (1.23)

We will give more details on the RχT evaluation along this thesis. Our original
contributions are collected in chapters 3 to 6.

1.2.3 How to sum HLbL contributions to aµ? The Master formula

One can naively try to evaluate the HLbL contribution to aµ in terms of the HLbL
tensor [46] by extracting the form factor at zero virtuality F2(q2 = 0):

Γ
σ
HLbL(p1, p2) =− e6

∫ dq4
1

(2π)4
dq4

2
(2π)4 γµ

(/p1 + /p2 +mµ)

(p1 + p2)2−m2
µ

γλ

(/p1− /p2 +mµ)

(p1− p2)2−m2
µ

γν

× 1
q2

1

1
q2

2

1
(p1− p2−q1−q2)2 Π

µνλσ (q1,q2, p1− p2−q1−q2). (1.24)

However, we still have to use projector techniques and angular averages, which
will result in taking a trace to obtain aµ . For the case of the pseudoscalar poles,
this can be done without too much trouble, but a much more general procedure
becomes handy. The works by Colangelo, Hoferichter, Procura, and Stoffer are the
basis for this methodology [126, 46, 48]. The inclusion of further representations has
required the optimization of the basis used in these works; up to now, the best one is
found in Ref. [61]. However, it still needs to be improved to account for the tensor
meson poles, which is also being pursued in triangle kinematics [236]. Putting this
forward this has been one important contribution of this thesis. This procedure will
be described next, according to the Bardeen, Tung and Tarrach recipe [237, 238].

• Tensor Decomposition.
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The first step is to decompose the HLbL tensor representation in the most general
set of tensor structures of 4 indices, considering 4-momenta conservation only:

Π
µνλσ =gµνgλσ

Π1 +gµλ gνσ
Π2 +gµσ gλν

Π3

+ ∑
k=1,2,4
l=1,2,3

gµνqλ
k qσ

l Π
4
kl + ∑

j=1,3,4
l=1,2,3

gµλ qν
j qσ

l Π
5
jl + ∑

j=1,3,4
k=1,2,4

gµσ qν
j qλ

k Π
6
jk

+ ∑
i=2,3,4
l=1,2,3

gνλ qµ

i qσ
l Π

7
il + ∑

i=2,3,4
k=1,2,4

gνσ qµ

i qλ
k Π

8
ik + ∑

i=2,3,4
j=1,3,4

gλσ qµ

i qν
j Π

9
i j

+ ∑
i=2,3,4
j=1,3,4

∑
k=1,2,4l=1,2,3

qµ

i qν
j qλ

k qσ
l Π

10
i jkl

:=
138

∑
i=1

Lµνλσ

i Ξi. (1.25)

There are a total of 3 structures with two metric tensors, 54 structures with one
metric tensor and two momenta, and 81 structures with four momenta. The 138
scalar functions multiplying the tensor structures are different for each HLbL tensor
representation.

• Imposing gauge invariance and Ward Identities.
Due to gauge invariance and conservation of the electromagnetic current (Ward

Identities), 95 linearly independent relations are imposed, leaving 43 independent
tensor structures. To impose these conditions, the following projectors are used:

Iµν

12 = gµν −
qµ

2 qν
1

q1 ·q2
, Iλσ

34 = gλσ −
qλ

4 qσ
3

q3 ·q4
. (1.26)

The HLbL tensor is invariant under the action of these projectors; however, as
they enforce the Ward identities, only 43 linearly independent terms remain after
applying the projectors:

Π
µνλσ =Iµµ ′

12 Iνν ′
12 Iλλ ′

34 Iσσ ′
34 Π

µ ′ν ′λ ′σ ′

=
138

∑
i=1

Iµµ ′

12 Iνν ′
12 Iλλ ′

34 Iσσ ′
34 Lµ ′ν ′λ ′σ ′

i Ξi = :
43

∑
j=1

L̄µνλσ

i j
Ξi j , (1.27)
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where the new tensor structures L̄µνλσ

i j
are the ones that do not vanish upon the

imposition of the Ward identities, and Ξi j are their respective scalar functions.

• Removing the Kinematic Poles.
Artificial kinematic poles were induced by the scalar products in the denomina-

tors of the projectors. This effect has to be non-physical, since the HLbL still has to
be properly defined. The kinematic singularities should be removed by:

• Adding linear combinations which contain no poles to eliminate as many
double poles as possible in the other parts.

• Multiplying the remaining double poles by the scalar product q1 ·q2 or q3 ·q4.

• Proceeding with the remaining double single and single double poles.

By doing this, kinematic singularities has been introduced in the scalar functions.
However, they correspond to the degeneracies of the obtained basis in the limits
q1 ·q2→ 0 and/or q3 ·q4→ 0. The null-space of these structures in these limits finds
11 new structures, which requires the basis to be expanded into a redundant one of
54 elements. This redundant basis will be the one used in the Master Formula.

• Inverting the basis.
This basis is invertible in the soft-photon limit, which is precisely the one we

need to impose on the HLbL tensor, q4 → 0. In order to read the mapping from
the appendices in [46], here is a practical guide –all references to equations in the
following list refer to the mentioned reference–:

• The 138 scalar functions of the specific HLbL tensor representation, arranged
in a non-uniform multi-dimensional Π, are written in a plain 138 1-D array Ξi.

• The Ξi j are selected as in Appendix C, rearranging the i j into j ∈ [1,43].

• The Ξi j are rotated into the functions Π̃ j by the matrix in eq. (C.3).

• The 54 scalar functions of the redundant basis, Π j, are defined by taking the
limits in eq. (F.8).

• The 12 final scalar functions entering in the Master Formula, Π̄ j, are defined in
eq. (D.2).
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Finally, the contribution of the specific representation of the HLbL tensor can be
accounted for in the Master Formula:

aHLbL
µ =

∫
∞

0
dQ1

∫
∞

0
dQ2

∫ 1

−1
dτ

√
1− τ2Q3

1Q3
2

12

∑
i=1

Ti(Q1,Q2,τ)Π̄i(Q1,Q2,τ), (1.28)

where the functions Ti are defined in the quoted reference and come from the
angular integration by using Gegenbauer polynomial techniques [239]. The Qi are
the magnitudes of the euclidean 4-momenta q2

i →−Q2
i , and τ is the projection of Q1

into Q2, since Q3 is defined by 4-momentum conservation but Q2
3 depends on the

relative orientations of Q1,2: Q2
3 = Q2

1 +Q2
2 +2Q1Q2τ .

Usually, only a few of the Π̄i are given, since they obey the following relations:

Π̂2 = C23[Π̂1], Π̂3 = C13[Π̂1], Π̂5 = C23[Π̂4], Π̂6 = C13[Π̂4],

Π̂8 = C12[Π̂7], Π̂9 = C12[C13[Π̂7]], Π̂10 = C23[Π̂7], Π̂13 = C13[Π̂7],

Π̂14 = C12[C23[Π̂7]], Π̂11 = C13[Π̂17], Π̂16 = C23[Π̂17], Π̂50 =−C23[Π̂54], Π̂51 = C13[Π̂54].

(1.29)

Consequently, the only required scalar functions are Π̂1, Π̂4, Π̂7, Π̂17, and Π̂54, defin-
ing the Π̄ functions of the Master Formula.

The optimized basis in ref. [61] includes non-redundantly the contributions of
the Pseudoscalar, Scalar and Axial meson poles, and Pseudoscalar Boxes in terms of
their form factors. For the tensor poles, only the cases of F1,3 and F2,3 are free of
singularities. In Chapter 5 we show evidence of a need for a new basis that considers
all 5 form factors for the tensor meson transition form factors.
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2
Resonance Chiral Theory: An Effective Field
Theory for QCD around a GeV

2.1 Effective Field Theories

Quantum effective field theories (EFTs) are built to describe physics at low energies
compared to a reference scale, Λ, which is characteristic of heavy degrees of freedom
that are non-dynamical at long distances, and thus integrated out from the action. In
this way, one achieves the simplest possible description of the relevant physics, based
on the symmetries of the low-energy theory and on its light (masses m considerably
smaller than Λ) degrees of freedom 1. Basic references on the subject, where more
detailed and pedagogical explanations can be found, are refs. [240–242].

We can summarize the main features of EFTs as follows [243, 244]:

• Low-energy physics is independent of short-distance properties. The only
remnants of the high-energy theory can be found in the precise values of the
low-energy constants and in symmetry relations.

• Vanishing ratios m/E and E/Λ are taken as first approximation, which can
systematically be improved including perturbative corrections in powers of
these ratios.

• Non-local exchanges mediated by heavy particles (M ≥ Λ) are replaced by an
infinite tower of local interactions between the light fields. These are order-by-

1The symmetry of the vacuum (either the full group or a subgroup of the Lagrangian’s) also needs
to be specified to characterize it completely.
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order renormalizable (in the expansion parameter used to define the power
counting of the EFT).

• The EFT represents the infrared dynamics up to a given accuracy (which can
be estimated from its power-counting), in terms of a finite set of LECs. By con-
struction, it has identical low-energy (but different short-distance) behaviour
to the (more) fundamental theory.

The validity of the EFT description and its properties is ensured by Weinberg’s
theorem [245]: ’For a given set of asymptotic states, perturbation theory with the
most general Lagrangian containing all terms allowed by the assumed symmetries
will yield the most general S matrix elements consistent with analyticity, perturbative
unitarity, cluster decomposition, and the assumed symmetries’. For our case of
interest of RχT, it warrants that we can write a Lagrangian density with active fields
creating/annihilating pions, Kaons, eta mesons and the light-flavored resonances,
using chiral symmetry for the former and unitary symmetry for the latter and obtain
as a result the most general observables consistent with these symmetries in the
E ∼ 1 GeV region.

2.2 Chiral Perturbation Theory

In this section, we will introduce Chiral Perturbation Theory (χPT ), which is
the low-energy EFT dual to QCD at low energies. Its construction was intro-
duced in the seminal work by Weinberg [245] and was systematized by Gasser
and Leutwyler [246, 247]. It follows the main idea: "if one writes down the most general
possible Lagrangian, including all terms consistent with assumed symmetry principles, and
then calculates matrix elements with this Lagrangian to any given order of perturbation the-
ory, the result will simply be the most general possible S-matrix consistent with analyticity,
perturbative unitarity, cluster decomposition and the assumed symmetry principles.

2.2.1 QCD and Chiral Symmetry

The QCD Lagrangian, for the three lightest quarks (whose masses are considerably
smaller than typical hadron scales), i = u,d,s, is (we neglect the θQCD-term associated
to a possible tiny violation of CP symmetry by the strong interactions)

LQCD−L gauge fixing
QCD =−1

4
Ga

µνGµν ,a + q̄i(i /D−mqi)qi , (2.1)
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with Dµ = ∂µ − igsGa
µ , introducing the strong coupling gs and a = 1, . . . ,N2

C−1 gluon
fields, Ga

µ . For energies where these light quark mass effects are negligible, the
massless QCD Lagrangian, L QCD

0 , is a good approximation, with (we omit the
gauge-fixing and gluon field-strength tensor terms below)

L 0
QCD = i

(
q̄i,L /Dqi,R + q̄i,L /Dqi,L

)
, (2.2)

which is trivially invariant under separate transformation of the left- and right-
handed components in (three-)flavor space. The so-called ’chiral’ symmetry group
is then G ≡ SU(3)L× SU(3)R

2. As a consequence of this symmetry, the hadrons
spectrum should exhibit a parity symmetry, which is, however, severely violated.
This is particularly so for the lightest pseudoscalar versus scalar mesons, where
the pions are ∼ 7 times lighter than the a0 mesons. This breaking is milder for the
lowest-lying spin-one states, where ma1/mρ ∼ 1.6. The way out of this seeming
conundrum goes through the second possibility of realizing a symmetry (the first
one, à la Wigner-Weyl must happen in quantum mechanics, but not necessarily in
quantum field theory) and corresponds to Lagrangian symmetries being reflected in
the theory’s spectrum. The other option is à la Nambu-Goldstone [250, 251], where
the vacuum symmetry group, H, is only a subgroup of the L symmetry group, G. In
our case of interest of low-energy QCD, both phenomenological observations made
before suggest the pattern of spontaneous chiral symmetry breaking

G≡ SU(3)L⊗SU(3)R→ H ≡ SU(3)V . (2.3)

Indeed, in application of the Goldstone theorem [251, 252], there must exist a mul-
tiplet of massless states (as many as generators of the broken symmetries), with
suitable quantum numbers to warrant the existence of an order parameter of the (chi-
ral) symmetry breakdown (pseudoscalars in this case, as the chiral axial symmetries
are broken). This explains why pion masses can be neglected (in first approximation)
compared to the rest of hadron’s and why parity is not a symmetry of the spectrum.
In order to understand the small masses of the lightest octet of pseudoscalar mesons
we need to account for mqi ̸= 0, a small explicit chiral symmetry breaking that is
implemented in χPT exactly like in QCD, by using appropriate spurion fields [246].

2Chiral symmetry also includes the U(1) pieces associated to vector (V ) and axial-vector (A)
transformations, that is, L+R∼V and −L+R∼ A. The first one counts the number of quarks minus
antiquarks, so it is proportional to the baryon number, which is conserved. The second one is broken
by quantum corrections [248, 249] and dubbed, for this reason, anomalous.
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In this way,
< 0|q̄iqi|0 ≯= 0 (2.4)

is the natural order parameter of spontaneous chiral symmetry breaking and mqi ̸= 0
includes its explicit breakdown. Particularly enlightening and useful reviews on
χPT are refs. [253–255], and the book [256].

2.2.2 Chiral Currents and Chiral Symmetry Breaking

The Lagrangian in eq. (2.2) is invariant under two independent global transforma-
tions: uL

dL

sL

→UL

uL

dL

sL

= exp

(
−i

8

∑
a=1

ΘLa
λa

2

)
e−iΘL

uL

dL

sL

 ,

uR

dR

sR

→UR

uR

dR

sR

= exp

(
−i

8

∑
a=1

ΘRa
λa

2

)
e−iΘR

uR

dR

sR

 ,

(2.5)

where UL(R) are independent 3×3 complex rotations times a global phase, where
the former (latter) can be identified with a SU(3) (U(1)) transformation. In this way,
eq. (2.2) is invariant under a global SU(3)L×SU(3)R×U(1)L×U(1)R, which can be
rewritten –restoring to completeness– by using a (L,R)→ (V,A) basis change. It is
convenient to proceed this way, because (V,A) have a definite behavior under parity
transformation, which is a good label for the hadron multiplets. Chiral currents
related to these symmetries can be written, according to Nöether’s Theorem [256], as

V µ
a = q̄γ

µ λa

2
q,

Aµ
a = q̄γ

µ
γ5

λa

2
q,

V µ = q̄γ
µq,

Aµ = q̄γ
µ

γ5q, (2.6)

making 18 conserved currents. However, as mentioned in section 2.2.1, there is an
observed asymmetry between particles with the same spin and opposite parity. This
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property of nature hints to us that symmetry breaking must occur (otherwise these
multiplets would be degenerate, according to the symmetries just discussed).

When the masses of light quarks are accounted for in the QCD Lagrangian, chiral
symmetry is explicitly broken. The divergence of (almost all) chiral currents of eq.
(2.2.2) becomes non-vanishing

∂µV µ
a = iq̄

[
M ,

λa

2

]
q,

∂µAµ
a = iq̄γ5

{
M ,

λa

2

}
q,

∂µV µ = 0,

∂µAµ = 2iq̄γ5M q+
3g2

s
32π2 εµνρσ Gµν

a Gρσ
a , (2.7)

where the mass matrix is M = diag{mu,md,ms}. The second term in the RHS of ∂µAµ

originates from quantum corrections (it is related to the extremely approximate CP
symmetry of the strong interactions, which must be discussed in presence of the
electroweak sector of the SM, and is not yet understood [257–262]). It is important
to make some remarks regarding the inclusion of non-zero quark masses:

1. For any value of quark masses, the individual flavor currents f̄ γµ f are con-
served in the strong interactions, which makes the strong coupling flavor
independent.

2. All 18 currents, except the vector singlet current (baryon number is exactly
conserved, but for anomalous effects), get a non-vanishing divergence for
different quark masses.

3. For equal quark masses, the 9 vector currents (octet + singlet) are conserved.

4. Considering a more realistic case, mu = md ̸= ms, the SU(3) flavor symmetry is
reduced to SU(2) isospin symmetry.

5. mu−md (compared to the typical energy scale of a given process) is then a scale
of (most of the times small) isospin symmetry breaking.

This information will become important when discussing the symmetry breaking in
QCD at low energies.



32 Resonance Chiral Theory: An Effective Field Theory for QCD around a GeV

2.2.3 Light Pseudoscalar Mesons as Pseudo-Goldsone bosons

Spontaneous symmetry breaking in the thoery of strong interactions is feasible
because of the known experimental input just explained. Considering the chiral
limit, a sufficient (although not necessary) condition for it to take place is ⟨q̄q⟩ ≠ 0, the
so-called (non-vanishing) scalar singlet quark condensate. This naming comes from the
fact that q̄q stays invariant under the Lorentz group and transforms as a singlet under
SU(3)V . The "condensation" is a non-perturbative phenomenon of the QCD ground
state, which is driven by the formation of quark-antiquark pairs. The definition of
scalar and pseudoscalar densities will be practical:

Sa(y) = q̄(y)λaq(y),

Pa(y) = iq̄(y)γ5λaq(y), (2.8)

with a = 0, ...,8, λ0 =
√

2
3 I3, and the other 8 generators are the usual Gell-Mann

matrices. In the chiral limit, ⟨Sa⟩ = 0, that, for the diagonal matrices, gives the
relations

⟨λ̄1⟩=
√

2
3
⟨ūu+ d̄d + s̄s⟩= 0,

⟨λ̄3⟩= ⟨ūu− d̄d⟩= 0,

⟨λ̄8⟩=
√

1
3
⟨ūu+ d̄d−2s̄s⟩= 0, (2.9)

(2.10)

leading to the equality of all ⟨ f̄ f ⟩. If we then take a non-null singlet quark condensate,
we obtain:

⟨q̄q⟩= 3⟨ f̄ f ⟩ . (2.11)

This implies that Pa(y) has a non-vanishing matrix element between the vacuum and
the massless one-particle state |φb⟩, meaning that chiral symmetry has been sponta-
neously broken, resulting in SUL(3)×SUR(3)→ SUV (3), giving rise to 8 pseudoscalar
Goldstone bosons. This fits perfectly with the explanation we are aiming at, yielding
the construction of the pseudoscalar meson octet, which will have a different nature
than its parity partner. The explicit symmetry breaking by quark masses will give
rise instead –for these lightest pseudoscalars– to pseudo-Goldstone bosons.
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2.2.4 χPT for Mesons

The observations of nature reviewed previously lead to the search for a mechanism
spontaneously breaking the chiral symmetry. This will, in turn, provide us with a
useful framework to build a theory with 8 pseudoscalar (pseudo)Goldstone bosons.
Here, the lightest octet of pseudoscalar mesons (π,K,η) can be identified with each of
the Goldstone bosons. Based on that, an effective theory describing their interactions
can be constructed.

2.2.4.1 Transformation properties of the Goldstone Bosons

In order to build the effective field theory applicable to these Goldstone bosons,
it is necessary to understand first how they do transform under the action of the
symmetry group, and which object is the ideal one for this task [263, 264, 241]. The
Goldstone bosons can be arranged in a n-dimensional vector Φ⃗ = (φ1, ...φn), which
maps from Minkowski space to a vector space:

M1 =
{

Φ⃗ : M4→Rn|φi : M4→R
}
. (2.12)

For its utility in this construction, we will discuss some properties of all left co-sets,
called the quotient G/H, which are defined as

G/H = {gH|g ∈ G} , (2.13)

where, simultaneously, gH is defined as:

gH = {gh|h ∈ H} , (2.14)

with G (H) the symmetry group of a dynamical Lagrangian system (its vacuum). A
very relevant property in this context is that co-sets either completely overlap, or
are completely disjoint. This allows us to map isomorphically the quotient G/H and
the Goldstone boson fields. This mapping, ϕ , has an important property: any given
element g ∈G can map a vector Φ to another, Φ′. This property can be applied to our
chiral QCD case. The symmetry group of chiral QCD is G = SU(3)L×SU(3)R and
of its vacuum is H = SU(3)V . Let g̃ = (L̃, R̃) ∈ G. A representative element of the left
co-set can be characterized as g̃H = (1, R̃L̃†)H following the convention where the
identity matrix appears as the first argument. Under the action of an element, g, a
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left co-set element g̃ transforms as

gg̃H = (L,RR̃L̃†)H = (1,RR̃L̃†L†)(L,L)H = (1,R(R̃L̃†)L†)H, (2.15)

where, in the last step, we have used the fact that (L,L) belongs to SU(3)V and
concerning group properties, it is mapped into H itself. The representative matrix g̃
is then transformed as

U(x)→ RU(x)L† , (2.16)

under the action of the group element g. Thus, in order to construct a basis in
which we can write any SU(3) element, we must get a set of hermitian traceless 3×3
matrices. This can be done by using the exponential parametrization, and the fact
that there is an isomorphism between the elements of the group G and the elements
of the vector space spanned by the Goldstone bosons. So we can write an SU(3)
element as

U(x) = exp
(

i
Φ(x) ·λ

F0

)
, (2.17)

where

φ = Φ ·λ =


π0 + 1√

3
η8

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η8

√
2K0

√
2K− K̄0 − 2√

3
η8

 , (2.18)

and the constant F0 is a energy scale introduced to make the argument of the expo-
nential function dimensionless, and will be set by experimental input (it is the pion
decay constant in the chiral limit). We can (and will) choose R(x) = L†(x) = u(x) so
that u2(x) =U(x) [265]. These elements transform under the action of the symmetry
group (g∈G) as in eq. (2.16). This permits us to construct not just the building blocks
of the EFT but also to look for all independent terms allowed by the theory at a
given order in the perturbative expansion. Since the construction is made in (even)
powers of p

Λ
, which for this case is Λ = 4πFπ ≈ 1.170 GeV [256] (where Fπ ∼ F0 is

now renormalized and includes chiral corrections), it will converge rather well at
low energies. It useful to remark that ∂µU(x) terms are of order p

F0
and U(x) is of

order p0.

2.2.4.2 Large NC limit

When computing chiral corrections and setting everything for the inclusion of vector
meson resonances, the Large-NC limit of QCD [266–268] is a very convenient tool.
Taking this limit implies F0→ F ∼ Fπ , and leads to the inclusion of the η ′ in U(x)
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of eq. (2.17) as the element corresponding to λ0. Altogether, and because of the
inconsistent values for the mixings in the chiral and in the Large-NC limits for the
η −η ′ system [269], we will let them as free parameters, leading to (note the

√
2

factor difference in Φ, compared to eq. (2.18)):

Φ =


1√
2
(Cππ0 +Cqη +C′qη ′) π+ K+

π− 1√
2
(−Cππ0 +Cqη +C′qη ′) K0

K− K̄0 −Csη +C′sη
′

 . (2.19)

In eq. (2.19), Cπ = F/Fπ in the large-NC limit [270–272], with the physical pion decay
constant Fπ = 92.1 MeV [217]. C(′)

q,s describe the η-η ′ system in the two-angle mixing
scheme [273]

Cq =
F√

3cos(θ8−θ0)

(
cosθ0

f8
−
√

2sinθ8

f0

)
, (2.20a)

C′q =
F√

3cos(θ8−θ0)

(√
2cosθ8

f0
+

sinθ0

f8

)
, (2.20b)

Cs =
F√

3cos(θ8−θ0)

(√
2cosθ0

f8
+

sinθ8

f0

)
, (2.20c)

C′s =
F√

3cos(θ8−θ0)

(
cosθ8

f0
−
√

2sinθ0

f8

)
. (2.20d)

The determination of these mixing parameters is discussed in chapter 4, where they
are used as stabilization points in the fits.

2.2.5 χPT Lagrangian

With these elements in consideration, we can now construct a χPT Lagrangian with
optimal conditions to further include different resonances. We must consider that the
chiral low-energy constants vary from χPT to the case with resonances, as they are
integrated out in the former and become active fields in the latter, thereby affecting
the LECs directly.
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The leading order terms compatible with the assumed symmetries, in each parity
sector, are given by 3:

Lno R =
F2

4
⟨uµuµ +χ+⟩+LWZW , (2.21)

where the LWZW is given by the Wess-Zumino-Witten [276, 277] term, which is
obtained from the WZW action. This action needs to be defined in addition to
the natural definition of χPT, as intrinsic parity is an accidental symmetry of its
construction. Processes as K+K− → π0π+π− and P→ γγ are not included in the
even-intrinsic parity chiral Lagrangians, but occur –by strong interactions– in nature.
Since the QCD Lagrangian has the chiral anomaly, this one must be implemented
in its effective realization at low energies. The Wess-Zumino-Witten action, which
accomplishes this task, is given by:

SWZW [U, l,r] =− iNC

240π2

∫
dσ

i jklmTr
[
Σ

L
i Σ

L
j Σ

L
k Σ

L
l Σ

L
m
]

− iNC

48π2

∫
dx4

εµνρσ (W (U, l,r)µνρσ −W (1, l,r)µνρσ ) ,
(2.22)

where W (U, l,r) is defined as

W (U, l,r)µνρσ =Tr
[
Ulµ lν lρU†rσ +

1
4

UlµU†rνUlρU†rσ

+ iU∂
µ lν lρU†rσ + i∂ µrνUlρU†rσ − iΣLµ lνU†rρUlσ

Σ
LµU†

∂
νrρUlσ −Σ

Lµ
Σ

LνU†rρUlσ +Σ
Lµ lν

∂
ρ lσ +Σ

Lµ
∂

ν lρ lσ

−iΣLµ lν lρ lσ +
1
2

Σ
Lµ lν

Σ
Lρ lσ − iΣLµ

Σ
Lν

Σ
Lρ lσ

]
− (L↔ R),

(2.23)

and Σ
L(R)
µ are

Σ
L
µ =U†

∂µU, Σ
R
µ =U∂µU†, (2.24)

where L↔ R means ΣL
µL↔ RΣR

µ , lµ ↔ rµ and U ↔U†. This Lagrangian is of order p4.
In our context, contributions at chiral order p6 are saturated by resonance exchange.
Consequently, these operators must be included for consistency in our framework,
as it is done in Chapter 3.

For the other operators, we have defined previously U(x) and consequently u(x),
which are the building blocks for the inclusion of the pGBs. uµ and χ± are defined

3We do not include the next-to-leading order terms, that are saturated by resonance exchange in
the antisymmetric tensor formalism that we will use [274, 275].
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by [265]

uµ = i
[
u†(∂µ − irµ)u−u(∂µ − ilµ)u†

]
, χ± = u†

χu†±uχ
†u , (2.25)

in which the external (pseudo)scalar (p)s spin-zero and (left)-right (lµ )rµ spin-one
sources appear. For the vector electromagnetic case,

rµ = lµ =−eQAµ + · · · , Q = diag
(

2
3
,−1

3
,−1

3

)
. (2.26)

Explicit chiral symmetry breaking is introduced like in QCD, through non-vanishing
quark masses, by means of the scalar current, via

χ = 2B(s+ ip), s = diag(mu,md,ms), p = 0, 2m = mu +md, (2.27)

where the last equality corresponds to the isospin symmetry limit 4.
Interactions between pGBs and with external sources can be studied in this

setting. However, since we aim to define form factors with correct high-energy
behavior, we need to go further and include massive spin 1 fields consistently within
χPT . This is most conveniently done working them in the antisymmetric tensor
formalism.

2.3 Chiral Lagrangians for Massive Spin 1 Fields

Chiral Perturbation Theory (χPT ) emerged [246, 247], as dual to QCD at low enough
energies, explaining pion, kaon and eta meson physics precisely (including the chiral
anomaly [276, 277]). However, as one approaches the masses of the ρ(770) meson
and other resonances, going to higher orders in χPT [265, 278] is no longer effective,
and other unitarization procedures need to be considered. Resonance Chiral Theory
(RχT ) [274, 275] extends the energy range of applicability of χPT beyond the lightest
resonance masses, by including them as explicit degrees of freedom in the theory.
This is done based on the large number of colors limit of QCD [266, 267], that is
equivalent to a semiclassical expansion for meson fields. The theory is built upon
chiral symmetry for the lightest pseudo-Goldstone boson particles and unitary
symmetry for the resonance fields.

4The isospin symmetry limit corresponds to mu = md , denoted here m, resulting in mu +md = 2m.
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The following two observations are important for understanding that the un-
known couplings do not grow out of control. First, the number of resonance fields
in the operators is limited by the specific problem under study. Second, there
is a balance between the order of the chiral tensors involved and the fulfillment
of QCD short-distance constraints that need to be required to ensure formalism-
independence of the observables [274, 275]. In this way, the resonance regime
smoothly interpolates between the known chiral and short-distance limits of the
QCD results. The relations among the RχT couplings that are obtained requiring
the asymptotic QCD results increase the predictive power of the theory, as will be
illustrated in the context of aHLbL

µ throughout this thesis.
In addition to the operators described in Section 2.2.5, we will make use of the

following chiral tensor for the electromagnetic interactions (given in terms of the
QED field-strength tensor, Fµν ):

f µν

± = uFµν

L u†±u†Fµν

R u, (2.28)

and the covariant derivative defined by the connection:

Γµ =
1
2

[
u†(∂µ − irµ)u+u(∂µ − ilµ)u†

]
, ∇µ ·= ∂µ +[Γµ , ·]. (2.29)

In general, all resonances are included as chiral tensors which transform as

X G→ hXh† with h ∈ H, where H,G (G⊂ H) characterize the pattern of spontaneous
symmetry breakdown

G≡ SU(3)L⊗SU(3)R→ H ≡ SU(3)V=L+R (2.30)

in low-energy QCD. The chiral tensor operators for the resonances R = S,P,V,A can
be found in Ref. [279] ([280]) for the even(odd)-intrinsic parity sector. For tensor
resonances, the operators can be found in Refs. [281, 282, 122].

2.3.1 RχT Lagrangian: Vector Meson Resonances

The vector meson multiplet in the large-NC limit is included in the antisymmetric
tensor fields [246, 274] 5 (ideal ω0,8 meson mixing into the ω,φ mass eigenstates is

5The standard description of resonances in terms of a vector field requires that the O(p6) terms in
the chiral expansion are included to comply with low-energy symmetry requirements. Instead, this
is not needed working with antisymmetric tensor fields, which is a quite convenient motivation to
use them, as we do.
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used):

Vµν =

(ρ0 +ω0)/
√

2 ρ+ K∗+

ρ− (−ρ0 +ω0)/
√

2 K∗0

K∗− ¯K∗0 φ


µν

. (2.31)

We will restrict ourselves now to the even intrinsic parity sector. There, the most
general Lagrangian which -upon resonance integration- contributes to the O(p4)

chiral low-energy constants is determined by the vector meson resonances multiplet
behavior under the chiral group. This yields :

L kin
V =−1

2
⟨∇λV λν

∇
ρVρν⟩+

1
4

M2
V ⟨VµνV µν⟩,

L even
V =

FV

2
√

2
⟨Vµν f µν

+ ⟩+
λV√

2
⟨Vµν

{
f µν

+ ,χ+

}
⟩+ i

GV√
2
⟨Vµνuµuν⟩, (2.32)

where ⟨⟩ is an abbreviation for the flavor trace. These operators and their implications
will be further discussed in the next chapter, where both intrinsic-parity sectors will
be of relevance.





C
H

A
P

T
E

R

3
π0,η, η ′ transition form factors in resonance
chiral theory and aP−poles

µ

As mentioned in Chapter 1, the main contributions to the HLbL piece of aµ are
the ones of the pseudoscalar poles [283–289]. To compute them, the main input is
the transition form factor (TFF), P→ γ∗γ∗. This work aimed to improve the error of
previous determinations [290, 291, 280, 47, 49, 292, 50, 293–299](∼ 4×10−11, around
20 % of the previous total error of the HLbL), and to correct systematic errors
on previous determinations using the same framework, Resonance Chiral Theory
(RχT) [280, 300–302], which previously failed to include chiral corrections or, more
importantly, to reproduce some of the short-distance constraints (SDCs), which were
in the quality criteria for including a computation in the muon g−2 Theory Initiative
White Paper 2020 [5] due to its importance, as shown in [303]; consequently, RχT
had space for improvement that motivated our present work.

In particular, including just one multiplet of vector mesons it was not possible to
comply with the leading asymptotic behavior for double virtuality. In ref. [302], the
associated error was estimated to be

(
+5.0
−0.0

)
×10−11, from the contribution of excited

vector multiplets, which would restore the appropriate short-distance behavior for
double virtuality. In this work, we have verified previous results and computed all
new contributions associated to the first resonance excitations within this formalism,
being consistent with the procedure of ref. [302] and complying now with the QCD
short-distance behavior.

We have considered an RχT Lagrangian with two vector meson resonances as
derived in [275, 280, 304, 279, 305–308] with the first order chiral corrections in order
to fulfill the SDCs required by the muon g−2 Theory Initiative. The parameters and
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P

γ ∗ (q1,µ)

γ ∗ (q2,ν)

Fig. 3.1 Schematic representation of the P→ γ∗γ∗ (P = π0,η ,η ′) Transition Form
Factor.

couplings that were not constrained by QCD properties, were fitted to experimental
data available on the TFFs, the radiative decay widths, Lattice QCD calculations in
the doubly virtual sector and the best determinations of the η−η ′ mixings.

3.1 Pseudoscalar Transition Form Factor (P→ γ∗γ∗): The
essential input

Due to charge conservation, and strangeness conservation of electromagnetic inter-
actions, π0, η−η ′ can decay into two photons via anomalous contributions, from
the odd-intrinsic parity sector of QCD. For the π0 and η , they are the main decay
channels; for the η ′, they are not, but are still relevant. The decay of a pseudoscalar
particle into two photons is described by the amplitude:

⟨γ∗(q1,λ1)γ
∗(q2,λ2)|P(p)⟩= i(2π)4

δ
(4)(q1 +q2− p)e2

ε
λ ∗1
µ (q1)ε

λ ∗2
ν (q2)M

µν(q1, q2) ,

(3.1)
where ε

λ ∗i
µ,ν(qi) are the polarization of the photons as given by the usual bibliogra-

phy [134]:
ε±(q) =∓(0,1,±i,0) , ε0(p) = (0,0,0,1) . (3.2)

Due to symmetries, there is only one possible tensor structure of M µν(q1,q2), which
results in:

M µν

Pγ∗γ∗ = ε
µναβ q1αq2β FPγ∗γ∗(q2

1,q
2
2), (3.3)

and it is pictorially represented by the Feynman Diagram in Fig. 3.1. All internal
dynamics of the pseudoscalar mesons is encoded in FPγ∗γ∗(q2

1,q
2
2), the transition

form factor (TFF), which must be symmetric under q2
1↔ q2

2
1.

1Alternatively, we could have defined this form factor from the VV P Green function.
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The asymptotic behavior of the pseudoscalar form factors is defined by [309–312],
in the discrete cases of single and double virtuality, and by the Light-Cone-Expansion
results in the full asymmetric cases [124]. In the single and double virtual case, the
limits are:

lim
Q2→∞

Q2Fπ0γ∗γ∗(−Q2,−Q2) =
2Fπ

3
, (3.4a)

lim
Q2→∞

Q2Fπ0γ∗γ∗(−Q2,0) = 2Fπ , (3.4b)

with q2 =−Q2. At leading order in the perturbative expansion, the results for the
η(′) mesons are obtained multiplying those for the π0, eqs. (3.4), by the flavor space

rotation factor 5Cq−
√

2Cs
3

(
5C′q+

√
2C′s

3

)
, respectively. These 4 couplings are parametrized

in the two-angle mixing scheme [269, 273, 313]. The asymptotic behavior for general

asymmetries, parametrized by w =
q2

1−q2
2

q2
1+q2

2
, are given by [124]:

FPγ∗γ∗(q2
1,q

2
2) =

4∑aCaFa
P

Q̃2
f P(w), (3.5)

with the symmetric piece written in terms of Q̃2 =
q2

1+q2
2

2 , and the asymmetry function,
f P(w), is given by:

f P(w) =− 3
2w2

(
1+

1−w2

2w
log

1−w
1+w

)
, (3.6)

with the limiting cases f P(0) =−1 and f P(±1) =−3
2 , matching the values found in

eq. (3.4) when the values for the decay constants are substituted in eq. (3.5).

3.2 Pseudoscalar Pole Contributions

The pseudoscalar poles contribute to the HLbL amplitude by the diagrams in Fig.
3.2. These diagrams can be used to construct the HLbL tensor of this specific
representation to obtain the scalar functions of eq. (1.28). The scalar functions are:

Π̄1(Q1,Q2,τ) =−
FPγ∗γ∗(−Q2

1,−Q2
2)FPγ∗γ∗(−Q2

3,0)
Q2

3 +m2
P

,

Π̄2(Q1,Q2,τ) =−
FPγ∗γ∗(−Q2

1,−Q2
3)FPγ∗γ∗(−Q2

2,0)
Q2

2 +m2
P

. (3.7)

(3.8)
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µ+ µ+

γ

q3

P

q2

q1

µ+ µ+

γ

q3 q2

P
q1

µ+ µ+

γ

q3 q1

P

q2

Fig. 3.2 Pseudoscalar pole diagrams contributing to the HLbL piece of aµ . The
different photon virtualities, q1 ,q2 ,q3, are fixed to the side not in contact with
the form factors, and all of the possible permutations are included in these three
diagrams.

The rest of the scalar functions are zero. Due to the simplicity of the amplitude of
the pseudoscalar poles, alternative derivations of the aµ contributions were used
before the procedure that lead to the Master Formula (See Refs. [290, 314, 315, 49]).
It was previously discussed if it was the pseudoscalar pole or the exchange the one
that should be used for computing this contribution. It was until the development of
the dispersion relations for the HLbL that it was clear that the poles are the ones that
should be used, as they correspond exactly to the one-pseudoscalar intermediate
on-shell states, being this a systematic procedure of classifying contributions, free of
ambiguities due to double-counting [46].

3.2.1 RχT Lagrangian: V+V’+P’

In this section, we describe the formalism used to compute the P transition form
factors, within RχT,2 which extends the energy domain of applicability of the χPT La-
grangian [246] by including the light-flavored resonances as explicit degrees of free-
dom [275] as discussed in Chapter 2. The leading contribution to the Pγγ transition
form factor (TFF) at low energies3 is given by the Wess-Zumino-Witten (WZW) con-
tact term [276, 277], which is completely specified by the chiral anomaly [248, 249],
in terms of the number of colors of the QCD gauge group (NC) and the pion decay

2A more extended discussion can be found in e.g. ref. [302].
3It is O(p4) in the chiral expansion, where p2 ∼ m2

P [246].
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constant in the chiral limit (F):

F WZW
Pγ∗γ∗ =−cP

NC

12π2F
, (3.9)

where cP is the flavor space rotation coefficient, defined as cπ = 1, cη =
5Cq−

√
2Cs

3 , cη ′ =
5C′q+

√
2C′s

3 . Since this term is a constant, it cannot be a complete description of the
TFFs, as it would violate analyticity and unitarity. Besides, it would obviously not
reproduce the short distance constraints from eq. (3.4). To achieve the correct asymp-
totic behavior [302, 301], and a consistent description [280], we need to consider
RχT with the lowest lying vector multiplet(V ), the first excitation of those(V ′) and
pseudoscalar resonances as well(P′).

The complete basis of odd-intrinsic parity RχT operators, which -upon resonance
integration- saturate most of the O(p6) chiral low-energy constants (LECs), was
found in ref. [280]. We will, however, use the basis in ref. [304] with a copy for the V ′

resonances, besides the interactions of this new set of resonances with the previous
ones. This will be developed in more detail next.

We organize the Lagrangian describing the lightest pseudo-Goldstone bosons
and their interactions in an increasing number of resonance fields, R:

LRχT = Lno R +∑
R
(L Kin

R +L Kin
R′ )+ ∑

R,R′
LR,R′+ · · · . (3.10)

We will further divide the RχT Lagrangian into its odd- and even-intrinsic parity
sectors, including, in addition to the pseudo-Goldstone bosons (ϕa) and the photons
(γ), the two lightest vector meson multiplets (V (′)) and the first pseudoscalar excita-
tions (P′).

• Operators with no resonance fields:

We must note, however, that the values of the chiral LECs vary from χPT to this
sector of RχT precisely by the fact that in the latter the resonance degrees of freedom
are active, whereas they have been integrated out in the former. The relevant part
of Lno R in the even intrinsic parity are the ones coming from RχT, described in
Chapter 2, and for the odd-intrinsic-parity are given by[265, 278]: 4

4We include the OW
j operators, which are subleading in the chiral expansion with respect to the

WZW piece, to ensure the most general breaking of flavor symmetry.
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j OW
j

7 iεµναβ ⟨χ− f+µν f+αβ ⟩
8 iεµναβ ⟨χ−⟩⟨ f+µν f+αβ ⟩

22 εµναβ ⟨uµ{∇γ f+γν , f+αβ}⟩
Table 3.1 Chiral operators of order O(p6) relevant for the description of the transition
form factors of the pseudoscalar mesons, π0, η , η ′.

P

γ ∗ (q1,µ)

γ ∗ (q2,ν)

Fig. 3.3 Schematic representation of the non-resonant contributions to the P→ γ∗γ∗

(P = π0,η ,η ′) Transition Form Factor.

L odd
no R = LWZW + ∑

j=7,8,22
CW

j OW
j , (3.11)

where ⟨...⟩ stands for a trace in flavor space. The 3 operators in eq. (3.11) are in
table 3.1. Nevertheless, after our analysis of short-distance constraints is performed
–shown in subsection 3.2.3–, all 3 CW

j , vanish. The schematic representation of these
contributions is shown in Fig. (3.3)
• Operators with one vector resonance field:

The inclusion of vector meson resonances to the chiral Lagrangian are described
in Chapter 2. For the dynamic part, we start with the even-intrinsic parity sector,
where we have

L even
V =

FV

2
√

2
⟨Vµν f µν

+ ⟩+
λV√

2
⟨Vµν

{
f µν

+ ,χ+

}
⟩ , (3.12)

with the first term giving the leading contribution to the V 0-γ coupling and the
second one including its flavor-symmetry breaking correction, proportional to quark
masses.5 The combination of these two terms will result in the Feynman rules for

5We note that λV =
√

2λV
6 in ref. [279].
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j O j
V JP

1 ⟨{V µν , f ρα

+ }∇αuσ ⟩
2 ⟨{V µα , f ρσ

+ }∇αuν⟩
3 i⟨{V µν , f ρσ

+ }χ−⟩
4 i⟨V µν [ f ρσ

− ,χ+]⟩
5 ⟨{∇αV µν , f ρα

+ }uσ ⟩
6 ⟨{∇αV µα , f ρσ

+ }uν⟩
7 ⟨{∇σV µν , f ρα

+ }uα⟩
Table 3.2 Odd-intrinsic parity operators with a vector resonance V , a vector current
J and a light pseudoscalar, P. The common factor εµνρσ is omitted in all operators.

the transition vertices of the relevant resonances:

ρ → γ : FV +8m2
πλV , ω → γ :

1
3
(FV +8m2

πλV ) , φ → γ :

√
2

3
(FV → FV +8∆

2
2KπλV ) ,

(3.13)
where ∆2

2Kπ
= 2m2

K−m2
π , and with an analogous primed version for the V ′-γ vertices.

In the odd-intrinsic parity sector, one has

L odd
V =

7

∑
j=1

c j

MV
O j

V JP , (3.14)

where the complete list of operators contributing to our processes of interest (via
ϕ-γ-V vertices) is collected in table 3.2. Among these operators only O3

V JP breaks
chiral symmetry 6(the others will also give flavor-breaking contributions for real
ϕs, once their wave functions renormalization and mixings are accounted for; with
similar comments applying below). The schematic representation of these operators
is shown in Fig. 3.4.
• Operators with two vector resonance fields:

These contributions are of the following type:

L odd
VV =

4

∑
j=1

d jO
j

VV P , (3.15)

6Although O4
V JP also breaks chiral symmetry, its contribution vanishes for the processes studied

here.
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P

γ∗

γ∗

ρ(′)ω(′)φ (′)

Fig. 3.4 Schematic representation of the contributions to the P→ γ∗γ∗ (P = π0,η ,η ′)
Transition Form Factors including one vector meson resonance. Only the neutral
zero-strangeness resonances contribute, ρ,ω,φ .

j O j
VV P

1 ⟨{V µν ,V ρα}∇αuσ ⟩
2 i⟨{V µν ,V ρσ}χ−
3 ⟨{∇αV µν ,V ρα}uσ ⟩
4 ⟨{∇σV µν ,V ρα}uα⟩

Table 3.3 Odd-intrinsic parity operators with two vector resonances V and a light
pseudoscalar, P. The common factor εµνρσ is omitted in all operators.

where the basis of four operators is given in Table 3.3, but only the first three
contribute to the decay of a pseudoscalar meson into two photons. Among these,
O2

VV P breaks unitary flavor symmetry. The operators of this kind are represented by
diagrams as those in Fig. 3.5.

• Operators with excited vector resonance fields:

For the second vector multiplet, V ′, we repeat all operators that we had for
the first one, V . That is, we add kinetic and dynamic terms for the excited vec-
tor mesons. In this way, we will have the new parameters (denoted by a prime)
MV ′,eV ′

m ,FV ′,λV ′,{c′i}7
i=1,{d′j}4

j=1.

P

γ∗

γ∗

ρ(′)ω(′)φ (′)
ρ(′)ω(′)φ (′)

Fig. 3.5 Schematic representation of the contributions to the P→ γ∗γ∗ (P = π0,η ,η ′)
Transition Form Factors including two vector meson resonances. Only the neutral
zero-strangeness resonances contribute, ρ,ω,φ .
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j O j
VV ′P

a ⟨{V µν ,V ′ρα}∇αuσ ⟩
b ⟨{V µα ,V ′ρσ}∇αuν⟩
c ⟨{∇αV µν ,V ′ρα}uσ ⟩
d ⟨{∇αV µα ,V ′ρσ}uν⟩
e ⟨{∇σV µν ,V ′ρα}uα⟩
f i⟨{V µν ,V ′ρσ}χ−⟩

Table 3.4 Odd-intrinsic parity operators with one vector meson resonance, one
excited vector meson resonance, and a pseudo-Goldstone boson [307]. A common
εµνρσ factor is omitted in all operators.

Additionally, we will also have new VV ′P interactions, which are [307]

L odd
VV ′ = ∑

j=a,b,c,d,e, f
d jO

j
VV ′P , (3.16)

with the O j
VV ′P shown in table 3.4. The diagrams for these operators are as the ones

in Fig. 3.5, with one resonance from each multiplet.

• Operators with pseudoscalar resonance fields:

The pseudoscalar resonances, P′ (with analogous flavor structure to the ϕ mesons),
give subleading contributions via their mixing with the lightest pseudo-Goldstones,
ϕ , that are suppressed as m2

P/m2
P′ . However, the P′ multiplet is crucial to recover

the QCD-ruled short-distance behaviour on the VV P Green’s function [280, 316].
Because of this, we must also take into consideration the pieces

∆L even
P =

1
2
⟨∇µP′∇µP′⟩+ idm⟨P′χ−⟩ ,

∆L odd
P = εµνρσ ⟨κP

5
{

f µν

+ , f ρσ

+

}
P′+κ

PV
3
{

V µν , f ρσ

+

}
P′+κ

PVVV µνV ρσ P′⟩ ,
(3.17)

which need to be repeated for V → V ′. The even parity sector induces transitions
of the kind P→ P′, as the ones shown in Figure 3.6. The odd intrinsic parity ones
will induce corrections to the diagrams shown in Figs. 3.3-3.5. The operator with
coefficient d(′)

m vanishes in the chiral limit. There will also be a VV ′P′ operator [308],

∆L odd
VV ′P′ = κ

VV ′P′⟨{V µν ,V ′µν}P′⟩ , (3.18)

that we need to include for consistency.
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P P′

Fig. 3.6 Transitions of the kind P→ P′, which induce corrections to the contributions
with zero, one and two resonances.

3.2.2 Transition Form Factors in RχT

The different contributions to FPγ∗γ∗(q2
1,q

2
2) considering only one vector resonance

multiplet are described minutely in ref. [302], so we will not detail them here.
Nonetheless, it is important to quote the redefinition of combinations of the coupling
constants appearing in [302] that will also enter our results: 7

c1235→ c∗1235 = c1 + c2 +8c∗3− c5 , (3.19a)

d123→ d∗123 = d1 +8d∗2−d3 , (3.19b)

dabc f → d∗abc f = da +db−dc +8d∗f . (3.19c)

The contributions from the second vector multiplet can be obtained by simply
adding the same terms with primed couplings. We will concentrate here on the
new terms that come from the VV ′P contributions to the two-resonances exchange
diagrams.

The contributions coming from LVV ′P, eq. (3.16), read

FVV ′P
π0γ∗γ∗(q

2
1,q

2
2) =

2
3Fπ

{
(FV +8m2

πλV )(FV ′+8m2
πλV ′)

(
m2

πdabc f +dabcq2
1 +dabcdq2

2
)

×

(
1

(M2
ρ −q2

1)(M
2
ω ′−q2

2)
+

1
(M2

ρ ′−q2
1)(M

2
ω −q2

2)

)
+(q1↔ q2)

}
,

(3.20)

where we defined the combinations of couplings

dabc f = da +db−dc +8d f , dabc = da−db +dc , dabcd =−da +db +dc−2dd , (3.21)

7This redefinition of coupling constants applies for both vector meson resonance multiplets, so
the c′s and the d′s are also redefined in the same way.
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and

FVV ′P
ηγ∗γ∗(q

2
1,q

2
2) =

2
3F

{[
5Cq

2
3
(FV +8m2

πλV )(FV ′+8m2
πλV ′)

dabc f m2
η +dabcq2

1 +dabcdq2
2−8d f ∆2

ηπ

(M2
ρ ′−q2

1)(M
2
ρ −q2

2)

+({5Cq→−
√

2Cs,∆ηπ →−∆2Kπη ,ρ
(′)→ φ

(′)})

]
+(q1↔ q2)

}
, (3.22)

where we introduced ∆2
ηπ = m2

η −m2
π and ∆2

2Kπη
= 2m2

K−m2
π −m2

η . The pion wave-
function renormalization has changed the global 1/F factor to 1/Fπ , for NC→∞ [270–
272], in eq. (3.20). In this equation. there is no φ contribution because ideal mixing
for the vector meson resonances was used. For the η(′), ρ,ω,φ contribute; However,
the isospin symmetry limit leads to M

ρ(′) = M
ω(′) so we have chosen to use ρ(′)’s mass

and propagator only. For the η(′) cases, the dependencies are on C(′)
q/s/F , which are

functions of { f ,θ}8/0.
As always, an analogous expression is obtained for Fη ′γ∗γ∗(q2

1,q
2
2) by replacing

Cq→C′q, Cs→−C′s and mη →mη ′ , and the η(′) expressions reduce to the π0 one in the
U(3) flavor symmetry limit. In the chiral limit, our results for the P transition form
factors reproduce those in refs. [280, 301]. Neglecting the contributions involving
the V ′ multiplet we recover the results in ref. [302].

Since we want to make use of the short-distance constraints on the VV P Green’s
function derived in refs. [280, 301], the effect of the pseudoscalar resonance multiplet
P′ needs to be accounted for. The operator with coefficient dm (from ∆L even

P in
eq. (3.17)) introduces a mixing between the P′ and ϕ states, proportional to quark
masses, starting at O(m2

P). As a result, the contribution from the P′ states can be
introduced by simply rescaling couplings as follows [302]:

CW
7 →CW∗

7 =CW
7 +

4dmκP
5

3MP′
, (3.23a)

c3→ c∗3 = c3 +
dmMV κPV

3

M2
P′

,8 (3.23b)

d2→ d∗2 = d2 +
dmκPVV

2M2
P′

, (3.23c)

d f → d∗f = d f +
dmκPVV ′

2M2
P′

, (3.23d)

8A short-distance constraint on κPV
3 was found in ref. [280]. We will not use it, like in ref. [302], as

it does no longer hold when the V ′ and P′ multiplets are also considered.
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where the last redefinition was not proposed before, to our knowledge. The remain-
ing couplings do not need shifting.

3.2.3 Matching to Asymptotic QCD

As mentioned in 3.1, the high-energy behavior of the TFFs is defined by pQCD and
the definition of the mixings. It is important to mention that by cutting the infinite
tower of resonances, only a finite number of SDCs can be reproduced. Consequently,
the logarithmic piece of eq. (3.5), is not achievable in this setting. We applied the
single virtual and symmetric doubly virtual constraints, first in the chiral limit, and
then including O(m2

P) corrections. Our results were independent of considering
corrections at this order to the LO values for the C(′)

q/s mixing coefficients, so we will
keep them unexpanded throughout.

In addition to demanding the leading ultraviolet behaviour in the singly and
doubly virtual limits of the transition form factors, we will also require the additional
constraints derived from the short-distance analysis of the VVP Green’s function.
By matching the leading terms of the QCD OPE for infinite virtualities, within the
chiral and large-NC limits, Kampf and Novotny [280] obtain that the following (linear
combinations of) constants vanish

CW
22 =CW∗

7 = c125 = c′125 = c1235 = c′1235 = 0 , (3.24)

where we first used here c125 = c1− c2 + c5. Their remaining results are compatible
with our findings that will be detailed next:

• Doubly Virtual π0-TFF:

– O(Q0), O(m0
P):

c′1256 =−MV ′
MV NC +32

√
2π2FV c1256

32
√

2π2FV ′MV
, (3.25)

where c(′)1256 = c(′)1 − c(′)2 − c(′)5 +2c(′)6 appears (primed combinations of con-
stants are defined analogously below).

– O(Q0), O(m2
P):

λV = λV ′ = 0 . (3.26)
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– O(Q−2), O(m0
P):

c1256 =
8d3FV +4dabcFV ′−

F2
π M2

V
FV (M2

V−M2
V ′)

4
√

2MV
. (3.27)

– O(Q−2), O(m2
P):

c∗1235 =−eV
m

8d3FV +4dabcFV ′−
F2

π M2
V

FV (M2
V−M2

V ′)√
2MV

. (3.28)

• Singly Virtual π0-TFF:

– O(Q0), O(m0
P):

d′3 =
−M2

V M2
V ′NC−32π2dabcdFV FV ′M2

V −64π2d3F2
V M2

V ′−32π2dabcFV FV ′M2
V ′

64π2F2
V ′M

2
V

.

(3.29)

– O(Q0), O(m2
P):

c∗′1235 =−
MV ′

8
√

2π2FV ′M4
V
(−eV ′

m M4
V NC−64π

2d3eV ′
m F2

V M2
V −32π

2dabceV ′
m FV FV ′M

2
V

+64π
2d3eV

mF2
V M2

V ′+32π
2dabceV

mFV FV ′M
2
V ′+8

√
2π

2c∗1235FV MV M2
V ′) .

(3.30)

– O(Q−2), O(m0
P):

dabc =−
−M2

V M4
V ′NC +4π2[4dabcdM2

V FV FV ′(M2
V −M2

V ′)+16d3F2
V M2

V ′(M
2
V −M2

V ′)+5F2
π M2

V M2
V ′ ]

16π2FV FV ′M2
V ′(M

2
V −M2

V ′)
.

(3.31)

– O(Q−2), O(m2
P):

d′∗123 =−
FV [2d∗123FV M2

V ′+d∗abc f FV ′(M2
V +M2

V ′)]

2F2
V ′M

2
V

. (3.32)

We note that the relation eV ′
m = eV

m
M2

V ′
M2

V
, which stems from our assumption of iden-

tical flavor structure for the V and V ′ nonets, precisely cancels the O(Q0), O(m4
P)

terms in the singly virtual asymptotic limit (in fact they are cancelled to all
orders in m2

P). We anyway recall that our computation only retains O(m2
P)

corrections.
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We find additional constraints, coming from either the η or η ′ form factors,
which are:

• Doubly Virtual η-TFF:

– O(Q0),O(m0
P):

CW
8 = 0 . (3.33)

– O(Q−2),O(m2
P):

c∗3 = eV
m

16π2dabcdFV FV ′M2
V (M

2
V −M2

V ′)+32π2d3F2
V M2

V ′(M
2
V −M2

V ′)+24π2F2
π M2

V M2
V ′

32
√

2π2FV MV M2
V ′(M

2
V −M2

V ′)
.

(3.34)

• Singly Virtual η-TFF:

– O(Q0),O(m2
P):

c′∗3 =
M3

V ′(
√

2eV
mMV NC−128π2c∗3FV )

128π2FV ′M3
V

. (3.35)

– O(Q−2),O(m2
P):

d′∗2 =−
FV [2d∗2FV M2

V ′+d∗f FV ′(M2
V +M2

V ′)]

2F2
V ′M

2
V

. (3.36)

We remark that our setting provides π0,η ,η ′ transition form factors which, in

the chiral limit, follow the proportionality 1 : 5Cq−
√

2Cs
3 :

5C′q+
√

2C′s
3 . This implies that

it is not able to accommodate the corrections to eqs. (3.4) due to the anomalous
dimension of the singlet axial current [317], which are relevant for the η(′) cases. Our
fit results, however, will not hint to any need for improving on this point presently.
Higher order corrections to the first of eqs. (3.4) have been computed using the OPE,

and multiply it by
(

1− 8
9

δ 2
P

Q2

)
. For the π0, δ 2

π = 0.20(2) GeV2, determined from QCD

sum rules [310]. For the η(′) the corresponding values have not been computed,
although it is reasonable to expect that they deviate from the π0 result by typical
U(3) (and large-NC) breaking corrections, ≲ 30% [47].

Our short-distance constraints on the RχT parameters are compatible with those
found in τ−→P−[γ]ντ [318–320] and τ−→ (V P)−ντ decays [321]. They are consistent
with those derived studying the τ−→ (KKπ)−ντ [322] and τ−→ η(′)π−π0ντ [323]
decays provided FV =

√
3F [316], a relation that is also favored in τ−→ (πππ)−ντ

decays [324–326], which is driven by the axial-vector current.
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We will not quote the FPγ∗γ∗ form factors obtained after applying the short-
distance constraints discussed previously, but after employing the next definitions.
First, we introduce the following barred couplings:9

d̄123 =
F2

V
3F2

π

d∗123 , (3.37a)

d̄abc f =
FV FV ′

6F2
π

d∗abc f , (3.37b)

d̄2 =
F2

V
3F2

π

d∗2 , (3.37c)

d̄ f =
FV FV ′

6F2
π

d∗f , (3.37d)

d̄3 =
F2

V
3F2

π

d3. (3.37e)

Further, the dependence of our results on d̄123(d̄2) and d̄abc f (d̄ f ) suggests us to
introduce their following convenient combinations

ds1 =

(
1−

M2
V

M2
V ′

)(
d̄abc f +

M2
V ′

M2
V

d̄123

)
, (3.38a)

ds2 =

(
1−

M2
V

M2
V ′

)(
d̄ f +

M2
V ′

M2
V

d̄2

)
, (3.38b)

which appear for single and double virtuality, and

dd1 =

(
1−

M2
V ′

M2
V

)(
d̄abc f + d̄123

)
, (3.39a)

dd2 =

(
1−

M2
V ′

M2
V

)(
d̄ f + d̄2

)
, (3.39b)

that enter only for double virtuality. It is also advantageous to employ

dd3 =

(
1−

M2
V ′

M2
V

)2

d̄3, (3.40)

9d̄123 and d̄2 were already used in ref. [302].
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that is only sensitive to the doubly virtual photon case.
Altogether, this enables to recast the FPγ∗γ∗ form factors as

Fπ0γ∗γ∗(q
2
1,q

2
2) =

{
96π

2F2
π (m

2
πM2

ρM2
ρ ′ds1 +m2

πq2
1q2

2dd1 +2M2
ρq2

1q2
2dd3)+NCM2

V ′M
2
ρ ′(q

2
1q2

2−M4
ρ)

+4F2
π π

2q2
1q2

2(q
2
1 +q2

2−2M2
ρ)+24F2

π π
2M2

ρ ′

[
(q2

1 +q2
2)M

2
ρ −2q2

1q2
2

]}
/
[
24π

2Fπ(M2
ρ −q2

1)(M
2
ω −q2

2)(M
2
ρ ′−q2

1)(M
2
ω ′−q2

2)
]
+(q1↔ q2) ,

(3.41)
and

Fηγ∗γ∗(q2
1,q

2
2) =

5Cq

18Fπ2(M2
ρ −q2

1)(M
2
ρ −q2

2)(M
2
ρ ′−q2

1)(M
2
ρ ′−q2

2)
×{

π
2F2

π

[
24m2

ηds1M2
ρM2

ρ ′−192ds2M2
ρM2

ρ ′∆
2
ηπ +24m2

ηq2
1q2

2dd1−192q2
1q2

2dd2∆
2
ηπ +48q2

1q2
2dd3M2

ρ

−
(

q2
1q2

2(2M2
ρ −q2

1−q2
2)+6M2

ρ ′

(
2q2

1q2
2−M2

ρ

(
q2

1 +q2
2
)))]

+NC

(
−

M2
V ′

4

)(
M2

ρ ′(M
4
ρ −q2

1q2
2)
)}

+(q1↔ q2)+(5Cq→−
√

2Cs, ρ ↔ φ , ρ
′↔ φ

′, ∆
2
ηπ →−∆

2
2Kηπ) .

(3.42)
The η ′ form factor is obtained by replacing Cq → C′q, Cs → −C′s and mη → mη ′ in
eq. (3.42).

As in the π0 case (see the related explanation below eq. (3.22)), the η(′) transition
form factors neither depend on the pion decay constant in the chiral limit, F . These
are functions of C(′)

q /F and C(′)
s /F , which in turn depend just on the two mixing

angles θ8/0 and decay constants f8/0.

3.2.4 TFF global fit

Let us recall the criteria required in the White Paper for taking an evaluation of
aP−pole,HLbL

µ into account, before dwelling on the details of our fits to the data. These
conditions were that (quoting from ref. [5]):

1. in addition to the transition form factor normalization given by the real-photon
decay widths, also high-energy constraints must be fulfilled;

2. at least the spacelike experimental data for the singly-virtual TFF must be
reproduced;
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3. systematic uncertainties must be assessed with a reasonable procedure.

As for the doubly-virtual transition form factor, the experimental data is still
very scarce as there is only one measurement by BaBar consisting of five data points
for the η ′ transition form factor with relatively large uncertainties. Therefore, we
require our doubly-virtual transition form factors to be not only in accord with the
BaBar data for the η ′ but also in line with the Lattice-QCD data released by the
Budapest–Marseille–Wuppertal (BMW) collaboration for the π0,η and η ′ doubly-
virtual TFFs. As in the singly-virtual case, systematic uncertainties must also be
reasonably assessed. We suggested that, for the second White Paper, one should
demand –in addition to the three points above– consistency between data-driven
P TFF and lattice QCD results, particularly for double virtuality, where these now
constitute the best input. This proposal was followed by the Muon g-2 Theory
Initiative.

We will start recapitulating the parametric dependence of our P transition form
factors, eqs. (3.41) and (3.42), with appropriate substitutions for the η ′ case.

In principle, a couple of parameters are needed to specify the masses within each
V multiplet, MV ,eV

m, and their primed counterparts. However, our assumption of
identical flavor structure for both nonets erases the dependence on eV ′

m . Therefore,
the corresponding spectra will be specified by three independent parameters, that
we choose to be MV ,eV

m,MV ′ . In addition to these, we will have the four parameters
associated to the η(′) mixing, our choice being the decay constants and mixing angles
{ f ,θ}8/0. The final five fitted parameters will be those specifying the functional
dependence for single and double photon virtuality: ds1,d1,d3 for P = π0 and also
ds2,d2 for the η(′), for a total of 12 fitted parameters. Among them, only MV (′) and dd3

are U(3)-symmetric, while the rest break this approximate flavor symmetry.
Since our focus is on the P-pole contributions to aHLbL

µ , we will only fit spacelike
data (q2 ≤ 0). The timelike region is more involved within RχT, because resonance
widths are needed, which is a next-to-leading order effect in the 1/NC expansion.
Although it is phenomenologically clear that this is the leading next-to-leading order
effect, other terms at this order may not be negligible and complicate the treatment.
Additionally, radiative corrections can be more important in the timelike region, as
discussed in [327].

We will use the following data:
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• The decay widths Γ(P→ γγ), corresponding to the transition form factors
evaluated for null virtuality (real photons),

Γ(P→ γγ) =
(4πα)2

64π
m3

P|FPγγ(0,0)|2 , (3.43)

are helpful in the characterization of the η-η ′ mixing and constitute the nor-
malization which receives chiral corrections for low virtualities. These inputs
are taken from the PDG [328].10

• Transition form factor data from the BaBar [329, 330], Belle [331], CELLO [332],
CLEO [333] and LEP [334] experiments, for the singly virtual case.

• There is only one measurement for double virtuality, by BaBar, in the η ′ chan-
nel [335], consisting of five points (which are insufficient to reliably fit our
three parameters dd1,d2,d3). We will increase the sensitivity to the doubly vir-
tual regime by supplementing BaBar’s with Lattice QCD results [294, 296, 297].
Specifically, from the z-expansion performed by the BMW collaboration in [294],
we generate three points (at Q2

1 = Q2
2 = 0.1 ,1.0, and 4.0 GeV2) for all three P

mesons.11 These points are shown in Table 3.5. We would like to note here that
at least the Lattice data for the η doubly-virtual transition form factor shall
be included in the fits to obtain a satisfactory simultaneous description of all
three mesons.

As in ref. [302], we will take advantage of stabilization points for the fit, using
the results from a previous determination of the { f ,θ}8/0 parameters [273, 269, 336–
339]12

θ8 = (−21.2±1.6)◦ , θ0 = (−9.2±1.7)◦,

f8 = (1.26±0.04)Fπ = (116.2±3.7)MeV, f0 = (1.17±0.03)Fπ = (107.9±2.8)MeV ,
(3.44)

10We are not taking Γ(η ′→ γγ) as a separate data point, since it uses LEP data that we are fitting,
see next item.

11Given that the z-expansion has 6 parameters (with their corresponding correlation) one can
generate at most 6 points for having an invertible covariance matrix. Four our analysis, we only
generate 3 lattice points for each P to avoid high correlations between (neighboring) points [328]. We
note that 3 is the minimum number of points we need to fix the three doubly virtual parameters. Had
we used 4, 5 or 6 data points we would have obtained highly correlated data, which implies a (close
to) non-invertible covariance matrix, that over-represents the lattice information.

12The correlation between the fitted parameters describing the singly and doubly virtual behavior
(now ds1,s2,d1,d2) and { f ,θ}8/0 is large, like with a single vector resonance multiplet (as in ref. [302]),
which calls for adding these extra fit points in order to keep the fit within the physical region.
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Q2
1 = Q2

2 [GeV2] 0.1 1 4
π0 0.0194(3) 0.0475(4) 0.0514(12)
0.1 1 0.2758 0.1556
1 0.2758 1 0.1222
4 0.1556 0.1222 1
η 0.0158(11) 0.0440(26) 0.0474(31)
0.1 1 0.6743 0.3006
1 0.6743 1 0.4615
4 0.3006 0.4615 1
η ′ 0.0251(30) 0.0920(100) 0.0934(114)
0.1 1 0.8658 0.3840
1 0.8658 1 0.4423
4 0.3840 0.4423 1

Table 3.5 Central values, uncertainties and correlation matrix for the doubly virtual
transition for factors, generated at three representative values of q2

1 = q2
2 from the

BMW results [294] and used in our fits.

which increase the χ2 by barely more than unit.
The fits can compensate for the neglected higher V excitations by shifting any

of the mass parameters MV or M′V . We choose to keep Mρ close to its PDG value by
adding it as a point in the cost function.

We will add to the χ2 a final fit point, corresponding to δ 2
π = 0.20(2) GeV2 (see

the discussion below eq. (3.36)).
The cost function for this fit will then be:

χ
2
Global = χ

2
π0

SV
+χ

2
ηSV

+χ
2
η ′SV

+χ
2
π0

DV
+χ

2
ηDV

+χ
2
η ′DV

+
ExtraPoints

∑
P

(
Pexp−Pmodel

∆Pexp

)2

, (3.45)

which includes the transition form factor data for single and double virtuality, SV
and DV (where the latter incorporate lattice input) for the P channels, and the extra
points given by: the Γ(P→ γγ) decay widths [328], the decay constants and mixing
angles of the η−η ′ system (3.44), Mρ [328], and δ 2

π = 0.20(2) GeV2 [310].
Regarding the Lattice data, the correlations between the generated data were also

considered in each of the χ2
PLQCD

DV
, so their contribution to the reduced χ2 in eq. (3.45)

is given by:

χ
2
PLQCD

DV
=

3

∑
i, j=1

(
PLQCD

i −PRχT
i

)(
CovLQCD

i j

)−1(
PLQCD

j −PRχT
j

)
, (3.46)
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where PLQCD
i( j) and

(
CovLQCD

i j

)−1
are, respectively, the central value and the inverse

of the covariance matrix of the lattice data given in Table 3.5. 13

Following previous analyses of the FPγ∗γ∗ form factors and their contributions to
aHLbL

µ [124, 301, 302, 340–352] and owing to our preliminary fits for this work, we will
not include BaBar π0 data in our reference fit, as it is inconsistent with Belle’s, that
appears more compatible with the predicted (Brodsky-Lepage) asymptotic limit.14

Additionally, the chiral symmetry relations among the different P form factors data
points at the largest measured energies are best satisfied without the BaBar π0 data.
The possible bias induced by excluding this dataset is included as a systematic error.

Our preliminary fits show a big correlation (close to one) of the pairs of parame-
ters {ds1,ds2} and {dd1,dd2}. This motivates us to consider instead their combinations

ds1 = ⟨ds1⟩+
σds1√

2

(√
1+ rs rs1−

√
1− rs rs2

)
, (3.47a)

ds2 = ⟨ds2⟩+
σds2√

2

(√
1+ rs rs1 +

√
1− rs rs2

)
, (3.47b)

and analogously for the doubly virtual case (s→ d), in order to minimize their
correlations (assuming small interdependences with the rest of the parameters,
which is a good approximation). Eqs. (3.47) use the mean values of the preliminary
fit (⟨ds1⟩,⟨ds2⟩) and their uncertainties (σds1 ,σds2). The new parameters are rs1,rs2,
defined through the original correlation rs ∼ 1 (same with s→ d).

Our best fit results corresponding to the minimization of the cost function (3.45)
are given in table 3.6 with the correlation matrix shown in table 3.7. The compar-
ison of our FPγ∗γ∗(q2

1,q
2
2) to data for single and double virtuality are displayed in

figures 3.7 and 3.8.
We will comment now on the big correlations that can still be seen in table 3.7.

The redefinition in eq. (3.40) shows that we cannot make any further rotation of
parameters to avoid the anticorrelation of −0.837 between M′V and dd3.15 We rotated
the parameters ds1 and ds2, according to eq. (3.23), to minimize their correlation. We
note that the rotated parameter rs1 has big correlations with both MV and eV

m (which
is not the case for its partner rotated parameter, rs2). Correlations between the η-η ′

mixing parameters are slightly larger than in ref. [302], but still reasonable. The large

13Taking the covariance matrix into account introduces extra degrees of freedom due to having
non-diagonal entries different from zero equal. The additional d.o.f. equal the non redundant entries
of the covariance matrix.

14We have checked that the fits are worse if these BaBar data is kept, like in ref. [302].
15Besides, the correlation between them is non-linear, so we could not proceed analogously.
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Parameter Fit Result
MV [GeV] 0.752(2)
eV

m -0.32(4)
MV ′ [GeV] 1.933(4)
rs1 0.0(0.6)
rs2 0.0(0.9)
rs 0.9976
⟨ds1⟩ -1.6(6)
⟨ds2⟩ -0.21(7)
θ8 [◦] -18.5(6)
θ0 [◦] -6.9(1.6)
f8 [MeV] 118.8(4)
f0 [MeV] 99.4(1.7)
rd1 0.0(0.5)
rd2 0.0(0.9)
rd 0.9783
⟨dd1⟩ -2.8(2.0)
⟨dd2⟩ -0.31(24)
dd3 -3.48(3)
χ2

Global/d.o.f. 148.0/110
Table 3.6 Our best fit results, with uncertainties in parentheses. The input values of
the rotations (3.47) are also given, where the errors in the ⟨d⟩ are the σd’s.

MV eV
m MV ′ rs1 rs2 θ8 θ0 f8 f0 rd1 rd2 dd3

MV 1 0.739 −0.035 0.501 −0.065 0.035 −0.008 −0.077 −0.025 0.357 −0.152 0.371
eV

m 0.739 1 −0.106 0.614 −0.120 −0.009 0.019 −0.099 −0.053 0.300 −0.145 0.344
MV ′ −0.035 −0.106 1 −0.035 −0.114 −0.032 0.202 0.063 −0.030 −0.446 0.399 −0.837
rs1 0.501 0.614 −0.035 1 0.226 0.335 0.029 −0.014 −0.113 0.217 −0.097 0.186
rs2 −0.065 −0.120 −0.114 0.226 1 0.185 −0.219 0.089 0.431 0.026 0.211 0.082
θ8 0.035 −0.009 −0.032 0.335 0.185 1 0.002 −0.657 −0.069 0.075 0.071 0.015
θ0 −0.008 0.019 0.202 0.029 −0.219 0.002 1 −0.001 0.605 −0.069 −0.041 −0.187
f8 −0.077 −0.099 0.063 −0.014 0.089 −0.657 −0.001 1 0.032 −0.047 0.002 −0.084
f0 −0.025 −0.053 −0.030 −0.113 0.431 −0.069 0.605 0.032 1 −0.011 0.165 0.030

rd1 0.357 0.300 −0.446 0.217 0.026 0.075 −0.069 −0.047 −0.011 1 −0.152 0.140
rd2 −0.152 −0.145 0.399 −0.097 0.211 0.071 −0.041 0.002 0.165 −0.152 1 −0.392
dd3 0.371 0.344 −0.837 0.186 0.082 0.015 −0.187 −0.084 0.030 0.140 −0.392 1

Table 3.7 Correlation matrix between the 12 fitted parameters of the best fit.

correlation between MV and eV
m is entirely a result of fixing Mρ to its PDG value. In

our preliminary fits, floating both parameters independently, their correlation was
only ∼ 0.22.

We will discuss next the central values of our reference fit:

• MV is typically smaller than the results obtained in single resonance approx-
imations (∼ 800 MeV [312, 353]) but the value of Mρ(φ) is still compatible, at
1(2) σ , with the PDG [328].
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• As commented above, eV
m is highly correlated with MV because we are requir-

ing that M2
V − 4eV

mm2
π ∼ M2

ρ . Nevertheless, the value of this flavor symmetry
breaking parameter is compatible at less than one standard deviation with the
best fit result in ref. [302].

• One should not expect M2
V ′ − 4eV ′

m m2
π ∼ M2

ρ ′ , because M2
V ′ (we recall that we

are assuming eV ′
m M2

V = eV
mM2

V ′) absorbs the effect of the neglected higher V
excitations, so its fitted value MV ′ ∼ 1.933 GeV appears reasonable.

• Concerning the η-η ′ mixing parameters, agreement of our fitted values with
the input (3.44) is acceptable, with differences being 1.2(0.70)σ for θ8(0), and
0.4(1.9)σ for f8(0).

• For our best fit values, eq. (3.40) implies that dd3 ∼ 30d̄3, with d̄3 ∼ d3. Short-
distance QCD constraints on the VV P Green’s function [280, 316] determine
d3 ∼−0.126, corresponding to a dd3 with a deviation of less than 10% from our
best fit value.

• Best fit values for the parameters rs1,s2 and rd1,d2 are compatible with zero.
Little information is known on the couplings of the V ′ multiplet that enter
the definition of the original couplings ds1,s2 and dd1,d2. If we set them to zero
for a rough estimate and take into account that d̄123,2 ∼ d123,2, we can use that
d123 ∼ 1/24 [280, 316] (again from the short-distance behaviour of the VV P
Green’s function), to estimate that ds1 ∼ 1/4 and dd1 ∼ 5/4, which agree within
1 and 3σ with our best fit. According to refs. [354–357] d2 = 0.08±0.08, that
again yields estimates ds2 and dd2 in agreement with our best fit results.

The comparison of the transition form factors corresponding to our best fit results
(table 3.6) to data in the singly virtual regime for the π0, η and η ′ mesons in fig. 3.7
is very satisfactory but for a few points that seem to be outliers, given the general
trend shown by the data. At the largest measured virtualities our transition form
factors seem to approach faster the Brodsky-Lepage limit than the data, that have
large uncertainties there, anyway.

An analogous comparison for double virtuality is shown in fig. 3.8, where the
relevance of the lattice data is evident -these data are extremely helpful in our
analysis to constrain the doubly-virtual parameters dd1,d2,d3. We note that a couple
of low-energy points in the η (η ′) case are below (above) our curves, although the
statistical significance of this tension is moderate. As a sanity check, we have verified
that the comparison of our best fit results to lattice QCD exhibits a similar pattern
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Fig. 3.7 The transition form factors corresponding to our best fit results (table 3.6)
are compared to data in the singly virtual regime for π0, η and η ′. BaBar data for
the π0 case [329] is shown for completeness, but it was not used in our reference fits.
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Fig. 3.8 The transition form factors corresponding to our best fit results (table 3.6)
are compared to data in the doubly virtual regime for π0, η and η ′.
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Fig. 3.9 BaBar data (cyan diamonds) for the η ′ doubly-virtual transition form fac-
tor [335] as compared to our best fit results (black circles) from table 3.6 including
statistical and systematic errors.

in the singly virtual case.16 In addition, in fig. 3.9 we show a comparison of the
standalone BaBar measurements of the η ′ doubly-virtual transition form factor,
which includes non-diagonal Q2 data points, together with our best fit results. As
seen, the results are in good agreement, while the experimental statistics is not
sufficiently precise yet as to further constrain the parameters of double virtuality.

We have extracted the slope parameters, {b,c,d}P, defined from

lim
Q2→0

FPγ∗γ(−Q2,0) = FPγγ(0,0)
(

1− bP

m2
P

Q2 +
cP

m4
P

Q4− dP

m6
P

Q6 + · · ·
)
, (3.48)

corresponding to our best fit results, and compared them to ref. [47] in table 3.8. As
in this reference, we are not quoting our results for dπ , since the sensitivity of the
data and our fit to this parameter is pretty small, because of chiral suppression. The
agreement for bP (and for cπ ) is very satisfactory, while the accordance with the other
parameters shown is quite good. In the last row shown for each channel, we recall

16We cannot add these data to our fit since they would be double counted (they are obtained
from the double virtuality data, setting one photon on-shell). We could have decided to use this
information for the singly virtual case, but it was much more useful to employ it for double virtuality
in our case, as we did.
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Parameter Our result Values in [47] Difference between both
bπ 0.03163(16) 0.0321(19) 0.2σ

cπ 0.000862(6) 0.00104(22) 0.8σ

π∞ 2Fπ 2Fπ 0σ

bη 0.600(10) 0.572(8) 1.6σ

cη 0.316(7) 0.333(9) 1.1σ

dη 0.164(4) 0.195(20) 1.3σ

η∞[GeV] 0.174(3) 0.180(12) 0.4σ

bη ′ 1.26(2) 1.31(3) 1.0σ

cη ′ 1.86(4) 1.74(9) 0.9σ

dη ′ 2.82(6) 2.30(22) 1.9σ

η ′∞[GeV] 0.260(4) 0.255(4) 0.6σ

Table 3.8 Low-energy slope parameters {b,c,d}P and Brodsky-Lepage parameter
(P∞) from our best fit result and their comparison with the values used in [47].

the coefficient of the O(1/Q2) term in the single asymptotic (Brodsky-Lepage) limit
(P∞), see eq. (3.4b), for which both analyses agree within one standard deviation.

Finally, it is important to remark that, in addition to having reproduced the Short-
Distance Constraints (SDC) for all 3 mesons and having a good agreement with the
other successful descriptions at intermediate energies, the decay widths Γ(P→ γγ)

are also in great accord with the experimental values -we have obtained a value of
7.67(9) eV for π0 (which is only at 0.6σ from the measurements [358, 359]), 497(13)
eV for the η (0.6σ from [360]) and 4.3(2) KeV for η ′ (merely 0.2σ from [334]). This
agreement is noteworthy, given the slight tension (in the π0 and η cases) between
the lattice QCD results for these widths and the PDG values (see also our footnote
13).

3.3 Equivalence of RχT TFF with the Canterbury Ap-
proximants

In contrast with the case of the π0 pole, where evaluations from many models
had been done [290, 361, 47, 302, 292, 49, 50, 293, 294], in the White Paper 2020 of
the muon g−2 theory initiative [5], the η−η ′ contributions were taken from [47]
and there were not other evaluations of these contributions satisfying the White
Paper quality criteria by then. Recent determinations of these can be found in
Refs. [294, 362, 62, 68, 363]. The rational approach of ref. [47] is based on the so
called Canterbury Approximants [364–368]. We will translate our RχT description,
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including two multiplets of vector resonances, to the CA language and comment on
the corresponding implications in this section 17.

3.3.1 Definition of Canterbury Approximants

Canterbury Approximants (CAs) are described by a rational function f (x,y) of
polynomials which are analytic, symmetric under x↔ y and satisfy the accuracy-
through-order conditions [47, 364–368]. A CN

M is defined then as:

CN
M(x,y) =

RN(x,y)
QM(x,y)

=
∑

N
i, j=0 ai, jxiy j

∑
M
i, j=0 bi, jxiy j

. (3.49)

Ref. [47] mentioned that both CN
N+1(Q

2
1,Q

2
2) and CN

N (Q
2
1,Q

2
2) work for describing

the high-energy behavior prescribed by perturbative QCD [311, 312, 309, 310] on the
pseudoscalar transition form factor, eqs. (3.4). Choosing one or the other depends
on whether dropping the last term(s) of the polynomial from RN or QM in eq. (3.49).
Given this constraint, the convergence and Bose symmetry are guaranteed at arbi-
trary virtualities for both photons. Increasing N and/or M implies incrementing the
freedom of the model, so that an optimal choice of them must be done with both
freedom and over-fitting in mind.

3.3.2 CA to RχT Mapping

In [47], a C1
2 was used18 (we do not write a subscript P in the α and β coefficients in

eq. (3.50), although they are different for π0,η ,η ′):

C1
2(Q

2
1,Q

2
2) =

FPγγ(0,0)
(
1+α1(Q2

1 +Q2
2)+α1,1Q2

1Q2
2
)

1+β1(Q2
1 +Q2

2)+β1,1Q2
1Q2

2 +β2(Q4
1 +Q4

2)+β1,2Q2
1Q2

2(Q
2
1 +Q2

2)
. (3.50)

17Unfortunately, it is impossible to relate analytically our framework to the dispersive approach [49],
which currently provides the reference result for the pseudoscalar pole contributions.

18The FPγγ(0,0) was factored out to provide with a physical meaning the normalization constant,
given a0 = b0 = 1. Besides, the β2,2 term was dropped -as commented before- in order to correctly
account for the high-energy behavior.
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The low-energy behavior, given by the Q2
1,Q

2
2→ 0 expansion [369], is:

FPγ∗γ∗(Q2
1,Q

2
2) = FPγγ(0,0)

(
1− bP

m2
P
(Q2

1 +Q2
2)+

cP

m4
P
(Q4

1 +Q4
2)

+
aP;1,1

m4
P

(Q2
1Q2

2)−
dP

m6
P
(Q6

1 +Q6
2)+ · · ·

)
,

(3.51)

and has been widely studied for all 3 particles (see Table VI of ref. [47]). The values
of FPγγ(0,0), bP and cP, together with the high-energy behavior constraints

lim
Q2→∞

FPγ∗γ∗(Q2,Q2) =
P∞

3

(
1

Q2 −
8
9

δ 2
P

Q4

)
+O(Q−6) , (3.52a)

lim
Q2→∞

FPγ∗γ(Q2,0) =
P∞

Q2 , (3.52b)

impose 6 restrictions to the form factors in eq. (3.50), leaving only α1,1 as a free
parameter.19 However, α1,1 could not be fitted therein, since it is sensitive only to the
doubly virtual case, for which no data was available by then.20 Now, there are both
experimental data [335] (only for η ′) and lattice QCD evaluations [294, 296, 297]
which can be -as we pioneeringly illustrated in this work, ref. [62]- used to generate
data in order to complete this description. An updated version of the CA study is
included in this work, both for its intrinsic interest and for comparing to our results
in the previous section.

Our form factors satisfying short-distance QCD constraints, eqs. (3.41) and (3.42)
-with trivial changes for η → η ′- correspond to a C2

2 and a C4
4 CA, respectively. For

the π0 case the CA coefficients matching our parametrization eq. (3.41) are given in
table 3.9.

We make the following important remarks concerning the results in table 3.9:

• The C2
2 model has 4 more parameters than the C1

2 model used in [47]. However,
two of them vanish, consequently the degrees of freedom increase by two.

• By construction, our model based on RχT reproduces the dominant asymptotic
behavior of the transition form factors, but the correction given by δ 2

π is only
included as a fit point in the χ2, as opposed to the C1

2 case, where it is used to
fix a coefficient.

19For the η(′) cases, the asymptotic constraint on P∞ in eq. (3.52b) was traded by the low-energy
one on dP (we recall there is no sensitivity to it for P = π0), see table 3.8.

20In ref. [47] the range for αP1,1 was taken so as to avoid poles for the C1
2(Q

2
1,Q

2
2) in the spacelike

region.
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CA Coefficient RχT result

Fπ0γγ(0,0)
8ds1Fπ m2

π

M2
ρ M2

ρ ′
− M2

V NC
12Fπ M2

ρ π2

απ
1 Fπ0γγ(0,0) − 2Fπ

M2
ρ M2

ρ ′

απ
1,1Fπ0γγ(0,0) − 4Fπ

M4
ρ M2

ρ ′
+

2Fπ(−M2
ρ+12dd1m2

π+24dd3M2
ρ)

3M4
ρ M4

ρ ′
+

M2
V NC

12Fπ π2M6
ρ

απ
2 Fπ0γγ(0,0) 0

απ
1,2Fπ0γγ(0,0) − Fπ

3M4
ρ M4

ρ ′

απ
2,2Fπ0γγ(0,0) 0

β π
1 M−2

ρ

(
1+ M2

V
M2

V ′

)
β π

1,1 M−4
ρ

(
1+ M2

V
M2

V ′

)2

β π
2 M−2

ρ M−2
ρ ′

β π
1,2 M−4

ρ M−2
ρ ′

(
1+ M2

V
M2

V ′

)
β π

2,2 M−4
ρ M−4

ρ ′

Table 3.9 Translation of our RχT result, eq. (3.41) to CA, for the π0.

• The slope parameters from [369] are imposed on the C1
2 up to cπ . In our case

(RχT) they are not, rather we check (satisfactorily) compatibility with the
results for them in ref. [47] for our best fit results (see table 3.8).

• For our RχT results, in the π0 case, there are only two independent terms in
the denominator of the CA, that we choose as β1 and β2. For the η ′ we have
β1,2,3,4, which are all independent. The others can be written as βi, j = βiβ j, so
they are not quoted in the following.

• In general, there is only 1 free parameter in C1
2 (3 for C2

2) per channel, which
can now be fitted to 3 points for the π0 and η (from lattice), and 8 for the η ′

(from lattice and the BaBar measurement). In our RχT description there are 12
parameters which were simultaneously fitted to 122 data points21 in the three
channels, from different experiments [333, 332, 334, 329–331, 335] (including
PDG [328]) and lattice data, generated from ref. [294].

For the η(′) cases, working with such a high order CA (C4
4) is not feasible. For

illustrative purposes, we obtained the corresponding CA in the chiral limit, which is
a C2

2 . In fact, the same one describes the three cases (π0, η , η ′), provided we factor

21We included eight additional stabilization points, see the paragraphs before eq. (3.45).
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out the overall 1 : (5Cq−
√

2Cs)/3 : (5C′q +
√

2C′s)/3 dependence (cP). The translation
of the chiral limit of our results, eqs. (3.41) and (3.42), to CA is given in table 3.10.

CA Coefficient Chiral THS coefficient
FPγγ(0,0) − cPNC

12Fπ π2

α1FPγγ(0,0) − 2cPFπ

M2
V M2

V ′

α1,1FPγγ(0,0) cP

16d̄3Fπ (M2
V−M2

V ′)
2

M6
V M4

V ′
+
−

8F2
π (M2

V +6M2
V ′ )

M4
V ′

+
NC
π2

12Fπ M4
V


α2FPγγ(0,0) 0
α1,2FPγγ(0,0) − cPFπ

3M4
V M4

V ′

β1

(
1

M2
V
+ 1

M2
V ′

)
β2

1
M2

V M2
V ′

Table 3.10 Translation of the chiral limit of our RχT result, eqs. (3.41) and (3.42), to
CA, for P = π0,η ,η ′.

In our updates of the CA results of ref. [47], to be presented below, we have
decided to use the same methodology that was employed in this reference for the
π0 also for the η(′). That is, we will not trade the constraint on P∞ (Brodsky-Lepage)
by the one on dP for P = η(′).22 We will also consider the fits using C2

2 enforcing the
constraints that ensure that no poles be generated in the spacelike region.

Therefore, in this section we will be comparing the following fits to data:

• Our best fit result, described in sec. 3.2.4, dubbed RχT below.

• The results obtained considering the chiral limit of eqs. (3.41) and (3.42), which
correspond to a C2

2 CA, as indicated in table 3.10. This is christened χRχT in
what follows.

• The update of the results in ref. [47], using a C1
2 . In this case, we change their

procedure for the η(′) cases, as explained in the previous paragraph.

22We decided to do this because it is consistent with the RχT procedure, see the comparison in
table 3.8. We have checked that proceeding in complete analogy to ref. [47] yields slightly larger χ2

in the best fit results.
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• The fit with a C2
2

23 demanding that no poles are generated in the unphysical
region. This has also been done using the results in table 3.10 to determine the
C2

2 .

The results of these fits are shown in table 3.11. According to them, the best agree-
ment with data is obtained for RχT, and only C2

2 yields fits with a reduced χ2/dof∼ 1
as well. Figures 3.10 and 3.11 extend Figs. 3.7 and 3.8 by adding the C2

2 results. In
the doubly virtual case, Fig. 3.11, it is clear that there are very few points to fit the
three coefficients that are independent for each pseudoscalar in C2

2 , causing all 3
pseudoscalar mesons to have the parameter β P

22 at the limit of the allowed range;
consequently, there are poles within the 1σ region of these parameterizations of
the TFFs. On the contrary, the 3 couplings sensitive to double virtuality in RχT
are related by flavor symmetry, so they are fitted to 14 data points, which prevents
overfitting. This shows that, among the four options considered, RχT is the best
parametrization to account for all data.

Particle χ2
RχT/dof χ2

χRχT/dof χ2
C1

2
/dof χ2

C2
2
/dof

π0 33.3/39 58.2/40 234.0/40 35.18/38
η 47.7/27 61.6/29 63.0/31 44.9/29
η ′ 50.3/36 208.5/38 42.39/40 33.6/38

Table 3.11 Our best fit (section 3.2.4) and its chiral limit are compared to the results
obtained using CA. In the C1

2 , case we obtained aP;1,1 = 0.0048(9),0.75(13),2.677(25)
for P = π0,η ,η ′, respectively.

3.4 π0,η , η ′-pole contributions to aµ within RχT

The computation of the pseudoscalar contributions to aHLbL
µ is performed by means

of the Master Formula in eq. (1.28) with the scalar functions of eq. (3.8). However, as
mentioned in sec. 3.2, before the development of the Master Formula, an equivalent
expression had been found for the pseudoscalar poles. According to ref. [370]:

aP-pole
µ =−2α3

3π2

∫
∞

0
dQ1dQ2

∫ 1

−1
dt
√

1− t2Q3
1Q3

2 [F1P6I1(Q1,Q2, t)+F2P7I2(Q1,Q2, t)] ,

(3.53)

23This was performed as a minimal extension of the work in [47], with the same updating procedure
previously described. As mentioned before, this model has 3 free parameters sensitive exclusively to
double virtuality data.
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Fig. 3.10 The comparison between our best fit (table 3.6) for RχT and the C2
2 results

in the singly virtual regime for π0, η and η ′. In contrast with Figures 3.7 and 3.8,
only the 1σ statistical errors are shown for the curve of our fit.
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Fig. 3.11 The comparison between our best fit (table 3.6) for RχT and the C2
2 results

in the doubly virtual regime for π0, η and η ′. In contrast with Figures 3.7 and 3.8,
only the 1σ statistical errors are shown for the curve of our fit.
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where α is the fine structure constant, Qi = |Qi|, t = cosθ , P6 =
1

Q2
2+m2

π

, P7 =
1

Q2
3+m2

π

,

Q2
3 = Q2

1 +Q2
2 +2Q1Q2t and the I1(2)(Q1,Q2, t) are given in [370]. The information of

the transition form factors is encoded in:

F1 = FPγ∗γ∗(Q2
1,Q

2
3)FPγ∗γ(Q2

2,0) . (3.54a)

F2 = FPγ∗γ∗(Q2
1,Q

2
2)FPγ∗γ(Q2

3,0) . (3.54b)

3.4.1 Assessment of systematic theory uncertainties

Besides the evaluation of the central value for the pole contributions and their
respective propagation of statistical errors coming from the global fit, there are
theory uncertainties induced by the limitations of our RχT description of the P-TFFs.

Specifically, we will consider the one stemming from the use of different data sets
(whether including/excluding BaBar π0 single virtual data in the global fit), the one
coming from cutting the infinite tower of V and P states to two multiplets, the one
arising from neglecting subleading corrections in the large-NC expansion and, finally,
the one coming from including/excluding the Lattice QCD data for the doubly
virtual TFF in our fits. We have verified that other corrections (from e.g. neglecting
higher-order terms in m2

P, modifying the η-η ′ mixing parameters according to the
NNLO U(3) χPT fit to lattice data of ref. [371], etc.) are negligible with respect to
these (see also the related discussion in ref. [302], our relative errors on them are
very similar to those reported therein).24 Although its associated uncertainty is
also negligible, we close this section by discussing the asymptotic behaviour for
asymmetric double virtualities 25.

Use of all available experimental data

There are several data sets for the P-TFF. Analyses in the literature differ by includ-
ing/excluding some experimental data or imposing cuts to the fitted data. In this
work, as in ref. [302], BaBar data for the single virtual region of π0 was excluded for
the aforementioned reasons in the global fit of the three channels. An estimation of
the error induced by this decision was computed by comparing the evaluation of

24Also negligible are the uncertainties associated to either using π0 Lattice data from ref. [295]
or [294], and to including or not additional subleading OPE constraints (see table 3.12).

25This last point refers to the fact that we have imposed a discrete amount of SDCs (single and
symmetric doubly virtual), even though this behaviour is given for all asymmetries, as shown in eq.
(3.5), which are not fulfilled exactly by our RχT approach.
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the aP-pole
µ obtained by including or excluding these data. The obtained difference

for each pseudoscalar meson is:(
∆aπ0-pole

µ

)
DataSets

=+0.20×10−11, (3.55a)

(
∆aη-pole

µ

)
DataSets

=−0.02×10−11 , (3.55b)(
∆aη ′-pole

µ

)
DataSets

=+0.02×10−11 . (3.55c)

As expected, the induced error occurs mainly in the evaluation of aπ0-pole
µ ; however,

small deviations are present for η and η ′ because RχT connects the TFFs of the 3
particles trough chiral symmetry.

Finite number of resonances

Even though the full RχT has an infinite tower of resonances in the NC→ ∞ limit,
cutting to a finite number of them is required for practical reasons (unless there exists
an exact resummation mechanism, which usually only happens for the simplest
toy models). This analysis includes -besides the pseudo-Goldstone bosons P- two
resonance multiplet states for the vector mesons V , V ′, and one for the pseudoscalar
mesons P′. A minimal extension to this model was performed earlier in ref. [298]
-referred as three-multiplet resonance-, where a third V ′′ and P′′ were included, albeit
in the chiral limit, and only for the π0 meson (where this approximation is more
reliable).

An estimation of the systematic error caused by having a finite number of reso-
nances was performed using the results from this three-multiplet resonance model
and a fit to the data of our model in the chiral limit, χRχT. In ref. [298], the value
of aπ0-pole

µ was computed using the π0 lattice data from ref. [295] up to Q2 = 4GeV2

to fit their free parameters, so an equivalent analysis (with the same dataset) was
performed in χRχT to fit the 3 free parameters of table 3.10 -with the mixing pa-
rameters fixed to the results of our best fit– using only the π0 lattice data points
from ref. [294]. For η and η ′, there is no computation of the pole contributions to
the HLbL piece of aµ , so we cast the overall cP flavor-space-rotation factor (defined
just above table 3.10) to compute a fair estimate on these contributions within the
three-multiplet resonance model. The resulting differences for each particle are:(

∆aπ0-pole
µ

)
finitespectrum

=+1.8×10−11 , (3.56a)
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∆aη-pole
µ

)
finitespectrum

=+1.0×10−11 , (3.56b)(
∆aη ′-pole

µ

)
finitespectrum

=+1.4×10−11 . (3.56c)

Subleading corrections in 1/NC

We have considered the contributions at leading order in the large-NC expansion in
our computation. We have estimated the impact of neglected higher-order effects by
considering the modification to the ρ propagator coming from pion and kaon loops
at next-to-leading order (NLO).26 Although a proper analysis of the SD behavior for
the TFF should be done, we will use the result from the electromagnetic form factor
of the pion [372], which will amount to the following replacement (the ρ propagator
remains real in the whole space-like region, q2 < 0)

M2
ρ −q2→M2

ρ −q2 +
q2M2

ρ

96π2F2
π

(
Aπ(q2)+

1
2

AK(q2)

)
, (3.57)

where

AP(q2) = ln
m2

P
M2

ρ

+8
m2

P
q2 −

5
3
+σ

3
P(q

2) ln
(

σP(q2)+1
σP(q2)−1

)
, (3.58)

with σP(q2) =

√
1− 4m2

P
q2 . We will take its absolute value (there are other types of

corrections at this order that we are disregarding, like those to the VV P vertex, that
can have either sign) as the one standard deviation uncertainty induced by missing
subleading corrections in the large-NC limit. Then, we will have:(

∆aπ0-pole
µ

)
1/NC

=±1.5×10−11 , (3.59a)

(
∆aη-pole

µ

)
1/NC

=±0.5×10−11 , (3.59b)(
∆aη ′-pole

µ

)
1/NC

=±0.3×10−11 . (3.59c)

26We have computed this modification up to 1 GeV. At higher energies other effects arise (like,
e.g. those associated to inelasticities), with a relevant interplay to this one, which would need to be
accounted for as well.
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Combination of experimental and Lattice data

Finally, we evaluate the uncertainty on aP-poles
µ that comes from neglecting Lattice

QCD data in our fits. In this way, we quantify the difference between a fully data-
driven analysis and a hybrid one. The differences, for every P, are:(

∆aπ0-pole
µ

)
Hybridanalysis

=+0.4×10−11 , (3.60a)

(
∆aη-pole

µ

)
Hybridanalysis

=−0.6×10−11 , (3.60b)(
∆aη ′-pole

µ

)
Hybridanalysis

=−0.8×10−11 . (3.60c)

The π0-pole contribution increases, while the η/η ′-poles’ decrease by including the
Lattice data. To the best of our knowledge, this was the first quantification of the
difference between a hybrid (including lattice information) and a fully data-driven
analysis. It is possible here due to chiral symmetry, since the parameters dd1, dd2

and dd3 appear in the π0,η and η ′ TFFs with predicted relations between the three
modes based on flavor symmetry. Even though the experimental data is available
only for η ′, a joint description for all the 3 particles can be obtained. This situation
contrasts with the case of the Canterbury Approximants analysis presented in table
3.11, where Lattice data cannot be excluded for π0 nor for η .

Asymptotic Behavior for asymmetric double virtualities

Furthermore, in this work we have imposed the single virtual and symmetric double
virtual SDCs, (3.4). However, from the light-cone expansion [312, 373, 342], the
SDCs at leading order in pQCD and at leading-twist are given for general large
asymmetric virtualities, which are equivalent to the results given in eq. (3.5), by:

lim
Q2

1(2)→∞

FPγ∗γ∗(−Q2
1,−Q2

2) =
P∞

3

∫ 1

0
dx

φP(x)
xQ2

1 +(1− x)Q2
2
, (3.61)

where φP(x) is the pion distribution amplitude which -for large momenta- behaves
as φP(x)→ 6x(1−x)[312, 374]. The construction of the TFFs using RχT is limited to a
polynomial description, which cannot reproduce the whole range of asymmetries
in eq. (3.61). The asymmetric SDCs, limQ2→∞ FPγ∗γ∗(−Q2,−λQ2), were compared
-for RχT and the light-cone expansion results- within the relevant region of the
integration kernels for the aP−pole

µ , as it is shown in fig. 3.12. There is a bump in
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the asymptotic behavior of eqs. (3.41) and (3.42) because the term reproducing the
symmetric double virtual SDC of eq.(3.4) dominates the whole scale of asymmetries
except for λ → 0, and it behaves as 1/λ . To quantify the effect in the evaluation of
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Light-Cone's Asymptotic Behavior
This Work's Asymptotic Behavior

Fig. 3.12 Comparison between the asymptotic behavior of the light-cone expansion
and this work’s TFFs in terms of the ratio between the 2 squared momenta λ =Q2

1/Q2
2.

Our one σ uncertainties are represented by the gray band.

aP−pole
µ produced by this difference, a replacement of the dominant terms at high

energies of eqs.(3.41) and 3.42) by the one of eq. (3.61) -as suggested in eq. (5.13)
from [49]- was done, and the numerical difference was one order of magnitude
smaller than the rest of the theory errors for the 3 pseudoscalar mesons. The change
for the expression of the light-cone expansion was performed at a Q1 value where
the squared difference between this work’s asymptotic behavior and eq. (3.61) is
minimized.

3.4.2 Results

We implemented a numerical evaluation, using the VEGAS algorithm [375, 125].
For the computation of the statistical error, we generated 1000 sets of points in the
parameter space from a normal multivariate distribution, given the central values
and correlations from tables 3.6 and 3.7, which were used for the determination
of the mean and standard deviation of each aP−pole

µ . With the four (independent)
dominant uncertainties given by eqs. (3.55), (3.56), (3.59) and (3.60), we obtain the
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following systematic theory error:(
∆aπ0-pole

µ

)
theory

=
(
+2.4
−1.5

)
×10−11 , (3.62a)

(
∆aη-pole

µ

)
theory

=
(
+1.1
−0.8

)
×10−11 , (3.62b)(

∆aη ′-pole
µ

)
theory

=
(
+1.4
−0.9

)
×10−11 . (3.62c)

Our final result, including statistical (cf. Figure 3.13) and the above systematic
uncertainties 27 is:

aπ0-pole
µ =

(
61.9±0.6+2.4

−1.5

)
×10−11 =

(
61.9+2.5

−1.6

)
×10−11 , (3.63a)

aη-pole
µ =

(
15.2±0.5+1.1

−0.8
)
×10−11 =

(
15.2+1.2

−0.9
)
×10−11 , (3.63b)

aη ′-pole
µ =

(
14.2±0.7+1.4

−0.9
)
×10−11 =

(
14.2+1.6

−1.1

)
×10−11 , (3.63c)

with an uncertainty saturated by the model-dependence. Combining eqs. (3.63a),
(3.63b) and (3.63c) we arrive at the following result for the pseudoscalar-pole contri-
butions:

aπ0+η+η ′-pole
µ =

(
91.3±1.0+3.0

−1.9
)
×10−11 =

(
91.3+3.2

−2.1
)
×10−11 . (3.64)

3.4.3 Comparison with other approaches

In table 3.13 we collect different recent evaluations of aP−poles
µ , including ours. We

underscore the good agreement between the diverse approaches, some of them with
completely different systematics. This reinforces the reliability of this result.

Of particular interest is the comparison between our work and the results from
another RχT determination, which works with 3 multiplets of vector meson reso-
nances [298]. We summarize the most important differences in table 3.12.

It is relevant to scrutinize where the differences among approaches are most
important. To do so, the first slope parameter bP and the asymptotic behavior
parameter FP

asym were computed for the main results in [6]. This comparison is shown
in table 3.13, which shows high consistency between the dispersive, holographic,
DSE/BSE, CA, and RχT approaches for those two parameters.

27We always quote the systematic error after the statistical one.
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Fig. 3.13 Different recent evaluations of aP-poles
µ , P = π0, η , η ′, multiplied by 1011. We

collect the results quoted in the WP 2020 [5] and WP 2025 [6] as well as other relevant
results such as those coming from other RχT evaluations. Our results are shown in
blue. The reference value for WP2025 is shown as a gray band.

Ref. [298] This work
Ansätze Computation from the RχT Lagrangian
3 resonance multiplets 2 resonance multiplets
Chiral Limit Chiral symmetry breaking up to O(m2

P)
Only π0 (for which χ-limit works quite well) π0,η ,η ′

More subleading OPE constraints Only δπ as subleading OPE constraint
2019 Lattice Calculations [295] 2023 Lattice Calculations [294]
Fit from [295] used Only BaBar π0 data not fitted

Table 3.12 Summary of the main differences between our study and ref. [298].

Finally, we can focus on the difference between approaches with polynomial
form factors to study where there is more need for new experimental input relevant
to aµ . This can be done by different means; the first one is to compute the master
integral truncated for Qi > Λ. The results for this comparison are shown in Fig. 3.14
(which was originally done by the author for the second White Paper [6]) for all 3
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Disp. [292, 49, 363, 68] CA [47] RχT [62] hQCD [59] DSE/BSE [50]

bπ0 [GeV−2] 1.73(5) 1.76(10) 1.74(1) 1.68(8) 1.71(1)
bη [GeV−2] 1.83(4) 1.91(3) 2.00(3) 1.53(3) 1.87(1)
bη ′ [GeV−2] 1.49(3) 1.43(3) 1.37(2) 1.31(2) 1.54(3)

F̄π0

asym 2Fπ 2Fπ 2Fπ 2Fπ [×0.9] 2.6(4)Fπ

F̄η
asym [GeV] 0.186(13) 0.180(12) 0.174(3) 0.194(14) 0.21(2)

F̄η ′
asym [GeV] 0.264(13) 0.255(4) 0.260(4) 0.32(4) 0.36(4)

Table 3.13 The slope and the asymptotic value of the pseudoscalar singly-virtual
TFFs from the different approaches.

tensor mesons. The second one examines the difference between the integrands of
eq. (3.53) for a given value of t. Since the integrand grows slowly for t close to 1
due to the

√
1− t2 factor, the difference between the respective integrands is better

represented by values near t = 0, in this case t =−0.20 was used for the π0 case 28.
The plot shows that it is indeed the low-energy region that requires more data to
make the aµ determination less model-dependent. It is even more noteworthy that
the main differences appear in low asymmetric virtualities, where there is a clear
lack of data.

In fig. 3.15 we show the difference between CA [47] and RχT [62] for the π0

integrand of eq. (3.53). The relative maximum difference (in magnitude) is at the
∼ 10 % level. These areas (in yellow and dark blue) are those where (lattice) data
would be more helpful.

3.5 Conclusions and Outlook

In this work, we have presented a simultaneous description of the singly and doubly
virtual π0,η and η ′ transition form factors based on Resonance Chiral Theory that
was included as one of the reference determinations in the White Paper 2025 of
the muon g−2 Theory Initiative. Particularly, this calculation was included in the
relevant inputs for the computation of aSM

µ (Refs. [14-73] of the collaboration report
[6]). This is the first (and up to now only) time that a result from a Thesis made in

28The difference between the integrand between the two approaches is uniform in t, when it
approaches t = ±1 it is less intense, but with a similar distribution. At t = −0.20, the difference
between approaches is maximized.
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Fig. 3.14 The difference of the CA and RχT approaches for the partial contribution to
aHLbL:P−pole

µ up to a given scale.

Mexico makes it to the list of essential SM inputs in the White Papers of this theory
initiative.

In particular, we have shown that working within the two resonance multiplets
saturation scheme we: satisfy leading (and some subleading) chiral and high-energy
QCD constraints; get a normalization given by the two-photon partial decay width,
Γ(π0/η/η ′→ γγ), that is fully compatible with experimental values; reproduce the
singly virtual transition form factors experimental data in the spacelike region (see
Fig. 3.7) and, last but not least; obtain a faithful description of the doubly virtual
transition form factor for all three pseudoscalar mesons resulting from the use of the
BaBar data in the η ′ channel in combination with Lattice-QCD results for the three
mesons form factors (see Fig. 3.8). Our evaluation of the pole contributions to the

hadronic light-by-light piece of the muon g−2 read: aπ0-pole
µ =

(
61.9±0.6+2.4

−1.5

)
×10−11,

aη-pole
µ =

(
15.2±0.5+1.1

−0.8
)
× 10−11 and aη ′-pole

µ =
(
14.2±0.7+1.4

−0.9
)
× 10−11, for a total of

aπ0+η+η ′-pole
µ =

(
91.3±1.0+3.0

−1.9
)
× 10−11, where the first error is statistical and the

second one is systematic (see Sec. 3.4.1).

Our determination for aπ0-pole
µ is compatible at the level of 1σ with the dispersive

evaluation, aπ0-pole
µ =

(
63.0+2.7

−2.1
)
×10−11 [5], the results based on Canterbury approx-
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Fig. 3.15 Difference between the rational approach of [47] and RχT [62] for the
integrand of eq. (3.53) in the π0 case. The density plot shows relevant differences
between these two models for low but asymmetric virtualities, reaching a maximum
relative deviation of ∼ 10% for all values of t in eq. (3.53).

imants, aπ0-pole
µ = 63.6(2.7)× 10−11 [47], and the most recent lattice QCD results,

aπ0-pole
µ = 61.2(1.7)×10−11 [376],and aπ0-pole

µ = 61.7(2.0)×10−11[297]. Our outcomes

for the aη/η ′-pole
µ contributions are particularly relevant, given that our approach

complies with the leading asymptotic behavior for double virtuality and the good
performance exhibited for describing the best doubly-virtual input at disposal, which
is also reproduced by the recent results from hQCD [377] and Dispersive [68, 363]
groups, which came after our publication. Interestingly enough, they are consistent
with aη/η ′-pole

µ = [16.3(1.4)/14.5(1.9)]× 10−11 from Canterbury Approximants [47]
but with improved uncertainties, which however would need a C4

4 to fully account
for chiral symmetry constraints and their explicit breaking at leading order, that
is non-negligible for the η(′) contributions (see section 3.3).29 Our results are also
compatible with the Lattice results aη/η ′-pole

µ = [11.6(2.0)/15.7(4.2)]×10−11 [294], al-
though the η-pole contribution is in slight tension with our outcome due to the
lower value for the normalization of their transition form factor.

We hope that our analysis strengthens the case for experimental measurements
of the transition form factors of double virtuality for all three pseudoscalar mesons,

29At least a C2
2 would be needed to describe the double virtuality data, instead of the C1

2 used in
ref. [47].
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as they would allow constraining their functional form and reduce the uncertainty
in aP-pole

µ .
To improve the results of this work and related data-driven ones, new data on

the transition form factors are required. This work has shown that the double virtual
η ′-TFF data from [335] is not enough. Given the fact that δ 2

π has been constrained
by measurements, and η ′ doubly virtual data have already been taken, it would
be of great interest to get η-TFF doubly virtual data30. Furthermore, studying the
difference between the integrand of eqn. (3.53) of the Canterbury Approximants
and RχT showed that asymmetric doubly virtual data at low energies would also
improve the determination of these contributions.

The BESIII collaboration mentioned in the Theory Initiative Workshops of 2024
and 2025 that data for the processes γ∗γ∗→ π0,η ,η ′ is expected for Q2

1 ∼Q2
2 ∼ 1GeV2

with the data analysis ongoing for the η and η ′ cases due to a favorable background
situation. When these data become available, our results will be significantly im-
proved, and the discrepancy between different models will be decreased, resulting
in an even more reliable determination of aHLbL:P−poles

µ .

30During this study, we considered different data sets. The minimal amount of LQCD input needed
for a significant improvement on the fits was the one including Fηγ∗γ∗ doubly virtual calculations.
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Proton-Box contribution to aHLbL

µ

The current tension between the Standard Model prediction [6] and the experimental
world average [4] is 36(63)×10−11, and the precision of both is of the same order.
This implies that the subdominant contributions are becoming relatively more impor-
tant each time. This raised the question of the importance of baryonic contributions
in the HLbL piece.

The Heavy Mass Expansion (HME) method [378] provides us with a tool for
computing point-like lepton-box contributions to aµ . As a first approximation to
the magnitude of the nucleon contributions, we obtained the values for the charged
lightest baryons: ap−box

µ = 9.7×10−11, aΣ−box
µ ≈ 6.0×10−11, aΞ−box

µ ≈ 4.9×10−11. This
result is comparable in magnitude to the tension between theory and experiment
and their respective errors, thereby motivating a more realistic and precise analysis
that incorporates the main effects of the structure of these compound objects. This
requires information on their form factors, which is abundant for the proton and the
neutron. As will be discussed later in this chapter, the proton-box contribution [121]
is the most significant contribution to this observable, which is the reason why this
work was focused on this baryon only.
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4.1 Contribution to aHLbL
µ

In order to compute the proton-box contribution to aHLbL
µ , first we need to define the

structure dependence of the γ∗− p− p interaction:

⟨p+(P2)|Jµ
e.m.(q)|p+(P1)⟩= ū(P2)Γ

µ(q)u(P1)

= ū(P2)

(
F1(q2)γµ + i

F2(q2)

2Mp
σ

µ νqν

)
u(P1), (4.1)

where F1,2 are the proton Dirac and Pauli form factors, respectively, and q = P2−P1.
In this analysis, the dominant term in eq.(4.1), is the one proportional to F1(q2).
This arises from the additional qν/Mp factor appearing in the tensor vertex, in
such a way that, in the low momentum transfer regime (below 1 GeV), the tensor
coupling behavior is significantly suppressed due to its momentum dependence,
making it a valid approximation to consider only the vector coupling.1 Conversely,
at high photon virtuality (or even above 1 GeV), the F2(q2) behavior becomes the
suppression factor. In fact, in this case, also the F1(q2) and kernel functions are
highly suppressed, making the contributions of this q2 region negligible. Indeed,
due to the asymptotic constrains of the form factors F1 and F2 from p-QCD[311],
which should behave as ∼ Q−4,Q−6, respectively (satisfied by construction in both
parametrizations employed in this work, as we discuss latter), the regime of high
transferred momentum is free of divergences and we do not expect to have any
significant error coming from this approximation 2.

Therefore, as a suitable first approximation, we will work only with the vector
coupling in eq.(4.1) as input for the scattering amplitude computation shown in Fig.
4.1. The decomposition of the HLbL tensor for the proton-box representation results
in the scalar functions:

Π̄i = F1(Q2
1)F1(Q2

2)F1(Q2
3)

1
16π2

∫ 1

0
dx
∫ 1−x

0
dyIi(Q1,Q2,τ,x,y), (4.2)

1This simplification is commonly taken, consistently in many other processes, such as electron-
proton scattering in the same momentum transfer region. Similarly, in the proton-loop contribution
to HVP, incorporating a non-zero F2 leads to a 0.02% modification of the central value, which remains
significantly smaller than the current uncertainty (consistent with the results reported in ref. [43]).

2In this sense, we have: Γµ(q)|q→∞ = γµ A q−4 + iBσ µν q̂ν(2q5 Mp)
−1, with q̂ν ≡ qν/q a normalized

four-vector and A and B being constants.
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Fig. 4.1 Feynman diagrams for light-by-light scattering induced by a proton-box
loop (and the corresponding diagrams with exchanged fermion fluxes inside the
loop).

with the loop functions Ii being:

I1 =−
16x(1− x− y)

∆2
132

− 16xy(1−2x)(1−2y)
∆132∆32

,

I3 =
32xy(1−2x)(x+ y)(1− x− y)2(q2

1−q2
2 +q2

3)

∆3
312

− 32(1− x)x(x+ y)(1− x− y)
∆2

312
− 32xy(1−2x)(1−2y)

∆312∆12
,

I5 =−
64xy2(1− x− y)(1−2x)(1− y)

∆3
132

,

I9 =−
32x2y2(1−2x)(1−2y)

∆2
312∆12

,

I10 =
64xy(1− x− y)((2x−1)y2 + xy(2x−3)+ x(1− x)+ y)

∆3
132

,

I12 =−
16xy(1− x− y)(1−2x)(1−2y)(x− y)

∆312∆12

(
1

∆312
+

1
∆12

)
, (4.3)

(4.4)

where ∆i jk = m2
p−xyq2

i −x(1−x−y)q2
j−y(1−x−y)q2

k and ∆i j = m2
p−x(1−x)q2

i −y(1−
y)q2

j . The rest of the scalar functions are obtained by means of permutations of the
ones presented.
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4.2 Proton Form Factors

The first main contribution to the proton-box to aHLbL
µ . We need to obtain a proper de-

scription of the form factors in eq. (4.1) for accounting for this contribution. Contrary
to what we have done for the pseudoscalars, the tensors, and other contributions,
we did not perform an RχT description for this case, since the descriptions from
experimental data [379] and Lattice QCD calculations [380] parametrizations have
a detailed methodology, reliable error computation, and correct asymptotic behav-
ior. Both approaches fitted parametrizations to the electric (GE) and magnetic (GM)
proton form factors data, which are related to the Dirac and Pauli base by:

GE(Q2) = F1(Q2)− Q2

4M2
p

F2(Q2),

GM(Q2) = F1(Q2)+F2(Q2). (4.5)

4.2.1 Data-Driven Form Factors

The electric and magnetic form factors are obtained in Ref.[379] after fitting the
experimental data to a z-expansion parametrization of order 12 [381], where sum-
rule constraints were applied on each form factor to warrant the asymptotic scaling
GE,M ∼ Q−4 and the correct normalization at null photon virtuality. 3 The statistical
and systematic errors of their work are related to the fitting procedure to the world
electron scattering data and additional uncertainties to account for tensions between
different data sets and uncertainties in radiative corrections. Detailed information
on the error computation, the data used for the fit and the obtained parameters
is given in their Appendix A: supplementary material of their work, available in the
journal version only.

In this way, the proton form factors can be written as:

G(p)
E (Q2),

G(p)
M (Q2)

µp
=

12

∑
i=0

a{E,M}i zi, (4.6)

3Other parametrizations, as the ones reported in Refs.[382, 383], have been considered for the
ap−box

µ numerical evaluation, being consistent with the one used in this work within less than 1σ .
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E M
aX

0 0.239163298067 0.264142994136
aX

1 −1.109858574410 −1.095306122120
aX

2 1.444380813060 1.218553781780
aX

3 0.479569465603 0.661136493537
aX

4 −2.286894741870 −1.405678925030
aX

5 1.126632984980 −1.356418438880
aX

6 1.250619843540 1.447029155340
aX

7 −3.631020471590 4.235669735900
aX

8 4.082217023790 −5.334045653410
aX

9 0.504097346499 −2.916300520960
aX

10 −5.085120460510 8.707403067570
aX

11 3.967742543950 −5.706999943750
aX

12 −0.981529071103 1.280814375890

Table 4.1 z-expansion proton form factor fitted parameters, taken from Ref.[379].

where ai are fitting parameters shown in table 4.1, and z is defined as follows:

z≡
√

tcut +Q2−
√

tcut− t0√
tcut +Q2 +

√
tcut− t0

, (4.7)

with t0 =−0.7 GeV2, tcut = 4m2
π and the form factors normalization fixed by the pro-

ton’s electric charge non-renormalization and magnetic moment in Bohr magneton
units, Gp

E(0) = 1 and Gp
M(0) = µp = 2.793, in turn.

4.2.2 Lattice QCD Form Factors

Lattice QCD have become very important in the Theory Initiative White Paper 2025
[6], in contrast with the White Paper 2020 [5]. This was mainly due to the increase of
LQCD groups which managed to perform more complete and partial evaluations
of g−2 with great accuracy. Consequently, we considered a LQCD model for the
neutron and proton form factors. In [380], the Lattice data for the form factors can
be parametrized using a simple dipole approximation: 4

G{E,M}(Q2) = G{E,M}(0)/(1+Q2/Λ)2, (4.8)

4A z-expansion was performed as well, but no significant difference was found with respect to the
simple dipole approximation.
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Fig. 4.2 GE and GM (F1 and F2) proton form factors. In black we show the experimen-
tal points taken from Ref.[379], meanwhile, red dots correspond to the Lattice QCD
results of Ref.[380].

where Λ is related to the electric and magnetic radii by Λ = 12/⟨r2
{E,M}⟩ and the

normalization is GE(0) = 1 and GM(0) = µp. It is important to remark that this
parametrization automatically fulfills the QCD-ruled asymptotic behavior for large
values of Q2. The numerical values required in eq.(4.8) are shown in table 4.2, where
the normalization at null photon virtuality is automatically fulfilled for the electric
form factor by setting Gp

E(0)→ 1. As explained in [380], there is an underestimation
of the electric r.m.s. radius, due to the slower decay of the electric form factor.
Besides, the magnetic moment of the proton is undervalued, which could be caused
by a combination of residual volume effects and multi-hadron contributions.√

⟨r2
E⟩[fm]

√
⟨r2

M⟩ [fm] µp

0.742±0.013±0.023 0.710±0.026±0.086 2.43±0.09±0.04

Table 4.2 Numerical values of eq.(4.8) according to Ref.[380]. The uncertainties stand
for the statistic and systematic errors, respectively.

As we show in Fig.4.2, the z-expansion reported in [379] is in good agreement
with the data set of GM(Q2) and GE(Q2) from [383] extracted from the world’s data
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Fig. 4.3 Integral kernel (density plot) versus form factors dependence (contour plot)
at relevant different virtualities for the off-shell photons, as described in the text.

on elastic electron-proton scattering and calculations of two-photon exchange effects.
We also compared the former fit and the one obtained from Lattice QCD results with
a N f = 2+1+1 ensemble, reported in Ref.[380]. Finally, due to the small deviations
between the two data sets, in the Q2 < 1GeV2 region, it seems interesting to analyze
both frameworks separately during the numerical evaluation of eq.(1.28).

4.3 Results and Outlook

The full integral kernel of the master integral eq. (1.28), which has Π̄i general for all
leptonic contributions,

√
1− τ2 Q3

1 Q3
2TiΠ̄i, 5 without accounting for any form factor,

primarily contributes to the overall integral at low momentum transfers (below 1
GeV), as illustrated by the density plot in Fig. 4.3 for three different τ values. Fur-
thermore, the vector proton form factors term alone F1(Q2

1)F1(Q2
2)F1(Q2

3),
6 acquires

its maximum value within the same momenta region, as shown by the contour
curves in the figure, being maximum at Qi = 0 and decreasing as the momenta
increase. Due to the mismatch between the kernels and form factors’ maximum
values, a significant decrease in the HME approximation result of around 2 orders of
magnitude is expected for both approaches.

5The explicit dependence of Ti and Π̄i on Q1,Q2 and τ has been omitted and the Einstein sum
notation is understood.

6Evaluated using the dependence on Q2 as a z-expansion (setup 1), see section 4.2 for details.
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In order to obtain the explicit aHLbL
µ contribution via the master integral, we

implemented a numerical evaluation, using the VEGAS algorithm [375, 125].
For a first consistency test of the integration method, we reproduced all previ-

ously well-known results, being in complete agreement with all of them (π-pole,
π-box, c-loop, etc.). Specifically, we corroborate that the use of the quark-loop scalar
functions, without any form factors included, leads to the same result as the HME
approximation for the proton case, getting a central value of 9.4×10−11 compared
to the HME estimation of 9.7×10−11.

Once the corresponding vector form factor F1(Q2) is included in the analysis, we
get the following results for the different setups described above: 7

ap−box
µ = 1.82(7)×10−12 (Data-Driven), (4.9)

ap−box
µ = 2.38(16)×10−12 (Lattice), (4.10)

where both the systematic and statistical uncertainties were considered to estimate
the error for each setup. The disagreement between the results can be inferred by
the difference in the slope of the upper plot of Fig. 4.2

As mentioned above, there is a 2 orders of magnitude suppression with respect
to the HME result, caused by the effect of the form factors. This behavior can be
further discussed by understanding it in different regions of the parameter τ , the
relative projection between the external momenta Q1 and Q2

8. First, we can see that
close to ±1, the

√
1− τ2 factor suppresses the values of the integral kernel. Also, as

τ increases, Q3 does as well, and the Ti functions decrease[48], causing the kernel to
start diluting after its maximum value is reached, and to be almost negligible for
positive values of τ . Finally, the maximum values of the integration kernel appear
in τ ∈ [−0.85,−0.65], as shown in the supplemental material. For this value of τ ,
the relevant region of the kernel and the effect of the form factors in the numerical
evaluation of eq. (1.28) can be analyzed.

In the case of the data-driven parametrization, both statistical and systematic
errors were computed for F p

1 (Q
2) for each value of Q2 as discussed in [379], and

these ∆F p
1 (Q

2) were used for the error propagation of eq. (1.28) considering the
structure of eq. (4.2) in terms of the form factors. For the LQCD form factors, a
numerical computation of the Jacobian matrix of eq. (1.28) within this setup was

7Using a different parametrization [382] of the same data, as the setup 1, a result of
ap−box

µ =1.79(5)×10−12 was found, consistent with the results using [379].
8Even though the behavior in these regions can be seen in Fig. 4.3, it is better appreciated in the

ancillary files of [121], where the comparison of all the range of τ is presented.
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performed, and it was combined to obtain both the statistical and the systematic
error by assuming a maximal correlation of the magnetic form factor parameters.9

Even though there is an underestimation of µp using a lattice QCD form factor,
the slower decay of Gp

E compared with the data-driven one, compensates for this,
and it results in a higher F p

1 (Q
2) for the lattice QCD result, as explained in Ref.[380]

and visible in Fig. 4.2. Consequently, the LQCD result for ap−box
µ is larger than

that of the data-driven determination. Therefore, in this work, we will adopt the
data-driven ap−box

µ approximation as our central value, awaiting more precise lattice
results anticipated in the near future.

In this work, we have computed a first approximation of the proton-box contri-
bution to the HLbL piece of aµ . We discussed the corresponding proton form factor
results, including a couple of different approaches, and got mutually consistent
results from all of them.

It would be of great interest to study the contributions of –at least– the lightest
multiplet of baryons. This would be possible by performing a tensor decomposition
of the full amplitude –which also includes the form factor FN

2 (Q2)–. This is technically
difficult, however, possible. This contribution is expected to be sub-leading for the
proton, but relevant for the neutral baryons, as the neutron. By performing this
decomposition, a new set of scalar functions Π̄i will be obtained, and a number for
the baryonic contributions to the HLbL will be attainable.

9The uncertainty associated with the numerical integration method is sub-leading, of order
O(10−15).
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5
Tensor Meson Pole Contributions to aHLbL

µ within
RχT

In this chapter, we study the construction of the transition form factors of the
neutral non-strange tensor mesons into two photons (T → γ∗γ∗) and their pole
contributions to the HLbL piece of the anomalous magnetic moment of the muon.
For this purpose, we work in the framework of RχT with the following conditions:
we work in the chiral limit (mq→ 0), at leading order in the 1/NC counting, with
two multiplets of vector meson resonances in three specific scenarios: without
operators with derivatives (besides the unavoidable ones of the electromagnetic field-
strength tensor), allowing for operators with derivatives of the form T ∂V ∂V , and
allowing a full consistent set of operators with derivatives. By doing so, we obtained
amplitudes with 1, 2, and all 5 possible tensor structures, respectively. We used these
results to compare with those available using a simple quark model(QM)[67] and a
holographic QCD Hard-Wall model(hQCD) [69]. We obtain compatible results with
the QM and hQCD when only one form factor (F1) is considered, with hQCD when
two form factors (F1,3) are accounted for, and a first estimation on the effect of having
all non-zero transition form factors. Other computations of these contributions can
be found in Refs. [384–388].

5.1 Tensor Meson Transition Form Factors (T → γ∗γ∗)

A neutral, non-strange tensor meson can decay into two photons. And even though
these processes are not their main channels [217], they are relevant when accounting
for the T-pole contributions to g−2. The radiative decay of a massive tensor meson
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is described by the matrix element [67]:

⟨γ∗(q1,λ1)γ
∗(q2,λ2)|T (p,λT )⟩= i(2π)4

δ
(4)(q1+q2− p)e2

ε
λ ∗1
µ (q1)ε

λ ∗2
ν (q2)ε

λT
αβ

(p)M µναβ (q1, q2) ,

(5.1)
where ε

λ ∗i
µ,ν(qi) are the polarizations of the photons (see e. g. ref. [134]):

ε±(q) =∓(0,1,±i,0) , ε0(p) = (0,0,0,1) , (5.2)

And the ε
λT
αβ

(p) is the polarization tensor of a massive spin-2 meson, given by:

ε
±2
αβ

= ε
±
α (p)ε±

β
(p),

ε
±1
αβ

=
1√
2

(
ε
±
α (p)ε0

β
(p)+ ε

0
α(p)ε±

β
(p)
)
,

ε
0
αβ

=
1√
6

(
ε

0
α(p)ε0

β
(p)+ ε

+
α (p)ε−

β
(p)+ ε

−
α (p)ε+

β
(p)
)
, (5.3)

where the polarization vectors are the same as for the photon in eq. (5.2). These
polarizations obey the following sum rule:

∑
λ

εµν(k;λ )ε∗ρσ (k;λ ) =
1
2
(
PµρPνσ +PνρPµσ

)
− 1

3
PµνPρσ , (5.4)

where Pµν = gµν −
kµ kν

M2
T

. The reduced amplitude M µναβ 1 can be decomposed in five
tensor structures [67]:

M µναβ =
5

∑
i=5

T µναβ

i
1

Mni
T

F T
i (q2

1,q
2
2), (5.5)

where n1 = 1 and ni̸=1 = 3, and the tensor structures are:

T µναβ

1 = gµαPνβ

21 +gναPµβ

12 +gµβ Pνα
21 +gνβ Pµα

12 +gµν(qα
1 qβ

2 +qβ

1 qα
2 )−q1 ·q2(gµαgνβ +gναgµβ ),

T µναβ

2 = (qα
1 qβ

1 +qα
2 qβ

2 )P
µν

12 ,

T µναβ

3 = Pµα

11 Pνβ

22 +Pµβ

11 Pνα
22 ,

T µναβ

4 = Pµα

12 Pνβ

22 +Pµβ

12 Pνα
22 ,

T µναβ

5 = Pνα
21 Pµβ

11 +Pνβ

21 Pµα

11 , (5.6)

1This reduced amplitude comes from requiring Bose symmetry (invariance under q1↔ q2 and
α ↔ β ) and for the tensor to be non-vanishing under contraction in the sum-rules for ε

λT
αβ

(p).
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where the Pµν

i j are defined as:

Pµν

i j = gµνqi ·q j−qν
i qµ

j . (5.7)

These tensor structures, together with the scalar functions T µναβ

i , define the interac-
tion vertex in Fig. 5.1, and can be constructed using different approaches.

T αβ

γ∗

γ∗

Fig. 5.1 Tensor Meson transition FF, which gives the radiative decay with both
photons on-shell.

5.1.1 High-Energy behavior of the Form Factors

The high-energy behavior of these form factors is given by the Light-Cone-Expansion[124].
This is split in the symmetric and asymmetric pieces, which are parametrized by2:

Q̃2 =
q2

1 +q2
2

2
, w =

q2
1−q2

2
q2

1 +q2
2
. (5.8)

Then, the high-energy behavior of the transition form factors is given by:

lim
Q̃2→∞

F T
1 (q2

1,q
2
2) =

4∑aCaFa
T M3

T

Q̃4
f T
1 (w),

lim
Q̃2→∞

F T
i (q2

1,q
2
2) =

4∑aCaFa
T M5

T

Q̃6
f T
i (w), i ∈ 2,3,4,5, (5.9)

the common constant 4∑aCaFa
T has been studied before [389–391] in the framework

of LCSRs, which provides the non-strange dominant contribution, since the value
used in this work–taken from [282]– as the one considered in [124], is close to ideal

2It was necessary to implement a new convention for the symmetric squared momenta to avoid
confusion or mixing of different notations in the literature, as Q2 was already used to define the
positive squared momenta in the space-like region (which is the relevant one for the g−2 evaluation).
This is different than in [67, 69, 122] where Q2 was used in both cases.
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mixing, resulting in:

Feff
T = 4∑

a
CaFa

T =
5
√

2
9

Fq
T = 79(8)MeV. (5.10)

Furthermore, the asymmetric pieces of the SDCs, are given by the 5 functions:

f T
1 (w) =

5(1−w2)

8w6

(
15−4w2 +

3(5−3w2)

2w
log

1−w
1+w

)
,

f T
2 (w) =− 5

8w6

(
15−13w2 +

3(1−w2)(5−w2)

2w
log

1−w
1+w

)
,

f T
3 (w) =− 5

8w2

(
15−w2− w4 +6w2−15

2w
log

1−w
1+w

)
,

f T
4 (w) =− 5

24w6

(
45+30w−21w2−8w3 +

3(1+w)(15−5w−7w2 +w3)

2w
log

1−w
1+w

)
,

f T
5 (w) = f T

4 (w)|w→−w, (5.11)

where in the last relation, w→−w is also q2
1↔ q2

2. This is extremely relevant, as F T
4

goes into F T
5 under the same exchange. These form factors are thus connected by

Bose symmetry 3.

5.1.2 Helicity Basis

There is an analogous basis to the one presented in eq. (5.1), which is the one used
by experimentalists to report the measurements [392]. This is given by the Helicity
Amplitudes, which are obtained from projecting the total amplitude into specific
polarization states of the different particles:

Hλ1λ2;λT = ε
λ ∗1
µ (q1)ε

λ ∗2
ν (q2)ε

λT
αβ

(p)M µναβ (q1,q2). (5.12)

3It is important to stress this fact at this early stage, as it will allow us to infer information from
one form factor from the experimental measurements of the other one.
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The helicity amplitudes in terms of the form factors are[124]:

H++;0 = H−−;0 =
(q2

1−q2
2)

2−M2
T (q

2
1 +q2

2)√
6M3

T
F T

1 −
λT 12(M2

T −q2
1−q2

2)

2
√

6M5
T

F T
2 −

√
2
3

q2
1q2

2

M3
T

F T
3

−
q2

2(M
2
T −q2

1−q2
2)√

6M3
T

F T
4 −

q2
1(M

2
T −q2

1−q2
2)√

6M3
T

F T
5 ,

H+−;+2 = H−+;−2 =−
M2

T −q2
1−q2

2
MT

F T
1 −

2q2
1q2

2

M3
T

F T
3 −

q2
2(M

2
T −q2

1−q2
2)

M3
T

F T
4 −

q2
1(M

2
T −q2

1−q2
2)

M3
T

F T
5 ,

H+0;+1 = H−0;−1 =
q2

2√
q2

2

(
M2

t +q2
1−q2

2√
2M2

T
F T

1 +
q2

1(M
2
T −q2

1 +q2
2)√

2M4
T

F T
3

+
(M2

T −q2
1−q2

2)(M
2
T −q2

1 +q2
2)

2
√

2M4
T

F T
4 +

q2
1(M

2
T +q2

1−q2
2)√

2M4
T

F T
5

)

H0+;−1 = H0−;+1 =−
q2

1√
q2

1

(
M2

t −q2
1 +q2

2√
2M2

T
F T

1 +
q2

2(M
2
T +q2

1−q2
2)√

2M4
T

F T
3

+
q2

2(M
2
T −q2

1 +q2
2)√

2M4
T

F T
4 +

(M2
T −q2

1−q2
2)(M

2
T +q2

1−q2
2)

2
√

2M4
T

F T
5

)
,

H00;0 =
q2

1q2
2√

q2
1

√
q2

2

(√
2
3

2
MT

F T
1 −

λT 12√
6M5

T
F T

2 +
M4

T − (q2
1−q2

2)
2

√
6M5

T
F T

3

+
(M2

T −q2
1 +q2

2)
2

√
6M5

T
F T

4 +
(M2

T +q2
1−q2

2)
2

√
6M5

T
F T

5

)
, (5.13)

where λT 12 = λ (M2
T ,q

2
1,q

2
2) is the Källen function[393] and the momenta dependence

is implied when writing the form factors. It is important to notice that when ex-
changing q2

1↔ q2
2 and F T

4 ↔F T
5 , we get invariance in the helicity amplitudes 4. A

particular case of these form factors is the one observed in the detectors, the single
virtual case:

F T
λT=0 =

Q2
√

6M2
T
F T

1 (−Q2,0)− (M2
T +Q2)2

2
√

6M4
T

F T
2 (−Q2,0)+

Q2
√

6M2
T
F T

5 (−Q2,0),

4It is trivial in the first two and the last case, however in the λT = ±1 case, it is necessary to
exchange also λ1↔ λ2 to see the connection between the form factors 4 and 5. This will allow us
to connect the form factors and consequently, obtain information of both when only one of them is
observed.
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F T
λT=1 =

√
Q2

√
2MT

F T
1 (−Q2,0)+

√
Q2(M2

T −Q2)

2
√

2M3
T

F T
5 (−Q2,0),

F T
λT=2 =−F T

1 (−Q2,0)+
Q2

M2
T
F T

5 (−Q2,0). (5.14)

As it can be seen, the single virtual case probes F4 or F5 depending on which one
we tag as the real photon and which one as the virtual one. We have exchanged the

notation with respect to the one used in [392], where q2
1−M2

T
MT

was factored out from
the Helicity Amplitudes.

5.2 Tensor Pole Contributions

The pole contributions of the tensor mesons come from the 3 diagrams of Fig-
ure 5.2. The amplitude generated by these diagrams can be decomposed into the
different tensor structures (and their respective scalar functions) of the Hadronic
Light-by-Light tensor with the procedure described in [61]. By doing so, the T-pole
contributions to aHLbL

µ can be computed. Given the 5 Form Factors, an evaluation of

µ+ µ+

γ

T

µ+ µ+

γ

T

µ+ µ+

γ

T

Fig. 5.2 Diagrams that contribute to the HLbL piece of the anomalous magnetic
moment of the muon, which include tensor meson poles.

the Master Formula of eq. (1.28) is difficult due to the presence of kinematic singular-
ities (qi→ 0) in 4-point kinematics[61], in contrast with the case of the pseudoscalar,
scalars and axial mesons, where these are absent in the current standard basis. An
effort is being made to account for the Tensor meson pole contributions in triangle
kinematics[236]. However, if only the combination of form factors F T

1,3 or F T
2,3 are

different from zero, we can evaluate these contributions straightforwardly from the
Master Formula. The first one is particularly interesting to study, as the 3 most recent
determinations [67, 69, 122] have a non-zero F T

1,3, where the last one corresponds to
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original work of this thesis.
The scalar functions for the Master Formula in the case F T

1,3 ̸= 0, F T
2,4,5 = 0 are free

of kinematic singularities and are given by:

Π̂1(q2
1,q

2
2,q

2
3) =

F T
1 (q2

2,0)
M6

T

(
−M2

T F1(q2
1,q

2
3)+(q2

1−M2
T )F3(q2

1,q
2
3)
)
+q1↔ q2,

Π̂4(q2
1,q

2
2,q

2
3) =

F T
1 (q2

3,0)
3M8

T (M
2
T −q2

3)

(
8M4

T q2
3F

T
1 (q2

1,q
2
2)+

[
6M6

T +3M4
T (q

2
1 +q2

2)−3M2
T (q

2
1−q2

2)
2

−q2
3(4M4

T +5M2
T (q

2
1 +q2

2)+(q2
1−q2

2)
2)
])

+
([(

M4
T +2M2

T q2
3−q2

3(q
3
1 +2q3

2 +q3
3)−q2

1q2
2
)
F T

3 (q2
1,q

2
3)

+M2
T
(
−4M2

T +q2
1 +3q2

2 +q3
3
)
F T

1 (q2
1,q

2
3)
] F T

1 (q2
2,0)

M6
T (M

2
T −q2

2)
+q1↔ q2

)
,

Π̂17(q2
1,q

2
2,q

2
3) =

[(
2q2

3(M
2
T +q2

1 +q2
2)+3M2

T (q
2
1 +q2

2)
)
F T

3 (q2
1,q

2
2)

−2M2
T (3M2

T +2q2
3)F

T
1 (q2

1,q
2
2)
] F T

1 (q2
3,0)

3M8
T (M

2
T −q2

3)

+
(
(q2

3−q2
1)F

T
3 (q2

1,q
2
3)

F T
1 (q2

2,0)
M6

T (M
2
T −q2

2)
+q1↔ q2

)
,

Π̂54(q2
1,q

2
2,q

2
3) =(q2

1−q2
2)F

T
3 (q2

1,q
2
2)

F T
1 (q2

3,0)
M6

T (M
2
T −q2

3)([
2M2

T F T
1 (q2

1,q
2
3)− (q2

1 +q2
3)F

T
3 (q2

1,q
2
3)
] F T

1 (q2
2,0)

M6
T (M

2
T −q2

2)
−q1↔ q2

)
.

(5.15)

The remaining scalar functions are given by their symmetry relations. The remaining
piece for computing these contributions are the form factors.

5.3 RχT Lagrangian: V+V’+P’+T

The form factors for this process will be given by Resonance Chiral Theory, where
extra operators will be included to the ones previously used in Chapters 2 and 3 to
include the interaction with the tensor mesons. We start with the Lagrangian that
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includes the Tensor Mesons (JPC = 2++) in the symmetric hermitian rank-2 tensor
field representation [281, 282]:

Tµν =
8

∑
i=0

T i
µνλi√

2
=


a2√

2
+

f 8
2√
6
+

f 0
2√
3

a+2 K∗+2

a−2 − a2√
2
+

f 8
2√
6
+

f 0
2√
3

K∗02

K∗−2 K̄∗02 −2 f 8
2√
6
+

f 0
2√
3


µν

, (5.16)

which is the same flavor structure as in the pseudoscalar and vector cases. The flavor
states will be mixed, as the mass states are the ones for which the decay width is
well defined. With this representation of the tensor mesons, the following kinetic
term can be constructed:

Lkin =−
1
2
⟨TµνDµν ,ρσ Tρσ ⟩, (5.17)

with

Dµν ,ρσ =(□+M2
T )
[1

2
(gµρgνσ +gµσ gνρ)−gµνgρσ

]
+gµν

∂
ρ

∂
σ +gρσ

∂
µ

∂
ν

− 1
2

(
gµσ

∂
ν
∂

ρ +gµρ
∂

ν
∂

σ +µ ↔ ν

)
, (5.18)

being the covariant derivative that ensures the invariance of the term under unitary
transformations. For the on-shell case, we get a mass term:

L
(0)

m =−M2
T

2
⟨TµνT µν⟩. (5.19)

The superscript refers to the zeroth order in the chiral expansion. In [282], they go
beyond the chiral limit as it is possible to fix the couplings when the only purpose is
to reproduce the decay widths and masses of a2, f2 and f ′2

5. The mass term recalls
the need for a parametrization of the mixing of the flavor states when written in
terms of the mass eigenstates. As it was done in [282], this can be given in terms of a

5It is necessary to mention that chiral corrections are not included in this work, since there will be
more couplings that the ones which can be fixed when including vector meson resonances which are
required for reproducing correctly the high-energy behavior. These chiral corrections are small and
accounted for by our uncertainties.
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single-angle parametrization:

f 8
2 = sinθT f2 + cosθT f ′2,

f 0
2 = cosθT f2− sinθT f ′2, (5.20)

where θT parametrizes the mixing.
The final ingredient of the basic Lagrangian–which is only χPT+T– is the one of

the tensor mesons interactions with the pGbs. In the chiral limit, the interactions
compatible with the assumed symmetries are given by the term:

L
(0)

TPP = gT ⟨Tµν{uµ ,uν}⟩, (5.21)

where the uµ were defined in Chapter 2.

5.3.1 Minimal Lagrangian: No Derivatives

It can easily be seen that, without including the vector meson resonances, the form
factors obtained from RχT cannot fulfill the SDCs from eq. (5.9). For obtaining a
1/Q̃4 behavior, at least 2 multiplets of tensor meson resonances need to be included,
and even a ∼ 1/Q̃6 is required in the double virtual case. The propagators coming
from the exchange of these vector mesons–determined by the same Feynman Rules
as in the pseudoscalar meson TFF of chapter 3– produce the setup to impose the
SDCs to the TFFs obtained from RχT.

The first case to be studied is the minimal: to include the vector mesons without
considering additional derivatives to the ones coming from the electromagnetic
fields, f µν

+ (Fµν , equivalently).
We have considered the most general Lagrangian consistent with the symmetries

of RχT, at leading order in the 1/NC expansion, in the chiral limit (mu,d,s→ 0) and
–by assumption– without derivatives (we have reconsidered, see table 5.2, this
hypothesis). In the minimal realization, which includes pseudoscalar mesons, vector
meson resonances, photons, tensor mesons, and their interactions, only 6 operators
contribute – in this approximation– to the radiative tensor decays, which are collected
in Table 5.1. Their real coupling constants are named according to the interaction
vertices they describe and are not fixed by symmetry requirements. With this set of
operators, we obtained only F T

1 different from zero for the 3 contributing neutral
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Coupling constant Operator
CT γγ ⟨T µν{ f α

+µ , f+αν}⟩
CT γV i⟨T µν{ f α

+µ ,Vαν}⟩
CT γV ′ i⟨T µν{ f α

+µ ,V
′
αν}⟩

CTVV ⟨T µν{V α
µ ,Vαν}⟩

CTV ′V ′ ⟨T µν{V ′αµ ,V ′αν}⟩
CTVV ′ ⟨T µν{V α

µ ,V ′αν}⟩
Table 5.1 Relevant RχT Operators at leading order in the 1/NC expansion and in
the chiral limit, neglecting operators with derivatives. We note that CT γV (′) are
dimensionless, while (CT γγ) CTV (′)V (′) have (inverse) energy dimensions.

tensor mesons:

F a2
1 (q2

1,q
2
2) =−

Ma2

2

[√
2

3
CT γγ +CT γV

4FV

3

(
D−1

MV
(q2

1)+D−1
MV

(q2
2)
)

+CTVV
2
√

2F2
V

3
D−1

MV
(q2

1)D
−1
MV

(q2
2)+CTVV ′

2
√

2FV FV ′

3
D−1

MV
(q2

1)D
−1
MV ′

(q2
2)+V ↔V ′

]
,

F f2
1 (q2

1,q
2
2) =−

M f2
2

[ √
2

3
√

3
CT γγ

(
sinθT +2

√
2cosθT

)
+CT γV

(
8sinθT +11

√
2cosθT

) 2
√

3FV

27

(
D−1

MV
(q2

1)+D−1
MV

(q2
2)
)

+CTVV

(
sinθT +2

√
2cosθT

) 2
√

2F2
V

3
√

3
D−1

MV
(q2

1)D
−1
MV

(q2
2)

+CTVV ′
(

sinθT +2
√

2cosθT

) 2
√

2FV FV ′

3
√

3
D−1

MV
(q2

1)D
−1
MV ′

(q2
2)+V ↔V ′

]
,

F
f ′2

1 (q2
1,q

2
2) = F f2

1 (q2
1,q

2
2)|sinθT→cosθT ,cosθT→−sinθT ,M f2→M f ′2

, (5.22)

where DMR(q
2
i ) = M2

R−q2
i .

Since in a model with finite resonances only a discrete amount of short-distance
constraints (SDCs) can be imposed, for the F T

1 FF we choose to fix the symmetric
double virtual case and the single virtual 1/Q4 behavior

lim
Q2→∞

F T
1 (−Q2,−Q2) =−

3Feff
T M3

T
14Q4 ,

lim
Q2→∞

F T
1 (−Q2,0)∼ 1

Q4 , (5.23)
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where Q2
i =−q2

i , and Feff
T has the value from eq. (5.10) . We note that the magni-

tude of F T
1 is overestimated this way, since for one finite and another asymptotic

photon virtuality, F T
1 should vanish as ∼ lnQ2/Q6 (which we will approximate as

∼ 1/Q4 because we are working with the rational approximant). However, with
two multiplets of vector meson resonances (and also with three of them), we get
F T

1 ∼ 1/Q2 in this mixed region, which we consider as a systematic error when com-
puting aHLbL:T−pole

µ . The resulting FFs, after imposing the high-energy constraints
mentioned above, are:

F T
1 (q2

1,q
2
2) = cT MT

9Feff
T M̃2

T (M
4
V −q2

1q2
2)/c̃T −14

√
2CTVV F2

V (M
2
V −M2

V ′)
2

42DMV (q
2
1)DMV (q

2
2)DMV ′ (q

2
1)DMV ′ (q

2
2)

, (5.24)

where cT is a flavor space coefficient, given by: ca2 = 1, c f2 =
sinθT+2

√
2cosθT√

3
, c f ′2

=

cosθT−2
√

2sinθT√
3

. There is a difference between MT and M̃T , cT and c̃T since the first
ones come from the definition of the TFFs and the second ones stem from the short
distance constraints, as we shall discuss later. The only free parameters left are the
combination CTVV F2

V and the mixing angle θT . These two parameters can be used to
normalize the form factors to reproduce the radiative decay widths as was done in
ref. [282]. We will take their chiral limit value for the mixing angle, θT = (27.2±1.1)◦,
and fix CTVV F2

V = (0.110±0.005) GeV3, from the measured value of Γ(a2→ γγ).
Given the SDCs imposed to the TFF from eq. (5.22) we get the following relation

between couplings:

CT γR = 0, R ∈ γ,V,V ′

FV FV ′CTVV ′ =
9Feff

T M̃2
T M2

V/c̃T

14
√

2
(
M2

V −M2
V ′
) −F2

V CTVV ,

F2
V ′CTV ′V ′ = F2

V CTVV −
9Feff

T M̃2
T
(
M2

V +M2
V ′
)
/c̃T

14
√

2
(
M2

V −M2
V ′
) , (5.25)

which makes also possible to evaluate the other couplings, namely: CTVV ′FV FV ′ =

−(0.121± 0.005)GeV3 and CTV ′V ′F2
V ′ = (0.195± 0.010)GeV3 6. These 5 constraints,

together with the determination of CTVV F2
V and θT , fix the 6 coupling constants

and the mixing parameter, leading to a fully determined F T
1 for all T = a2, f2, f ′2.

As mentioned before, there are two masses, one coming from the definition of the
form factors, which is the mass of each tensor(MT ), and the one coming from these

6The corresponding uncertainties are negligible with respect to the one obtained in the systematic
and statistical obtained for the computation of the aHLbL:T−poles

µ .
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SDCs, which can only be imposed once. Consequently, M̃T and c̃T are choices; the
systematic error induced by choosing one of the three masses or the isospin average
of them for M̃T and c̃T is addressed later in this section.

For the remaining parameters of eqs. (5.24), we use the PDG input [217] for
the tensor meson masses and their radiative decay widths. The effective masses of
the vector meson multiplets are obtained from the study of aP−pole

µ , within RχT , in
ref. [62]. Thus, with all parameters fixed -within uncertainties- we complete our
description of the tensor mesons F T

1 .

5.3.1.1 Systematic and Statistical errors

The statistical errors come from the propagation of errors of the parameters and
couplings in eq. (5.24). The systematic ones come –in principle– from two main
sources:

• first, the asymptotic term in eq. (5.23) can be fixed for only one of the tensor
mesons, as all couplings are common; consequently, one must choose either
one of them. This will result in a factor of c̃T dividing the first term of the
numerator in eq. (5.24), and setting M̃T to Ma2, M f2 , M f ′2

or M̄, the isospin
average. We have chosen T = a2, since it has the middle value of cT and MT ;
consequently, the mismatch of the asymptotic behavior of the non-chosen ones
will be reduced to a minimum. In order to compute the error induced by this
choice, we studied all 3 possibilities and considered an error bar that contains
the 3 curves.

• second, fulfilling all known SDCs is impossible in our setting with a finite
amount of resonances. In the limiting case when one momentum is asymptotic
and the other one is finite, we get a 1/Q2 behavior, but it should scale as
lnQ2

Q6 . In order to estimate this error–in the same fashion as in [47]– we used a
Canterbury Approximant which behaves as similar as possible to this limit,
1/Q4.

The second point needs to be written more explicitly. For this purpose, the minimal
choice is a C0

2(Q
2
1,Q

2
2):

F T
1 (Q2

1,Q
2
2) =

F T
1 (0,0)

1+β T
1 (Q2

1 +Q2
2)+β T

1,1Q2
1Q2

2 +β T
2 (Q4

1 +Q4
2)
, (5.26)
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where we omit the terms with β T
1,2 and β T

2,2 coefficients, as they contribute to orders
1/Q6 and 1/Q8 in the asymptotic behavior. All single virtual, double virtual, and
mixed asymptotic behaviors, ∼ (1/Q4), can be reproduced by the condition:

β
T
2 =
−14F T

1 (0,0)−3β1,1Feff
T M3

T

6Feff
T M3

T
. (5.27)

The 2 remaining constants, β T
1 and β T

1,1, will be fixed by matching the first two
low-energy-expansion constants from our model and the considered C0

2(Q
2
1,Q

2
2),

eq. (5.26) 7:
F T

1 (Q2
1,Q

2
2)

F T
1 (0,0)

≈ 1−
aT

1
M2

T
(Q2

1 +Q2
2)+

bT
1,1

M4
T

Q2
1Q2

2 + ..., (5.28)

leading to the following relations:

β
T
1 =

1
M2

Λ

=
1

M2
V
+

1
M2

V ′
,

β
T
1,1 =

1
M4

Λ′
=

14
√

2CTVV F2
V (M

4
V −M4

V ′)
2−9Feff

T M̃2
T M4

V (M
4
V +2M2

V M2
V ′+2M4

V ′)/c̃T

M4
V M4

V ′

[
14
√

2CTVV F2
V (M

2
V −M2

V ′)
2−9Feff

T M̃2
T M4

V/c̃T

] ,

(5.29)
where we introduced the two scales that are similar in magnitude to the mass of the
first vector meson resonance, MΛ ∼MΛ′ ∼Mρ . It is important to remember that M̃T is
the mass chosen for imposing the SDCs, and that only appears when matching the
low energy constants, since the SDCs are imposed independently for each meson in
this approach.

Moreover, the asymptotic behavior of the Canterbury Approximant is given by:

lim
Q̃2→∞

F T
1 (q2

1,q
2
2)→

4∑aCaFa
T M3

T

Q̃4

(
−

3F T
1 (0,0)M4

Λ′

14F T
1 (0,0)M4

Λ′(w
4 +6w2 +1)+24Feff

T M3
T w2

)
.

(5.30)
With the systematic and statistical errors being discussed, we obtained a model

for the transition form factor F T
1 , which is shown in figure 5.3, where it is compared

with the models used for the aHLbL:T−poles
µ and with the Canterbury Approximant

previously discussed.

7These constraints will produce a good description at low energies, which is desired when working
with aµ .
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Fig. 5.3 Comparison between the simple quark model (QM) [387] used in the disper-
sive determination [67], the holographic QCD (hQCD) hard-wall model [69], the RχT
model used in this work and the C0

2 of eq. (5.26) for the single and symmetric double
virtual form factor F T

1 , for all 3 tensor mesons: a2(1320), f2(1270) and f ′2(1525). Our
one σ uncertainties are displayed by the green band.

There is scarce related experimental information to validate our model. However,
Belle [392] measured the single virtual form factors for the f2(1270) tensor meson
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in the helicity basis of eq. 5.14. In this minimal case, this is reduced as only F T
1 is

different from zero. The comparison of these data with the quark model used in [67],
the Hard-Wall model used in [69], and our results is shown in Figure 5.4. Our model
exhibits good agreement with the experimental data.

It is important to remark that –by construction– these TFFs fulfill the doubly

Fig. 5.4 Comparison between the simple quark model (QM) [387] used in ref. [67],
the hard-wall model (hQCD) [69] and this work (RχT ) with the Belle data [392]
in the helicity basis of eq. (5.14) for the f2(1270) tensor meson, normalized by

F f2(0,0) =
√

5ΓT γγ

πα2MT
. Our one σ uncertainties are displayed by the green band.

virtual asymptotic behavior given in ref. [124]. However, for arbitrary asymmetries

–parametrized by w =
q2

1−q2
2

q2
1+q2

2
, so that F T

i (q2
1,q

2
2) =F T

i (Q̃2) f T
i (w)–, for Q̃2 =

q2
1+q2

2
2 →∞,

we get:

lim
Q̃2→∞

F T
1 (q2

1,q
2
2)→

4∑aCaFa
T M3

T

Q̃4

(
− 3

14
(1−w2)−1

)
, (5.31)

which is simpler than the ones obtained by refs. [124] and [69]. One reason for the
lack of structure of our result is the truncation of the infinite tower of interactions
to two vector and the lightest tensor meson multiplets. If the infinite tower of
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Fig. 5.5 Comparison of the full asymmetry range of the asymptotic behavior of f a2
1 (w)

given by ref. [124] using the Light-Cone-Expansion, the quark model (QM) [387]
used in ref. [67], the hard-wall model of ref. [69] (hQCD) and this work (RχT in
green and C0

2 in red).

resonances were not integrated out, a logarithmic term would be expected, as in the
quoted refs.

The comparison between the asymmetry functions for the a2 –which is represen-
tative for all tensor mesons–, is shown in Figure 5.5, where it is clear that none of the
3 models that have been used for computing the aHLbL:T−poles

µ fulfills the asymmetric
asymptotic behavior predicted by ref. [124] for f T

1 , being generally worse as the
asymmetry approaches the single virtual case. However, noticeably, in the purely
hadronic region where these contributions are computed, the high-energy behavior
does not significantly influence the resulting contributions to aµ . The matching at
Q0 = 1.5 GeV is shown in the left plot of Figure 5.6 for F T

1 . There it can be seen,
again, that the single virtual asymptotic behavior (λ = 0) is not reproduced. Near the
symmetric (λ = 1) asymptotic behavior, a better transition is achieved –as expected–
for higher values of the matching scale Q0 = 7.5GeV, as it can be appreciated in the
right plot of Figure 5.6.
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Fig. 5.6 Transition from the purely hadronic to the asymptotic region as a function
of the relative virtuality of both photons, λ , at the matching scale Q0 = 1.5GeV(left)
and 5Q0(right) for the 3 models considered for F T

1 and the Light-Cone-Expansion.
Our one σ uncertainties are displayed by the green band.

For the aµ computation, we use the master formula provided in ref. [46], using
the optimized basis in ref. [61] with the scalar functions from eq. (5.15), which
allows for an evaluation of the tensor meson poles without kinematic singularities
for specific cases, including the one where only F T

1 is non-vanishing: In this way,
we got the following results:

aa2−pole
µ =−

(
1.09(10)stat(

+0.11
−0.00)syst

)
×10−11, (5.32a)

af2−pole
µ =−

(
3.4(3)stat(

+0.0
−0.4)syst

)
×10−11, (5.32b)

af′2−pole
µ =−

(
0.046(14)stat(

+0.000
−0.008)syst

)
×10−11, (5.32c)

aa2+ f2+ f ′2−pole
µ =−

(
4.5+0.3
−0.5

)
×10−11. (5.32d)

These results are compatible with those from [67] and [69]–when evaluating only
the contribution coming from F T

1 – and the average done for the White Paper of
the muon’s g−2 Theory Initiative [6]–where the holographic results included the
contributions from F T

3 –.

5.3.2 Minimally Extended Model: T ∂V ∂V

We further considered an ad hoc extension consisting in the operators of the kind
⟨T µν{∇αRα

µ ,∇λ R(′)λ
ν }⟩–with R,R′ = f ,V,V ′ as in Table 5.1–, resulting in 6 additional
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operators, which are displayed in Table 5.2 8. We choose this particular extension
since it generates a non-zero F 3

T TFF, as put forward in [69]. This allows for an
evaluation of aHLbL:T−poles

µ which is free of kinematic singularities in the optimized
basis of Ref. [61] (contrary to what happens in a more general treatment, that
deserves further study). This study intends to confirm the sign change in the
evaluation of the tensor meson pole contributions when a non-zero F T

3 is present.
The F T

3 FF is obtained straightforwardly, noting that

Coupling constant Operator
gT γγ ⟨T µν{∇α f α

+µ ,∇λ f λ
+ν}⟩

gT γV i⟨T µν{∇αV α
µ ,∇λ f λ

+ν}⟩
gT γV ′ i⟨T µν{∇αV ′αµ ,∇λ f λ

+ν}⟩
gTVV ⟨T µν{∇αV α

µ ,∇λV λ
ν }⟩

gTV ′V ′ ⟨T µν{∇αV ′αµ ,∇λV ′λν }⟩
gTVV ′ ⟨T µν{∇αV α

µ ,∇λV ′λν }⟩
Table 5.2 RχT Operators that are obtained adding two derivatives to those in Ta-
ble 5.1, which only generate F 3

T . The energy dimension of the coefficients of the
operators with zero, one and two resonances is -3, -2 and -1, respectively.

F T
3 (q2

1,q
2
2) = M2

T F T
1 (q2

1,q
2
2)|CT→gT . (5.33)

However, the SDCs for these form factors are different from the ones for F T
1 as can be

seen in eq. (5.9). For the F T
3 , we have chosen to fix the doubly virtual behavior, both

symmetric and asymmetric, to their leading power law, and in the case of double
virtuality, we matched the coefficient to the one given by the Light-Cone-Expansion
in ref. [124]:

lim
Q→∞

F T
3 (−Q2,−Q2) =− 8

21
Feff

T M5
T

Q6 ,

lim
Q2→∞

F T
3 (−Q2,−λQ2)∼ 1

Q6 , λ ∈ (0,1) . (5.34)

This happens for the same reasons as in F T
1 , as a result of the impossibility of impos-

ing the symmetric double virtual constraint to the 3 tensor mesons simultaneously
and having to choose only one that determines the rest. Analogously to the F T

1 case,

8The covariant derivatives are constructed as in refs. [247, 274]. However, for the case at hand,
∇λ → ∂λ .
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we have chosen a2 and get the following constraints on the parameters:

gT γR = 0, R ∈ γ,V,V ′,

F2
V gTVV =−

21F 3
a2
(0,0)M4

V M4
V ′+8Feff

T M5
a2

M2
V

7
√

2M3
a2

(
M2

V −M2
V ′
)2 ,

FV FV ′gTVV ′ =
21F 3

a2
(0,0)M4

V M4
V ′+4Feff

T M5
a2

(
M2

V +M2
V ′
)

7
√

2M3
a2

(
M2

V −M2
V ′
)2 ,

F2
V ′gTV ′V ′ =−

21F 3
a2
(0,0)M4

V M4
V ′+8Feff

T M5
a2

M2
V ′

7
√

2M3
a2

(
M2

V −M2
V ′
)2 ,

which results in 9

F T
3 (q2

1,q
2
2) = cT

(
M3

T
M3

a2

) 4
21Feff

T M5
a2

(
q2

1 +q2
2
)
+F a2

3 (0,0)M4
V M4

V ′

DMV (q
2
1)DMV (q

2
2)DMV ′ (q

2
1)DMV ′ (q

2
2)

. (5.35)

There is a ratio between the normalization of the form factors given by the flavor

space rotation factor cP and a mass factor,
(

M3
T

M3
a2

)
, induced by imposing the SDCs to

F a2
3 , which also appears in the high-energy term.

It can be seen that, in contrast to the F T
1 case, we have 6 constraints instead of

5 from the SDCs and one for the normalization. This is due to the main source of
error: The lack of knowledge of F T

3 (0,0). A convenient notation has been used to
make this evident, and –once again– only one of the normalizations can be imposed;
the rest of them are given by the mixing angle θT .

The asymptotic behavior of F T
3 is given by

F T
3 (q2

1,q
2
2)→

4∑aCaFa
T M5

T

Q̃6

(
8

21
(1−w2)−2

)
, (5.36)

where once more we observe the fact that with a finite amount of vector meson
resonances, it is impossible to obtain the rich structure that is present in refs. [124, 69].
The comparison between these 3 results for the asymmetric piece of the asymptotic
behavior of F T

3 is shown in Figure 5.7. We can see that the asymmetric piece of the
asymptotic behavior of this form factor within RχT and hQCD is in less tension than
for F T

1 .

9The aforementioned behavior is achieved for all asymmetries except λ = 0. In this case, the
symmetric part of the SDCs in ref. [124] behaves as 1

Q6 , but in our approach it goes as 1
Q2 . We account

for this as a systematic uncertainty.
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(hQCD) and this work (RχT ).
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5.3.2.1 F T
3 (0,0) ballpark within RχT

The lack of information on the normalization of the third form factor is the main
problem for an RχT description of them. In [69], a value for F T

3 (0,0) was obtained
within their formalism. However, we cannot cast their value to solve this issue, as it
is not data-driven as the rest of our study. Instead, we performed an interpolation
from the normalization of F T

1 (0,0). This procedure is based on the fulfillment of the
SDCs coming from the Light-Cone-Expansion[124] results at different scales. We
require that the ratio of the RχT and the LCE one is matched for F T

1 and F T
3 at a

scale Qλ . This matching depends on F T
3 (0,0), specifically for the a2 case, since it

defines the rest of the normalizations, as mentioned above. Consequently, floating
the matching scale leads to different values for the normalization. We will take the
average of the upper and lower limit and use an error that spans the whole region
of results for F a2

3 (0,0). The matching condition is then:

F
a2−RχT
3 (Q2

λ
,Q2

λ
)

F a2−LCE
3 (Q2

λ
,Q2

λ
)
=

F
a2−RχT
1 (Q2

λ
,Q2

λ
)

F a2−LCE
1 (Q2

λ
,Q2

λ
)
. (5.37)

The results for the matching for the 3 neutral tensor mesons are shown in Fig. 5.8.
It can be seen that the value of the hQCD is included in the possible region for the
normalization coming directly from RχT inference. The region is wide; however, it
is a conservative approach given the lack of information on the normalization of the
FFs.
As it can be seen, this procedure spans a wide range of possible negative values for
F T

3 (0,0). This sign implies that we do not expect a sign change in the form factor, as
the asymptotic behavior is also negative. The values for the normalizations are:

F a2
3 (0,0) =−(0.106±0.101),

F f2
3 (0,0) =−(0.165±0.156),

F
f ′2

3 (0,0) =−(0.038±0.036).

The rest of the parameters are the same ones as in the F T
1 case. The remaining

statistical and systematic errors are negligible with respect to the one coming from
the RχT interpolation for the normalization. The results are shown in the Figure.
5.10 and are compared with the ones from hQCD. It can be seen that the central
values of a2 and f2 of the two approaches are close; however, for f ′2 the hQCD curve
is closer to the upper bound of RχT.
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Fig. 5.9 Transition from the purely hadronic to the asymptotic region as a function
of the relative virtuality of both photons, λ , at the matching scale Q0 = 1.5GeV(left)
and 5Q0(right) for the 2 models considered for F T

3 and the Light-Cone-Expansion.
Our one σ uncertainties are displayed by the green band.

Given the normalizations, a comparison between the transition from the purely
hadronic to the asymptotic region is possible, and it is shown in Figure 5.9. It is
natural to find similar results in λ = 1 to the results in Figure 5.6, since that was the
point where the matching of F T

3 (0,0) was performed. It is no surprise the fact that at
a matching scale 5Q0 = 7.5GeV, the transition from RχT to the asymptotic region is
smoother. It is relevant to mention that F T

3 can only be probed in the double virtual
scenario, as it can be seen from eqs. (5.13) and (5.14). The plots from Figure 5.1 are
then unchanged by the presence of a non-zero F T

3 . This is, once again, a fair call for
the experimentalist to look into the double virtual sector in the photo-production of
tensor mesons.
The evaluation of the aµ contribution of the tensor meson poles is obtained once

more by evaluating the master formula with the scalar functions given in eq. (5.15).
The optimized basis from [61] considers this specific case of a non-zero F T

1,3 only.
For this case, we got the results:

aa2−pole
µ =+0.5(1.4)stat(

+0.00
−0.07)syst×10−11,

af2−pole
µ =+2(5)stat(

+0.12
−0.29)syst×10−11,

af′2−pole
µ =+0.02(5)stat(

+0.001
−0.000)syst×10−11,

aa2+ f2+ f ′2−pole
µ =+2.3(5.2)×10−11.

These results confirm the fact stated by the hQCD group. When we have the
presence of F T

3 , we get a change of sign. However, we must mention that within the
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Fig. 5.10 Comparison between the holographic QCD (hQCD) hard-wall model [69],
the RχT model used in this work for the single and symmetric double virtual form
factor F T

3 , for all 3 tensor mesons: a2(1320), f2(1270) and f ′2(1525). Our uncertainties
dominated by the lack of information on F T

3 (0,0) are displayed by the green band.
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uncertainty band, negative values are allowed when the normalization of this last
form factor is very small compared to the one from F T

1 . In this small-normalization
case, the results are very similar to the ones of the previous section, as expected.
These results are shown in Figure 5.11, where it is shown that the lack of information
on F T

3 normalization spans a wide range of positive and negative values for the
tensor meson pole contribution to the HLbL piece of aµ .

4 2 0 2 4 6 8
aT poles × 1011

QM

hQCD truncated

hQCD full

R T minimal

R T extended

Fig. 5.11 Comparison of this work in the minimal and extended scenarios with the
two determinations of the tensor meson pole contributions to aHLbL

µ considered for
the WP2025[6]: a Hard-Wall hQCD model [69] and a Simple Quark Model [67]. The
value reported in the WP2025 is shown with a gray band.

5.4 Complete Extension: A full consistent account of
operators with derivatives

So far, we have considered different scenarios within RχT for the description of
the transition of a tensor meson into two photons. However, in the first case, we
neglected–by choice– the operators with derivatives. In the second case, we included
ad-hoc operators with two additional derivatives which induced F T

3 only. This is
useful if one wishes to compare an RχT prediction for the g−2 with those of the
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other two approaches currently available; however, there are more operators of the
same order in 1/NC which were not included, resulting in an inconsistency of the
study. A full, consistent computation within RχT must consider these operators.

As in the case with no derivatives and its ad-hoc extension, we must consider op-
erators with zero, one, and two resonances. This study is still a work in progress, for
which we will only explain the case with no resonances for sketching the procedure.

5.4.1 Counting of Operators and their contributions

Because all indices must be contracted and the operators of the kind T γ∗γ∗ contain an
even number of indices, we must include at least two derivatives when considering
operators of higher order. Since total derivatives do not contribute to the Lagrangian,
we can generate the terms with two derivatives from ∂ (∂TVV ), ∂ (T ∂VV ), ∂ (TV ∂V ).
We can classify these operators by the number of derivatives contracted with the
indices of Tµν .
• 0 contractions All derivatives of these terms are contracted with the indices

of the electromagnetic tensors or with themselves. By the null dynamical effect of
the total derivative (which does not give rise to a topological contribution), one of
the terms will be omitted, as it is not independent (’LI’ below) of the others related
to the same total derivative. We will choose to drop the term with the higher order
of derivatives acting on Tµν . Every new operator will be written in green. First we
consider the terms where both derivatives are contracted between them, The trace
over flavor is implicit for all operators.

∂λ (∂
λ Tµν f µα

+ f+α
ν) = ∂

2Tµν f µα

+ f+α
ν + ∂λ Tµν∂

λ f µα

+ f+α
ν + ∂λ Tµν f µα

+ ∂
λ f+α

ν ,

(5.39a)

Proportional to CT γγ

ommited - not LI due ∂ ()

already considered in
previous term by Bose
symmetry (µ ↔ ν )

∂λ (Tµν∂
λ f µα

+ f+α
ν) = ∂

λ Tµν∂λ f µα

+ f+α
ν + Tµν∂

2 f µα

+ f+α
ν +Tµν∂λ f µα

+ ∂
λ f+α

ν ,

(5.39b)2nd term of prev ommited - not LI due ∂ ()

∂λ (Tµν f µα

+ ∂
λ f+α

ν
) = ∂

λ Tµν f µα

+ ∂λ f+α
ν + Tµν∂

λ f µα

+ ∂λ f+α
ν + Tµν∂λ f µα

+ ∂
λ f+α

ν .

(5.39c)3rd term of 1a 3rd term of 1b
ommited - not LI due ∂ ()
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Now we consider the terms where the derivatives are contracted with different
dummy indices of the photon fields.

∂λ (∂αTµν f αµ

+ f λν
+ ) = ∂λ ∂αTµν f αµ

+ f λν
+ +∂αTµν∂λ f αµ

+ f λν
+ +∂αTµν f αµ

+ ∂λ f λν
+ , (5.40a)

ommited - not LI due ∂ ()

∂λ (Tµν∂α f αµ

+ f λν
+ ) = ∂λ Tµν∂α f αµ

+ f λν
+ +Tµν∂λ ∂α f αµ

+ f λν
+ +Tµν∂α f αµ

+ ∂λ f λν
+ , (5.40b)

ommited - not LI due ∂ ()

∂λ (Tµν f αµ

+ ∂α f λν
+ ) = ∂λ Tµν f αµ

+ ∂α f λν
+ +Tµν∂λ f αµ

+ ∂α f λν
+ + Tµν f αµ

+ ∂λ ∂α f λν
+ . (5.40c)

ommited - not LI due ∂ ()

already in µ ↔ ν

• 1 contraction Now one of the derivatives will be contracted with one of the indices
of Tµν , it is irrelevant to choose either µ or ν because T is symmetric in the exchange
of those indices. This requires that the photon fields have one contraction between
themselves. Three different global derivative terms appear when one contraction is
done with the tensor meson operator.

∂λ (∂
µTµν f λα

+ f+α
ν) = ∂λ ∂

µTµν f λα
+ f+α

ν +∂
µTµν∂λ f λα

+ f+α
ν +∂

µTµν f λα
+ ∂λ f+α

ν

(5.41a)ommited - not LI due ∂ ()

∂λ (Tµν∂
µ f λα

+ f+α
ν) = ∂λ Tµν∂

µ f λα
+ f+α

ν +Tµν∂λ ∂
µ f λα

+ f+α
ν +Tµν∂

µ f λα
+ ∂λ f+α

ν

(5.41b)ommited - not LI due ∂ ()

∂λ (Tµν f λα
+ ∂

µ f+α
ν) = ∂λ Tµν f λα

+ ∂
µ f+α

ν +Tµν∂λ f λα
+ ∂

µ f+α
ν +Tµν f λα

+ ∂
µ

∂λ f+α
ν

(5.41c)ommited - not LI due ∂ ()
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• 2 contractions Finally, we study the operators that have the two derivatives
contracted with the tensor meson field:

∂
µ(∂ νTµν f αβ

+ f+αβ ) = ∂
µ

∂
νTµν f αβ

+ f+αβ + ∂
νTµν∂

µ f αβ

+ f+αβ + ∂
νTµν f+αβ ∂

µ f αβ

+ .

(5.42a)

ommited - not LI due ∂ ()

anticommutator,
same coefficient

∂
µ(Tµν∂

ν f αβ

+ f+αβ ) = ∂
µTµν∂

ν f αβ

+ f+αβ + Tµν∂
µ

∂
ν f αβ

+ f+αβ +Tµν∂
ν f+αβ ∂

µ f αβ

+ .

(5.42b)already in 2nd
term of 4a with
µ ↔ ν

ommited - not LI due ∂ ()

∂
µ(Tµν f αβ

+ ∂
ν f+αβ ) . (5.42c)

complete term
anticommmutator
of eq 4b

This makes a total of 14 different operators that generate higher order terms in
the amplitude of T→ γ∗γ∗. It is necessary now to compute the amplitude to check
the form factors they contribute to.

5.4.2 Contribution to the TFFs

The 14 independent operators lead to 14 different Feynman rules. Each one of them
will be considered as an anticommutator and with contractions with both of the
external photon legs. They will be labeled as operator i, i ∈ [1,14]. The independent
operators and the form factors they contribute to are

1. Tµν{∂λ f µα

+ ,∂ λ f+α
ν} : contributes to FT

1 at order Q2, SDCs will force the cou-
pling constant to be zero. However, vector meson resonances might contribute
to SDCs at different Q−2n orders.

2. ∂αTµν{∂λ f αµ

+ , f+λν}: It contains F4, F5 2(q1 · q2)F1 and a piece similar to 2T2

with the exchange qα
1 qβ

1 +qα
2 qβ

2 → qα
1 qβ

2 +qα
2 qβ

1 . These two structures are not
independent since pα pβ = S1+S2 and when the tensor meson is on-shell, pα pβ

is annihilated. Then it contains -2F2.

3. ∂αTµν{ f αµ

+ ,∂λ f+λν}: It contains 2 F3, F4 and F5.

4. Tµν{∂λ ∂α f αµ

+ , f+λν}: Contributes to T4 and T5.
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5. Tµν{∂α f αµ

+ ,∂λ f+λν}: Contributes to FT
3 .

6. Tµν{∂λ f αµ

+ ,∂α f+λν}: contributes to FT
1 at order Q2 (q1 ·q2FT

1 ), SDCs will force
the coupling constant to be zero. As in Op. 1, this should not be the case
for vector meson resonances operators. It also contains −2F2 With the same
arguments as in Op. 2.

7. ∂ µTµν{∂λ f λα
+ , f+α

ν}: This structure does not possess double metric tensors, so
the only possible structure is T2, however, it is not present.

8. ∂ µTµν{ f λα
+ ,∂λ f+α

ν}: It is proportional to pα pβ , which is zero when contracted
with the on-shell propagator.

9. Tµν{∂λ ∂ µ f λα
+ , f+α

ν}:Contributes to F4, F5 and −(q2
1 +q2

2)F1.

10. Tµν{∂ µ f λα
+ ,∂λ f+α

ν}: Contributes to F2 the same way that Op. 2, so it originates
-F2.

11. Tµν{∂λ f λα
+ ,∂ µ f+α

ν}: This structure do not possess double metric tensors, so
the only possible structure is T2, however it is not present.

12. Tµν{ f λα
+ ,∂λ ∂ µ f+α

ν}: Contributes to FT
2 .

13. ∂ νTµν{∂ µ f αβ

+ , f+αβ}: It is proportional to pα pβ , which is zero when contracted
with the on-shell propagator.

14. Tµν{∂ ν f αβ

+ ,∂ µ f+αβ}: Contributes to F2 the same way that Op. 2, so it con-
tributes to -F2.

To complete the study, these contributions need to be expanded to the case with one
and two resonances. Furthermore, there are many more independent operators. The
model parameters will then be constrained by the Short Distance Constraints of all 5
TFFs, and the rest will be obtained by a global fit to the Belle single virtual data on
f2 [392].

5.4.3 Toy Fit

The SDCs from eq. (5.9) can be imposed on the obtained TFFs. However, with
two multiplets of tensor meson resonances, the best that can be achieved is a 1/Q4

damping, which is not the 1/Q6 predicted by [124]. This fact makes the fitting
procedure fail, as it can be understood from eq. (5.14) that if F T

2 scales in that way,
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F T
λT=0 cannot go asymptotically to zero as the Light-Cone Expansion prediction and

the data suggest.
This implies that at least 3 vector meson resonance multiplets must be included.

This is a more extensive work, which will be continued after the presentation of
this thesis, and will give a first complete and consistent study of the tensor meson
resonances transition form factors within RχT. For the moment, a model with
two vector meson resonances is good for a toy fit for F T

1,5, but not for F T
2 . This

exploratory study aims to obtain scales for the effective masses and the normalization
of the form factors. Consequently, an ansatz for the form factors will be used to
explore these parameters:

F T
1 (q2

1,q
2
2) = cT

3Feff
T M3

T (q
2
1 +q2

2)−14F T
1 (0,0)M4

V M4
V ′

14DMV (q
2
1)DMV (q

2
2)DMV ′ (q

2
1)DMV ′ (q

2
2)

, (5.43a)

F T
2 (q2

1,q
2
2) =

F T
2 (0,0)

1−β
F2
1 (q2

1 +q2
2)+β

F2
2 (q4

1 +q4
2)−

4F2(0,0)
5Feff

T M5
T
(q6

1 +q6
2)
, (5.43b)

F T
5 (q2

1,q
2
2) =

F T
5 (0,0)

1−β
F5
1 (q2

1 +q2
2)+β

F5
2 (q4

1 +q4
2)−

12F5(0,0)
5Feff

T M5
T
(q6

1 +q6
2)
. (5.43c)

As mentioned at the beginning of the chapter, an exchange of momenta (q2
1→ q2

2)

will give us information of F T
4 from that of F T

5 ; consequently, they have the same
normalization. The results for the global fit and the Form Factors are shown in
figs. 5.12 and 5.13.

Concluding remarks from this exploratory study are:

• There is evidence of a non-zero F f2
2 (0,0), which can be used to obtain the

normalization of the other two form factors.

• There is no sensitivity in the current data to the normalization of F T
5 and,

consequently, to F T
4 .

• No conclusion on the form factors can be obtained until we construct a full
and consistent description within RχT where all SDCs are taken into account,
and double virtual data are measured.
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Fig. 5.12 Toy Fit results compared with the Brodsky-Lepage limit and the data from
Belle[392].
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Fig. 5.13 Toy fit results for the transition form factors F1,2,5.
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Towards a full evaluation of aHLbL

µ within RχT

After performing the computations on the pseudoscalar and the tensor pole con-
tributions to the HLbL, we are set to study the plausibility of a full study of this
piece within Resonance Chiral Theory and its agreement with the rest of the full
evaluations [67, 59, 69, 50, 394, 65]. Other relevant and sub-leading contributions
were considered as well for a short review, which will be published soon in EPJ
ST [123] 1. So far, the pseudoscalar poles [301, 302, 62], axial poles [399], and tensor
poles contributions [122] had been studied in the framework of RχT. The first and
third were part of this thesis. The second one is not part of this thesis but will be
included for completeness.

6.1 Pseudoscalar Box Contributions

As in the previous contributions, the main ingredient to compute these contributions
are the form factors. In the box contributions case, it is the electromagnetic form
factor, the one that defines the interaction of a pseudoscalar meson with a virtual
photon (γ∗→ PP), see Figure 6.1. Since these form factors have only one off-shell
photon, their only degree of freedom is its virtuality, Q2. The scalar functions of the
Master Formula, eq. (1.28), are written in terms of these form factors:

Π
P−box
i (Q2

1,Q
2
2,Q

2
3) = FP(Q2

1)FP(Q2
2)FP(Q2

3)
1

16π2

∫ 1

0
dx
∫ 1−x

0
dyIi(x,y) , (6.1)

1This publication also reviewed the computation of aHV P,LO
µ within RχT . See refs. [87, 88, 90, 395–

398, 92].
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γ∗

P

P

Fig. 6.1 Electromagnetic form factor of a pseudoscalar meson. This form factor
defines the interaction of a pseudoscalar meson and a photon, which appears in
every vertex of the pseudoscalar-box contributions.

with Ii being the functions of the two-dimensional Feynman parameter integral[48],
defined as:

I1(x,y) =
8xy(1−2x)(1−2y)

∆123∆23
,

I4(x,y) =
4(1− x− y)(1−2x−2y)∆21

∆2
321

(
(1−2x−2y)2

∆321
− 1− x(3−2x)− y(3−2y)

∆21

)
+

16xy(1−2x)(1−2y)
∆321∆21

,

I7(x,y) =−
8xy(1− x− y)(1−2x)2(1−2y)

∆3
123

,

I17(x,y) =
16xy2(1−2x)(1−2y)

∆123∆23

(
1− x− y

∆123
+

1− y
∆23

)
,

I39(x,y) =
8xy(1− x− y)(1−2x)(1−2y)(1−2x−2y)

∆3
123

,

I54(x,y) =−
8xy(1− x− y)(1−2x)(1−2y)(x− y)

∆123∆21

(
1

∆321
+

1
∆21

)
, (6.2)

where

∆i jk = M2
P− xyq2

i − x(1− x− y)q2
j − y(1− x− y)q2

k ,

∆i j = M2
P− x(1− x)q2

i − y(1− y)q2
j . (6.3)

Once again, the remaining scalar functions are obtained from the crossing relations
between them.

The dispersively-defined vector form factor of the pion has been widely studied
in the context of Resonance Chiral Theory [400–402]. The pion form factor Fπ

V (s) is
defined as:

⟨π+(p)π−(p′)|V 3
µ |0⟩= (p− p′)µFπ

V (s), (6.4)
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where s = (p+ p′)2 and V 3
µ is the third component of the vector current associated

with the approximate SU(3)V flavor symmetry of the QCD Lagrangian. This form
factor can be described using a dispersive framework, with an RχT phaseshift
seed, as in the previously cited refs. The first work uses a VMD in the zero-width
approximation:

Fπ
V (s) =

M2
ρ

M2
ρ − s

, (6.5)

However, it can be improved by including χPT corrections at O(p4) and by resum-
ming the ππ and KK final-state interactions to all orders, relying on unitarity and
analyticity constraints. Finally, to describe the region of the ρ peak, its on-shell (and
slightly off-shell) behaviour must be correctly described. All of these facts were
considered in [402], leading to:

Fπ
V (s) =

M2
ρ

M2
ρ − s− iMρΓρ(s)

exp
(
− s

96π2F2
π

Re
[

Aπ(s,µ2)+
1
2

AK(s,µ2)

])
, (6.6)

where the energy-dependent width is defined as 2:

Γρ(s) =−
Mρs

96πF2
π

Im
[

Aπ(s)+
1
2

AK(s)
]
. (6.7)

The two-pseudoscalar loop-functions accounting for the unitary corrections are
given by3:

AP(s,µ2) = log
m2

P
µ2 +

8m2
P

s
− 5

3
+σ

3
P(s) log

(
σP(s)+1
σP(s)−1

)
, (6.8)

and σP(s) =
√

1− 4m2
P

s . Due to the region of relevance of the aµ (E < 1 GeV), there is
no need to go further and explore the influence of higher resonances in this case.
This is the seed for the phaseshift in order to perform a thrice-subtracted dispersion
relation for the form factor:

Fπ
V (s) = exp

[
α1s+

1
2

α2s2 +
s3

π

∫ scut

4m2
π

ds′
δ 1

1 (s
′)

s′3(s′− s− iε)

]
, (6.9)

2There is a scale dependence in this piece, which cancels out with the scale dependence of the LEC
Lr

9(µ
2). For this reason, the µ2 will be taken as µ2 = M2

ρ and omitted from the expressions after this
point.

3Further details on the definitions and effects of the loop-functions are given in [247] and in the
appendix of [401].
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where the phase is given by the RχT seed:

tanδ
1
1 (s) =

ImFπ
V (s)

ReFπ
V (s)

∣∣∣∣
RχT

. (6.10)

For the form factor of the K, we have introduced the dominant 1/NC correction
to the vector meson propagators in the VMD Form Factor:

FK
V (s) =

1
2

(
M2

ρ

M2
ρ − s

)
exp
[
− s

192π2F2
π

(Aπ(s)+2AK(s))
]
+

1
3

(
M2

ω

M2
ω − s

)
+

2
3

(
M2

φ

M2
φ
− s

)
.

(6.11)
With this input, we obtain

aπ−box
µ =−15.8(3)×10−11 , aK−box

µ =−0.51(3)×10−11 , (6.12)

which compares well with the WP2 numbers [6], taken from Refs. [48, 58],

aπ−box
µ =−15.9(2)×10−11 , aK−box

µ =−0.48(1)×10−11 , (6.13)

These results are also supported by Dyson-Schwinger evaluations [403, 404].
We do not consider here other smaller box contributions, like those coming from

excited pseudoscalars [405] and baryons [121].

6.2 Axial Pole Contributions

The contribution of axial-vector resonances to aµ gained much interest after the cele-
brated Melnikov-Vainshtein work [303], which put forward that all short-distance
QCD constraints relevant for the HLBL could not be satisfied only with pseudoscalar
exchanges, which could be healed by the axial contributions. The importance of
Ref. [399], which evaluated aaxial−poles

µ within RχT , lies more in clarifying some issues
about bases and satisfaction of high-energy constraints (see also e. g. ref. [406]) than
in the actual number that was obtained, as we will explain.

A very important result of this paper is the derivation of a dictionary to translate
between the four existing bases [407–409] (two different helicity bases, one quark-
model inspired and another one first used in the study of the <VVA> Green’s
function) in the literature that were used to compute aaxials

µ previously 4, which

4Later on, a different basis, optimized for the dispersive analysis, was proposed [61, 67].
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is non-trivial, given the off-shellness. This happens because of the Landau-Yang
theorem [410, 411], whose fulfillment in the Melnikov-Vainshtein analysis [303] was
shown in Ref. [399], contrary to the claims in Refs. [412, 408].

This work [399] also emphasized the role of axial-vector mesons in saturating the
short-distance anomaly constraints, which became a hot topic for the g-2 community
since then. However, working at leading order in 1/NC, RχT only contributes
to antisymmetric form factors, which give suppressed contributions to aµ . Even
including the effects of higher orders in the chiral and large-NC expansions, this
works finds a result of

a(a1+ f1+ f ′1)−poles
µ = (0.8+4.1

−0.8)×10−11 , (6.14)

which is clearly smaller than the WP2 number [6]

a(a1+ f1+ f ′1)−poles
µ = (12.2±4.3)×10−11 , (6.15)

based on the dispersive analysis [67], that is supported by those of holographic
QCD [53, 52], Regge theory [54] and Dyson-Schwinger equations [65]. Improved
measurements of the axial transition form factors would be instrumental in reducing
the above uncertainty.

Given the preceding explanations, it seems that an RχT evaluation of these
contributions would need to be constructed on the basis of the continuation to the
timelike of the successful description of the axial current coupling to three-pion
states in the spacelike [324, 326], which would be challenging anyway.

6.3 Scalar Pole Contributions

In principle, the scalar pole contributions to aHLBL
µ could be evaluated using the

master integrals derived in Ref. [394], which can be computed knowing the two
form factors that appear in the general decomposition of the <SVV> Green function.
These have been computed in RχT in Ref. [413], using the Lagrangian including the
interactions in Ref. [279]. Upon imposing short-distance QCD constraints, one form
factor depends on a single unknown coupling. The other one, however, depends
on seven different (combinations of) couplings. With current knowledge on this
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sector of the Lagrangian it is impossible to comply with all known high-energy QCD
constraints while keeping predictive power 5.

For completeness, we quote that in the WP2 [6], the contribution of the lightest
degrees of freedom in the scalar sector are split as

aS−waves
µ =−9.1(1.0)×10−11 , (6.16)

including the I = 0,1,2 ππ, K̄K,πη rescattering [48, 414, 57]. Therein, the dominant
I = 0 component can be understood as the f0(500) contribution, in terms of two-pion
states, within the dispersive framework.

6.4 Other Contributions

Approximately 2/3 of the whole aHLBL
µ is given by the low-energy contributions,

coming from the lightest pseudoscalar poles (Chap. 3) and boxes (Sec. 6.1), as well as
their rescattering contributions (Sec. 6.3), which are dominated by sub-GeV physics.
The remaining parts (including the lightest axial and tensor poles in Sec. 6.2 and
Chap. 5) can be classified according to the different energy regions probed.

It has become standard to divide the momentum space between the short-
distance regime (with all photon momenta in the HLBL with magnitude larger
than 1.5 GeV), the low-energy contributions (all with modulus smaller than this
quantity) and the mixed regime.

The pure short-distance (SD) region is very well-known, by applying repeatedly
the OPE to the electromagnetic currents in the HLBL tensor [303, 51, 55, 415, 416, 66],
yielding the result

aSD
µ =

(
6.2+0.2
−0.3

)
×10−11 . (6.17)

The contribution of the charm quark loop uses to be quoted separately,

ac−loop
µ = 3(1)×10−11 . (6.18)

In the NC → ∞ limit of QCD an infinite tower of mesons is predicted per set of
quantum numbers. Although contributions from the lightest states dominate aHLBL

µ ,
the effects of their excitations are sizable, and accounted for, e. g. within holographic
QCD [52, 53, 362, 59, 69] or Regge models [54]. The results used in the WP2 [6] for

5Ref. [394] used VMD form factors (violating QCD short-distance behaviour), to find a
a0+f0+f′0
µ =

(−3±2)×10−11.
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these regions are

aA,S′,T,...−low
µ = 12.5(5.9)×10−11 , amixed

µ = 15.9(1.7)×10−11 . (6.19)

We note that the former result agrees extremely well with the WP2 number for the
lightest axials and tensors, which also provides ∼ 86% of the quoted uncertainty.

6.5 Comparison with other approaches

The sum of the different contributions in Eqs. (3.63), (6.13), (6.16), (6.17), (6.18) and
(6.19), accounting for an additional uncertainty (of 5.0 units) in the matching of the
different regions, yields the WP2 number

aHLBL,WP2
µ = 103.3(8.8)×10−11 . (6.20)

Using the RχT results for the P-poles and -boxes and (more importantly) for the
tensors instead, according to Eqs. (3.63), (6.12) and (5.38) would yield

aHLBL,withRχT results
µ = 106.1(9.0)×10−11 , (6.21)

which is closer to the Lattice QCD number (based on Refs. [71–74]) in the WP2 [6]

aHLBL, lattice
µ = 122.5(9.0)×10−11 . (6.22)

6.6 Conclusions and outlook

We have reviewed the foundations of RχT and its use in computing hadronic light-
by-light contributions to aµ , which benefit from measurements of the relevant form
factors, whose prospects for improvement have been underlined. RχT obtains very
competitive results for the lightest pseudoscalar pole and box. Notably, for the
tensor pole contributions, it favors the holographic results, which would require
shifting the WP2 number for this contribution. This would imply closer agreement
with the lattice aHLBL

µ result.
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Conclusions and Perspectives

Conclusions

This thesis, titled Study of Hadronic Form Factors: essential inputs for the Hadronic
Light-by-Light piece of muon’s g− 2, contains 3 completely original articles, 1 short
review, 1 collaboration report, and 1 work in progress in its final stages. During the
elaboration of this work, I worked with different hadronic form factors: Transition
Form Factor of the Pseudoscalar Mesons FP→γ∗γ∗ , Dirac form factor of the proton
F p

1 , Transition Form Factor of the Tensor Mesons FT→γ∗γ∗ , Electromagnetic form
factor of the Pseudoscalar mesons FP

V and the Scalar and Vector Form Factors of
two Pseudoscalar mesons: Fππ

V,S , FKπ
V,S . In these works, dispersive representations,

experimental and LQCD calculation parametrizations, Canterbury Approximants,
and Resonance Chiral Theory were used to describe the form factors, leading to a
rich set of techniques that adapt to the necessities of each problem. Also, the limits
of a model can be quantified by means of (the) others, which allowed us to do a
rigorous and systematic assessment of the theory errors induced by the limitations
of each technique.

For our first project, we described the transition form factors of the pseudoscalar
mesons P→ γ∗γ∗ using Resonance Chiral Theory with two vector meson resonance
multiplets and a multiplet of pseudoscalar resonances, in addition to the lightest
pseudoscalar nonet, at order m2

P in chiral symmetry breaking and leading order in
1/NC. In this framework, we imposed the Brodsky-Lepage limit together with the
symmetric double virtual asymptotic limit (SDCs). The parameters not fixed by
symmetries or SDCs were fitted to the available data: the single virtual data of the π0,
η , η ′ mesons, the double virtual data for η ′, LQCD points for π0, η , η ′, the radiative
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decay widths as well as ρ mass and η−η ′ mixing parameters as stabilization points
in a global analysis. The resulting form factors, with a reasonable computation
of statistical errors, were used to calculate the pseudoscalar pole contributions to

the HLbL piece of aµ (in units of 10−11): aπ0-pole
µ = 61.9± 0.6+2.4

−1.5, aη-pole
µ = 15.2±

0.5+1.1
−0.8 and aη ′-pole

µ = 14.2±0.7+1.4
−0.9, for a total of aπ0+η+η ′-pole

µ = 91.3±1.0+3.0
−1.9, where

the first error is statistical and the second one is systematic. These results are in
agreement with other determinations, with the innovative use of the double virtual
data for η ′ from BaBar [335] and the combination of experimental data and LQCD
calculations (so-called hybrid approach), with competing uncertainties. This result
was recognized as essential input for the SM contribution of aµ in the second White
Paper [6] of the Theory Initiative.

For our second project, we studied the proton-box contributions to the HLbL
piece of aµ in the reduced scenario where only the Dirac form factor was taken
into account, due to the suppression of the Pauli form factor. In this case, we used
the form factors parametrizations of experimental data [379] and LQCD calcula-
tions [380] that fulfill the sum-rules imposed by QCD at high energies. The results for
this contribution were 1.82(7)×10−12 (Data-Driven) and 2.38(16)×10−12 (LQCD),
being one order of magnitude below the current error of the total HLbL piece. How-
ever, they are the first baryonic contribution to this process and might be relevant
in the future. We note that LQCD still acknowledges room for improvement in
the calculation of this form factor, that is currently more accurate (including all
systematic uncertainties) in a data-driven way.

In our third project, we constructed the transition form factors of the tensor
mesons within RχT . In contrast with the only form factor appearing in the pseu-
doscalar case, the rich structure of the propagator and vertices of the tensor mesons
results in 5 possible tensor structures and their corresponding form factors. Besides,
the scarce data make it difficult to think in a global fit of the scale of the pseudoscalar
mesons (data quantity and quality). The best possible framework currently is that
of two vector meson multiplets of resonances in the chiral limit. This allowed us to
impose some of the SDCs (computing systematic errors for the ones we could not
fulfill) and the normalization of the form factors. We worked in two scenarios, the
first one neglecting operators with additional derivatives –by assumption– which
generated F T

1 only, and the second one with an ad-hoc extension considering the
operators with additional derivatives that generate F T

3 only. With these two sets
of operators, we constructed the transition form factors that reproduce the results
of the quark model and the hard-wall model of holographic QCD. The lack of data



137

in the doubly virtual sector made it impossible to obtain the normalization of F T
3 .

We performed a reasonable ballpark estimate of this normalization within RχT . Our
results were (in units of 10−11):

• with F T
1 only: aa2−pole

µ =−
(
1.02(10)stat(

+0.00
−0.12)syst

)
, af2−pole

µ =−
(
3.2(3)stat(

+0.0
−0.4)syst

)
and af′2−pole

µ =−(0.042(13)stat) , which add up to aa2+ f2+ f ′2−pole
µ =−

(
4.3+0.3
−0.5

)
.

• with F T
1 and F T

3 : aa2−pole
µ =+0.47(1.43)norm(3)stat(

+0.06
−0.00)syst, af2−pole

µ =+1.18(4.18)norm

(12)stat(
+0.24
−0.00)syst and af′2−pole

µ =+0.040(78)norm(2)stat, summing to aa2+ f2+ f ′2−pole
µ =

+1.7(4.4).

Previous uncertainties are dominated by the lack of knowledge of F T
3 (0,0). These

results help to explain why there is an urgent need to measure doubly virtual data in
the transition of a tensor meson to two photons. Finally, as an extension of this work,
we have studied the consistent full set of operators with two additional derivatives,
showing that all 5 form factors appear in RχT. A toy fit showed that at least F T

2 is
non-zero and that F T

4,5 is not sensitive to the existing data. The evidence of new
form factors different than the ones considered so far calls for a new basis in the
Master Formula, since within the current basis, the contribution to aHLbL

µ can only be
evaluated in the case with nonvanishing F T

1 and F T
3 .

These results contributed to the improvement of the Theory Initiative computa-
tion of the HLbL piece of aµ , reducing the uncertainty from 19×10−11 to 8.8×19−11.
Our main contributions were: the reduction of errors, the implementation of new
data, the first hybrid analysis in the HLbL, the computation of new contributions,
and the understanding of tensions between different groups. We have advanced
significantly towards an RχT evaluation on the HLbL piece of g−2 as it can be seen
in Table 7.1.

Beyond form factors, we studied non-standard interactions in τ hadronic decays,
where all possible structures were considered, and only the tensor ones are not
absorbed in the standard parameters (for the measurable quantities considered here).
We defined clean angular observables for which direct data input can be used to test
the tensor contributions due to form factor cancellation. In the ππ channel, this can
be done directly due to the absence of a sizable scalar form factor. For the Kπ channel,
|FS(s)|2
|FV (s)|2

–computed in Resonance Chiral Theory, and dispersive representations– was
used as an expansion parameter to include small corrections. This is a work in
progress which will be published soon.

I can conclude that my journey into hadronic form factors to perform tests within
and beyond the Standard Model was successful, and allowed me to discover a set
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Dispersive CA RχT hQCD DSE/BSE

π0-pole 63.0+2.7
−2.1 63.6(2.7) 61.3+2.5

−1.6 63.4(2.7) 62.6(1.3)
η-pole 14.7(9) 16.3(1.4) 15.2+1.2

−0.9 17.6(1.7) 15.8(1.1)
η ′-pole 13.5(7) 14.5(1.9) 14.2+1.6

−1.1 14.9(2.0) 13.3(8)
π0-box −15.9(2) - −15.8(3) - −15.6(4)
K-box −0.484(11) - −0.51(3) - −0.48(6)

A = f1, f ′1,a1 12.2(4.3) - 0.8+4.1
−0.8 13.1(1.5) 8.6(2.6)

S = f0(1370),a0(1450) -0.7(4) - - - -0.8(3)
T = f2, f ′2,a2 -2.5(8) - +1.7(4.4) 3.2(6) 2.8 (6)

Table 7.1 Comparison between the main approaches to the individual contributions
to the HLbL piece of g− 2. The dispersive results were taken from refs. [292, 49,
363, 68, 48, 58, 67], the CA results from ref. [47], the RχT results were taken from
[301, 302, 62, 123, 54, 399, 122] –original results from this thesis in blue–, the hQCD
results were taken from refs. [59, 377, 69, 417] and the DSE/BSE results were taken
from the two independent groups [50, 403–405, 65].

of techniques and theoretical foundations to continue my career in particle physics
phenomenology while making significant original contributions to the scientific
community. I feel pleased with my PhD experience at Cinvestav and look forward
to new projects.

Future Work

In all projects, we did the best we could with the available data and the current
theoretical tools; however, many of the studies can be updated or improved, as
it is inherent in science. Some of the projects I plan for the future with different
colleagues include continuations of these works, others are ideas we discussed, but
time is finite, so we could not carry them out during the PhD. I plan to continue
working on tests of the Standard Model with concrete goals:
• Tests within the Standard Model

- To describe the transition of tensor mesons into two photons (a2, f2, f ′2→ γ∗γ∗)
within RχT and to modify the tensor HLbL basis to account for the tensor pole
contributions to the aµ consistently with the rest of the HLbL piece.

Currently, the available descriptions of this process are simplified cases due
to the impossibility of evaluating the aµ contribution in the most general
case, as non-physical divergences are induced by imposing gauge invariance.
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A description within RχT can make use of the chiral symmetry of QCD to
maximize the utility of available experimental information. The modification
of the HLbL tensor basis is required to account for the general case. I aim
to achieve the correct modification during this study. Currently, there are
differences in the signs of the determinations of the tensor pole contributions
to aµ due to different simplifications applied. This study can solve this tension
by considering a scenario where all previous studies are contained and can be
recovered, as limiting cases.

This would also allow us to decompose the HLbL tensor in the appropriate ba-
sis to evaluate the baryonic-box contributions. At present, only the proton-box
contribution has been computed, due to the suppression of the dipolar form
factor, which simplifies the calculation. However, if this general decomposi-
tion is performed in the new basis, all baryons can be accounted for, which is
also a research plan for the future. Noting the importance of baryon states in
the large-NC limit of QCD, this can be impactful considering the fulfilment of
short-distance constraints on the full four-point HLbL tensor with an on-shell
external photon, corresponding to the aµ case.

- To use the longitudinal constraints on the HLbL tensor to describe the transition
form factors of the pseudoscalar excited states within RχT and evaluate their
contributions to aHLbL

µ . There is no experimental information available for these
processes, for which constraints from low-energy and high-energy QCD must
be imposed to obtain reasonable descriptions for these form factors. Specifically,
the missing piece of the high-energy constraints on the longitudinal part of the
HLbL tensor can be saturated by these particles (together with improved input
from other sectors, as noted in the previous items).

- Given the experience we have gained on computing uncertainties for hadron
processes in the muon’s g−2 theory initiative collaboration, it is reasonable
to organize an international workshop focused on improving uncertainties in
hadron processes.

• Beyond the Standard Model probes

- To study possible deviations from the lepton decays l→ l′νν̄ which cannot be
easily distinguished from the standard case experimentally. This will result
in generalized Michel parameters [418], which could be probed in particle
colliders.
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- To study relevant η and η ′ processes to ongoing experiments as JLab η Fac-
tory and future ones as REDTOP [419]. It is possible to establish limits to
the hypothetical dark scalar which violates isospin [420] and mediates the
processes η(′)→ πγγ [421]. Also, the tensor contributions to similar processes
η(′)→ πl+l− can be probed [422]. Furthermore, the availability of CP-violating
processes as η(′) → πµ+µ− [423] can be updated within the framework of
SMEFT and the expected statistics of the REDTOP experiment. Finally, it is
possible to update the limits on the hypothetical leptophobic boson which
mediates η(′) → π0γγ , considering tensor exchanges and the recent data of
KLOE [424].

Hopefully, I can work on all these projects during the two years of a post-doc,
but we will see how long it takes to complete all these goals. In any case, there is
still a lot of fascinating physics to work on!
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A
Guide for useful computational tools

One of the main tools we acquired during the realization of a PhD are the computa-
tional ones. Here I summarize and briefly describe the 3 most important ones that I
used for this thesis, all implemented in Python.

All these 3 computational tools together with Wolfram Mathematica result in
a powerful combination to perform numerical evaluations and error analysis in
physics.

Optimization tools: iMinuit, Minuit for Python

The CERN-developed optimizer, Minuit, has been used for decades by particle
physicists in different programming languages. In this thesis, I have used its imple-
mentation in Python, iMinuit [425].
To use it as an optimizer, a requirement is a cost function that depends on the pa-
rameters to be fitted. Furthermore, initial values for them are required. Common
cost functions are included, but arbitrary cost functions can be defined, as long as
they have the fitted parameters as arguments and return a real value.
To declare an optimization object based on the cost function cost with initial parame-
ters a0, b0, ..., we require the following code:

m = Minuit ( cost , a=a_0 , b=b_0 , . . . )

Then, limits on the parameter values, or even if they are fixed, can be given to the
object once it is declared. After that, different optimization processes can be done to
the object m: scan, simplex, gradient, migrad and minos. The last two are the most
important, as migrad is the most accurate optimizing procedure and minos computes
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errors on the optimal parameters and the covariance matrix. It is important to
mention the main outputs of the procedure: the fitted parameters (with quality
tests), confidence intervals, and the covariance matrix. These outputs are required
for later propagation of uncertainties.
It is recommended to use it in a Jupyter Notebook to maximize its benefits.

Numerical Integrations: VEGAS

For multidimensional numerical integration, the VEGAS integrator [125] has been
used for a long time.
It requires defining an integrand 1, together with the variables to be integrated and
their limits. First, the integrator must be set by the code:

i n t e g r a l = vegas . I n t e g r a t o r ( [ [ a_0 , a_f ] , [ b_0 , b_f ] , [ c_0 , c _ f ] , . . . ] , nproc =1)

where a,b,c, ... are the integrated variables and nproc is the number of processors to
be used. Then, the integration can be performed for an integrand in terms of the
integrated variables and other variables as well:
r e s u l t = i n t e g r a l ( lambda vars : integrand ( vars , params_1 , params_2 , . . . ) , n i tn =10 , neval =10000)

where vars is an array of the integrated variables, and params_i are the parameters
of the integrator which are not integrated out. These parameters are the ones that
can be used to compute a numerical propagation of errors. nitn is the number of
computations of the integral, and neval is the number of evaluations per computation.

Numerical propagation of errors: the Jacobi library

The propagation of errors can be easy sometimes; however, when your parameters
(with uncertainties and correlations) are input for integrals of very complicated
expressions, a numerical tool for propagating errors can become handy. I have used
during this thesis the Jacobi Library [426], which –for the skeptical– is from one of
the developers of iMinuit [425].
The required inputs for performing an error propagation are: a function of the
parameters, the central value of the parameters and the covariance matrix between
them:

1It is desirable to define the integrand with the fitted parameters as arguments, since it makes
possible a numerical propagation of errors.
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cent ra l_va lue , covar iance=propagate ( lambda p : funct ion ( * p ) , params , cov )
e r r o r =np . s q r t ( covar iance )

The output is the central value of the function and the covariance of the point, which
can be used to compute the error. This last step seems pointless for a single value;
however, this can be used for a function of some variable(s) x with some parameters
with errors. Then the code for the propagator becomes:

cent ra l_va lue , covar iance=propagate ( lambda p : funct ion ( * p , x ) , params , cov )
e r r o r =np . s q r t ( covar iance )

and the output is a list of central values for all values of the array x and the covari-
ance matrix of the points in the array.
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B
Beyond Form Factors: Precise Angular Tests
in Hadronic τ Decays

τ−

ντ
ha

dr
on

s

W
u

D

Fig. B.1 Feynman diagram sketching the hadronic decay of the τ .

Semileptonic tau decays [427–429] offer an ideal probe of hadronization (See
Figure B.1) in the GeV region thanks to the clean environment provided by the lepton
decay. In this sense, the tau is privileged, since it is the only lepton able to decay
this way, thanks to its mass, Mτ ∼ 1.8 GeV. This allows to study the properties of
the exchanged resonances mediating these processes and also –provided we control
well enough the hadron input in the SM and radiative corrections– to constrain
possible new physics contributions. In this chapter we explore the possibility to set
these limits quite independently of form factor information for conveniently defined
observables.

Tau decays can be well understood from the effective field theory perspective
given by the Fermi-type Lagrangians, with (D = d,s for these semileptonic processes)

L =−GFVuD√
2

[ν̄τ,Lγ
µ

τL]
[
D̄LγµuL

]
+h.c. (B.1)
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From this Lagrangian, it is straightforward to write the matrix element for the τ

decays under study
M =−

√
2GFV ∗uDLµHµ , (B.2)

where the lepton current is
Lµ = ūντ ,LγµτL , (B.3)

and the hadron vector is
Hµ = 2⟨H−|ūLγ

µDL|0⟩ . (B.4)

For unpolarized taus, averaging over the decaying tau polarizations and summing
over that of the neutrino yields (ε0123 ≡+1)

|M |2 = 2G2
F |VuD|2(pα

τ pβ

ντ
+ pα

ντ
pβ

τ − pτ · pντ
gαβ − iεαβγδ pτ,γ pντ ,δ )H

†
β

Hα . (B.5)

It is useful to introduce the virtual W momentum, q = pτ − pντ
,q2 = s, which cor-

responds to the momentum of the hadron system. Using it, we can decompose
the hadron tensor Hαβ (q)≡ H†

β
Hα in terms of its longitudinal (L) and transverse (T )

components as

Hαβ (q) = (−gαβ q2 +qαqβ )HT (s)+qαqβ HL(s) . (B.6)

These can be obtained by applying the respective projectors to Hαβ (q) ( −gαβ q2 +

qαqβ and qαqβ respectively). This allows us to write a very compact expression for
the differential decay width in the unpolarized case

dΓ

ds
=

M3
τ

16π
G2

F |VuD|2
(

1− s
M2

τ

)2[
HL +HT

(
1+

2s
M2

τ

)]
. (B.7)

In the following sections, we will discuss the relevant one- and two-meson tau decay
channels (in this case we will present the general distributions, including angular
information, that are obtained). We will also comment on the inclusive case and then
consider the original application of the WEFT for the two-hadron case, minimizing
the dependence on form factor information.

B.1 Weak Effective Field Theory

Besides the tests within the SM mentioned in Chapter 1, there are tests of physics that
are not contained in our framework; however, they can be studied as its extensions,
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because it describes most of the physics we can observe in experiments. The possible
expansions are of many kinds, for example: proposals of phenomenology associated
with hypothetical light weakly-coupled particles, parametrizations of plausible new
interactions with the SM particles, and the SM as an Effective Field Theory (the last
two can generally parametrize effects induced by heavy new stuff).

Within these extensions, of our particular interest is the study of semileptonic
processes beyond the standard model[430] in a model-independent way. Specifically,
the hadronic τ decays and the constriction of the parameters of the Weak Effective
Field Theory (WEFT) for τ → ντPP′. For these processes, by integrating out the
Higgs, SM weak bosons, and heavy quarks, we can construct local terms involving
only light (active in tau decays) fields, containing the τ lepton, its neutrino, and the
u,D (D = d,s) quarks. However, if we consider all possible particles beyond the SM
mediators, we can write in the same fashion the most general Lagrangian with these
degrees of freedom integrated out [429]:

Leff =−
GµVuD√

2

[
(1+ ε

Dτ

L )τ̄γµ(1− γ5)ντ ūγ
µ(1− γ5)D+ ε

Dτ
R τ̄γµ(1− γ5)ντ ūγ

µ(1+ γ5)D

+ τ(1− γ5)ντ ū(εDτ
S − ε

Dτ
P γ5)D+

1
4

ε̂
Dτ
T τ̄σµν(1− γ5)ντ ūσ

µν(1− γ5)D
]
+h.c., (B.8)

where the εDτ
Γ

contains the possible new physics. In the SM case all these coefficients
vanish and Gµ = GF . These new physics effects should not be searched for in
suppressed decays, but instead in observables in which there is very good control
of the SM contribution, in order to obtain a beyond percent level of precision in the
SM piece and consequently, clean probes of these parameters. Alternatively, one can
search for processes where the SM piece is suppressed, and the BSM piece is not. For
this thesis, we worked with clean angular observables (minimizing the dependence
on hadron input) in the τ → ντKπ decays (both K̄0π− and K−π0 are considered) as
we detail next.

B.2 One Hadron Modes

The theoretically easiest semileptonic tau decays only have a meson, either a charged
pion or Kaon, in the final state. The one-pion(Kaon) decay has a branching ratio of
∼ 10.8(0.70)%. Their corresponding hadron matrix element defines the meson decay
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constant, fP=π,K

Hµ = 2⟨P−(p)|D̄Lγ
µuL|0⟩=−i

√
2 fP pµ , (B.9)

with fπ = 92.1(0.8) MeV and fK = 110.1(0.2) MeV [217]. We note that due to parity
conservation of the strong interactions 1, only the axial current contributes to eq. (B.9).
In this case, energy-momentum conservation forces Hαβ to be proportional to qαqβ ,
that is, fully longitudinal. The full decay width is explicitly obtained as

Γ(τ → P−ντ) =
M3

τ

16π
G2

F |VuD|2 f 2
P

(
1− m2

P
M2

τ

)2

. (B.10)

Virtual radiative corrections to these decays have recently been improved, working
with RχT [319, 320], completing the work done for real radiation [318, 431, 432].
Writing them as

Γ(τ → P−ντ [γ]) = Γ(τ → P−ντ)
0(1+δτP) , (B.11)

where 0 denotes the Born result and the LHS is inclusive in photons, it is found [319,
320]

δτπ = (−0.24±0.56)% , δτK = (−0.15±0.57)%, (B.12)

where the uncertainties are saturated by the counterterms scale-dependence.

B.3 Two Hadron Modes

In this case, the hadron matrix element reads (s = q2 = (p1 + p2)
2)

⟨P−1 P0
2 |D̄γ

µu|0⟩=CP1P2

{[
(p1− p2)

µ − ∆P1P2

s
qµ

]
FP1P2

V (s)+qµFP1P2
S (s)

}
, (B.13)

where FP1P2
V (0) = 1 at leading order in the chiral expansion and Cπ−π0 =

√
2 (the

others can be derived from flavor symmetry). Using the Dirac equation it is easily
seen that

FS(s) =
mD−mu

s
⟨P−1 P0

2 |D̄u|0⟩ , (B.14)

relating the scalar form factor to the matrix element of the scalar density.
Radiative corrections to the tree-level results are available, including the model-

independent part and the real structure-dependent part evaluated within RχT (the
virtual one is still missing) [433, 434, 90, 396].

1The axial anomaly starts contributing to processes with three mesons, or equivalent.
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B.3.1 General Distributions

The most general doubly differential distributions in the hadron system invariant
mass squared, s, and in the angle between the tau and the charged meson in the tau
rest frame, α [435] is given by

dΓ

dsdcosα
=

G2
F |VuD|2M3

τ

512π3 λ
1/2
(

1,
m2

1
s
,
m2

2
s

)
Shad

EW|CP1P2 |
2
(

1− s
M2

τ

)2

×
[
P0(s)+P1(s)cosα +P2(s)cos2

α
]
, (B.15)

with [436]

P0(s) = |FS(s)|2 + |FV (s)|2λ

(
1,

m2
1

s
,
m2

2
s

)
s

M2
τ

, P1(s) =−2Re[FV (s)∗FS(s)]λ 1/2
(

1,
m2

1
s
,
m2

2
s

)
,

P2(s) = |FV (s)|2λ

(
1,

m2
1

s
,
m2

2
s

)(
1− s

M2
τ

)
, (B.16)

being λ the Källen function, λ (a,b,c) = a2 +b2 + c2−2(ab+ac+bc) [393].
In the previous equation, the factor SEW resums the universal short-distance

electroweak corrections for semileptonic tau decays [437–439], Shad
EW ∼ 1.02 Its angular

integration trivially gives the invariant mass distribution

dΓ

ds
=

G2
F |VuD|2M3

τ

768π3 λ
1/2(s,m2

1,m
2
2)S

had
EW|CP1P2|

2
(

1− s
M2

τ

)2

×
[

3|FS(s)|2 + |FV (s)|2λ

(
1,

m2
1

s
,
m2

2
s

)(
1+

2s
M2

τ

)]
. (B.17)

B.3.2 The ππ channel

Basically, one out of four tau leptons decay into the di-pion mode, which has the
largest branching ratio. Due to parity, in the SM it can only be produced via the vector
current and the scalar contribution is negligible, as it is suppressed by (md −mu).
Besides, the scalar density matrix element is forbidden in the very approximate
limit of G-parity symmetry. Therefore, to an excellent approximation, it suffices to
consider the pion vector form factor

⟨π−π
0|d̄γ

µu|0⟩ ≈
√

2(p−− p0)
µFπ−π0

V (s) (B.18)
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to fully characterize hadronization in this process. Correspondingly simplified
expressions for this decay mode can be obtained trivially from the results in the two
previous subsections.

As it was mentioned in the introductory chapter, an isospin rotation relates this
charged form factor (probed in weak processes, like the tau decay) to the neutral
form factor, which is accessed electromagnetically (and also from the neutral weak
current, mediated by a Z0) 2

1
2
⟨π+

π
−|ūγ

µu− d̄γ
µd|0⟩= Fπ+π−

V (s)(p+− p−)µ . (B.19)

We recapitulate known properties of this form factor in the following:

• limQ2→∞ FV (Q2 = −s) = 16F2
π αS(Q2)
Q2 , the Brodsky-Lepage limit [312], obtained

from the leading order behaviour in QCD for electromagnetic meson form
factors, using the asymptotic results for the corresponding distribution ampli-
tudes.

• FV (s) is analytic in the whole complex plane except for a cut starting at the
two-pion threshold, s = 4m2

π . Consequently, one can write dispersion relations
for this object 3 using 1

s′n(s′−s−iε) , where n represents the number of subtractions
(one sets FV (0) = 1 according to vector current conservation). Each additional
subtractions increases the weight of the low-energy region and reduces that of
the asymptotic regime, where short-distance QCD constraints become easier
to fulfill. However, each of them brings an additional uncertainty through a
new subtraction constant, not fixed by symmetry requirements -unlike the first
one-. Therefore, n shall be kept as low as possible to increase predictability.

• The elastic region is defined as the one where no other states than 2π are
possible. Neglecting the very small electromagnetic effect, the first inelastic
contribution is 4π . This, and higher multiplicity pion states are large-NC sup-
pressed as intermediate states (higher order in the loop expansion), which
explains why the onset of Kaon anti-Kaon contributions is really the one which
starts introducing sizable inelastic effects. In the elastic region, unitarity of the
S-matrix relates the imaginary part of the pion form factor to the ππ (isovector

2G-parity suppresses the isoscalar part, so only the isovector one was considered.
3One way of expressing it corresponds to the fact that the full form factor can be reconstructed

from the knowledge of its phase at all energies. A famous realization of this idea corresponds to the
Omnès representation [440], where it is obtained as an exponential of a dispersion integral of the
scattering phase, which is exact in the elastic region.



B.3 Two Hadron Modes 151

and spin vector) scattering amplitude. Explicitly, (σπ(s) =
√

1− 4m2
π

s )

ImFV (s) = σπ(s)FV (s)T 1
1 (s) , (B.20)

which shows that the form factor and scattering phase are identical in the
elastic region.

• Its low-energy behaviour is determined from the results obtained within χPT .
In the isospin limit, at next-to-leading order, one has

FV (s) = 1+
2Lr

9(µ)

f 2
π

s− s
96π2 f 2

π

[
Aπ(s,µ2)+

1
2

AK(s,µ2)

]
, (B.21)

in terms of the renormalized LEC Lr
9(µ

2) and the loop function [246]

AP(s,µ2) = log
(

m2
P

µ2

)
+

8m2
P

s
− 5

3
+σ

3
P(s) log

σP(s)+1
σP(s)−1

. (B.22)

As it must be, the dependence on the renormalization scale µ cancels between
the LEC and the loop function.

• RχT can provide a useful input phase for the dispersion relation, which -in the
NC → ∞ limit- would include a sum over an infinite number of ρ-like states.
The results for the lightest state exemplify how RχT resums an infinite tower
of interactions in χPT . Procedures based on this result include up to two
ρ excitations [372, 400, 441, 442, 401, 402]. These were mostly interested in
improving the description of hadronization and in determining resonance
properties, most notably their pole positions. New physics analyses, using this
input have also been performed in refs. [443, 444, 444].

The most precise branching fraction measurement of di-pion tau decays still comes
from ALEPH [117] and the most accurate spectrum was measured by Belle [120].
Other measurements were obtained by CLEO [118] and OPAL [119]. It is expected
that Belle-II [445] will improve on these results soon.

According to ref. [402], τ−→ KSK−ντ BaBar data [446] (which can be related to
the ππ case under SU(3) flavor symmetry) show indications of violations of this
symmetry 4. In the advent of more precise data, separate descriptions of the π±π0

and K±KS vector form factors will need to be used. Since the phase space for the

4The scalar form factor is similarly suppressed in the KK̄ case, as with ππ .
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KK̄ channel is completely in the inelastic regime of ππ , the vector and tensor form
factors do not coincide, leaving more space for new physics contributions [447, 436].

The other non-strange two-meson tau decays, τ−→ η(′)π−ντ , are suppressed by
G-parity [448–452], and have not been measured yet, with branching ratio upper
limits on the ballpark of 10−4,5 [453, 454], which are one or two orders of magnitude
larger than the theory predictions. In these processes, radiative corrections which
are suppressed by α but not by G-parity may compete with the Born contributions,
making an accurate SM prediction even more challenging [455–457]. It is also
worth to note that a good control on backgrounds, particularly the allowed decays
including an additional π0 [323], needs to be achieved; while the Belle measurement
of the ηπ−π0 channel [458] is in tension with e+e− measurements [459] and with
known pion vector precise data [458]. With these caveats in mind, possible new
physics effects are large [460] and Belle-II has this search as one of its priorities [445].

B.3.3 The Kπ channel

For the π−K̄0 and K−π0 channels (∼ 1% and ∼ 0.5% BR respectively), we can have a
non-zero FS(s), which is still suppressed with respect to the FV (s) for most values of
s. Still, it is relevant near the threshold, and the FFs ratio can be used in the rest of
the domain as an expansion parameter for the observables we aim to describe. At
leading order in χPT, we get CπK = 1√

2
[427] 5.

The form factors can be obtained from different sources, one of them is directly
from the Belle spectrum of the τ → KSπ−ντ decays [461–465] and the other one is
the Kℓ3 decays [466, 467, 463, 464], also phaseshift measurements help to describe
them [468] and others are computed from Resonance Chiral theory (which can also
be used to give input phaseshift to the dispersive representation) [469–472, 396].

For the vector form factor, there is no significant variation between form factors
due to the abundance of data in the τ → KSπ−ντ decays from Belle [473] and the
high sensitivity to this form factor in particular. This information can be extracted
by means of the differential decay width:

dΓKπ

d
√

s
=

G2
F |Vus|2m3

τ

96π3s
SEW

(
1− s

m2
τ

)[(
1+2

s
m2

τ

)
q3

Kπ |FKπ
V (s)|2 +

3∆2
Kπ

4s
qKπ |FKπ

S |2
]
,

(B.23)
where isospin invariance is assumed, and a sum over K̄0π− and K−π0 channels
was performed. SEW ∼ 1.02 is the universal short-distance electroweak correction

5It is a convention that the first pseudoscalar P1 is the charged one.
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factor [437–439], ∆Kπ = m2
K−m2

π and qKπ is defined as:

qKπ =
2

2
√

s

√(
s− (m2

k +m2
π)
)(

s− (m2
k−m2

π)
)
·θ
(

s− (m2
k +m2

π)
)
. (B.24)

In this work, we have taken the description from [465] due to the availability of
the correlation matrix for the fitted parameters, which will be used for the numerical
error propagation. For this form factor, an RχT with two vector meson resonances
phaseshift seed was used, given by the normalized form factor [462]:

F̃Kπ
V (s) =

mK∗−κk∗H̃Kπ(0)+ γs
D(mK∗,γK∗)

− γs
D(mK∗′,γK∗′)

, (B.25)

where
D(mn,γn) = m2

n− s−κnH̃Kπ(s), (B.26)

and
κn =

192π

σKπ(m2
n)

3
γn

mn
, (B.27)

with σKπ = 2qKπ/
√

s. All masses and γns are fit parameters (which can be related
to pole parameters, as done in the quoted references). Finally, the scalar one loop
function H̃Kπ(s) is the isospin average of the two channels:

H̃Kπ(s) =
2
3

H̃K0π−(s)+
1
3

H̃K−π0(s), (B.28)

with this function being defined as [474, 471] H̃(s) = H(s)−2Lr
9s/(3F2

π ) = [sMr(s)−
L(s)]/F2

π , however removing the F2
π because of the definition of κn in terms of γn.

The functions Mr and L(s) are defined in [474] and can be checked in the code of
Appendix A in ref. [469].

As in the ππ vector form factor, the Kπ one can be described by an Omnès
representation with an RχT phaseshift seed given by:

tanδ
Kπ
1 (s) =

ImF̃Kπ
V (s)

ReF̃Kπ
V (s)

, (B.29)

the dispersion relation is three times subtracted, meaning:

F̃Kπ
V (s) = exp

[
α1

s
m2

π

+
1
2

α2
s2

m4
π

+
s3

π

∫ scut

sKπ

ds′
δ Kπ

1 (s′)
(s′)3(s′− s− i0)

]
, (B.30)
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where the αi are fit parameters too. With this, the vector form factor is described
accurately enough to match present data. Results of this description, which also
includes the τ → K−ηντ channel, are found in Figure B.2.

Fig. B.2 Belle τ→KSπ−ντ (red solid circles) [473] and τ→K−ηντ (green solid squares)
[458] measurements as compared to the best fit in Ref. [465] (solid black and blue
lines, respectively) obtained in combined fits to both data sets. The dashed lines
correspond to the scalar form factor contributions, and the empty circles and squares
are the data not used in the analysis.

For the scalar form factor, we have considered three sources [466, 468, 463], with
the main differences described in Table B.1 and the results shown in Figure B.3. We
considered all models with an error band that includes all of them, accounting for
their respective uncertainties. The normalization of the form factors was taken from
the FLAG collaboration in the N f = 2+1+1 and N f = 2+1 cases [475].

For our central curve, we have considered Refs. [463] and [466]. Since the study
in [463] is restricted to the elastic region, a smooth transition from this solution to
the solution of [466] can be done in the [1.3−1.4] GeV region, according to estimated
inelastic effects, as it is shown in Figure B.3. The relation between both form factors
for the matching is done by means of:

FKπ
S (s) = FJOP

S (s)TF(s,+)+FBBP
S (s)TF(s,−), (B.31)
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Fig. B.3 All considered models for Kπ SFF. The central value is a continuation from
Ref.[463] in the elastic region to [466] in the inelastic region. An error band that
includes all curves with errors (variations of the parameters that determine de
curves) will be considered for our error computation.

where the function TF(s,±) is the one that defines the transition:

TF(s,±) =
1
π

(
arctan

(
±

s− (s f + s0)/2
a(s f − s0)

)
+

π

2

)
, (B.32)

and a is the factor that defines how smooth or strong the transition between s0 and
s f is. For our case, we have chosen a = 0.15, s0 = 1.2GeVand s f = 1.4GeV.

Model Obtained from τ data Source s Domain
Dispersive representation [463] lnC = ln

(
f̄0(∆Kπ)

)
and λ ′0 are fitted to τ data. data points [0,3.2]GeV2

Bernard, Boito, Passemar Provided by the authors
Dispersive Representation, LDC and SDC [466] No, taken from S-wave Kπ scattering Data Points Inelastic case included

Jamin, Oller, Pich Provided by the authors
Dispersive representation coupled Form Factors [468] No, but validated by τ data code Inelastic case included

Moussallam provided by the author

Table B.1 Scalar Form Factors FKπ
S from different models.

Interest in these decays grew thanks to the anomalous BaBar measurement of
the CP asymmetry in τ → KSπντ decays [476]. Effective field theory methods have
shown that barring extreme fine-tuning, this result cannot be explained by heavy
new physics [477–479] coming from an antisymmetric tensor current. Belle(-II) [445]
are working on these and related decays (including an additional π0, or with a
K± instead of the π±) to confirm or refute this unexpected result. In the double
differential distribution including angular information, BSM effects in the scalar form
factor can also pop up, which are being searched as well for by these experiments. It
is in this context (particularly for the latter analyses) where we hope this work to be
useful.

Kη(′) tau decays were addressed, using a similar framework, in refs. [480, 465].
The corresponding vector form factors can be obtained from the Kπ one, and their
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scalar form factors enter the three coupled channels solutions discussed previously.
We note that for ideal η−η ′ meson mixing, the Kη scalar form factor vanishes at
leading order in the chiral expansion, which results in its considerable suppression.
This is the reason why the two coupled channel solution where it is effectively
neglected is a good approximation to the K(π,η ′) cases. Therefore, the BaBar mea-
surement of the Kη mode [453] only tests the vector form factor, while there is only
an upper limit at the level of 10−6 for the Kη ′ decays, obtained by BaBar [454].

B.4 WEFT for Two Hadron modes

When considering integrating out all possible BSM degrees of freedom (and the
SM particles which are inaccessible in tau decays), we end up with the effective
Lagrangian in eq.(B.8), which will induce other contributions to the amplitude,
which will benefit from the following parametrizations:

H = ⟨PP′|D̄u|0⟩=CPP′
∆PP′

mD−mu
FPP′

S (s),

Hµ = ⟨PP′|D̄γ
µu|0⟩=CPP′

[(
p−− p0−

∆PP′

s
q
)µ

FPP′
V (s)+qµ ∆PP′

s
FPP′

S (s)
]
,

Hµν = ⟨PP′|D̄σ
µνu|0⟩=− iFPP′

T (pµ

−pν
0 − pν

−pµ

0 ). (B.33)

For unpolarized taus, in the isospin limit, we found for the di-pion tau decays:

dΓ

dsdcosθ
=

m3
τ

512π3 G2
µ |Vud|2C2

ππSEWλ
1/2
ππ

(
1− s

m2
τ

)2
[

λππs
mτCππ

Re
(

ε̂
d
T Fππ

V Fππ∗
T

)
+
[
1+2Re

(
ed

L + ed
R

)]
λππ

[
s

m2
τ

+

(
1− s

m2
τ

)
cosθ

]
|Fππ

V |2

−2
λ

1/2
ππ

mτ(md−mu)
Re
(

ε
d
S Fππ

V Fππ∗
S

)
cosθ

]
GLD(s), (B.34)

where θ is the angle between the τ− and the π− momenta in the hadronic rest
frame, λππ = λ (s,m2

π ,m
2
π)/s2, being λ the Källen function [393], and GLD(s) has the

information on the long-distance radiative corrections [87].
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B.4.1 Angular Observables of the Two-Hadron Mode in the WEFT

We can define the angular observables, momenta, from the differential decay widths:

I2n = ⟨cos2n
θ⟩=

∫ 1

−1
dcosθ

d2Γ

dsdcosθ
cos2n

θ . (B.35)

Due to the integrals of trigonometric functions, all momenta can be expressed in
terms of just the first two:

I2n = 3
(n−1)I0 +5nI2

(2n+1)(2n+3)
. (B.36)

At order O(ε̂2
T ), we can write I2 in terms of I2:

I2 =
I0

5

(
3m2

τ +2s
m2

τ +2s

)(
1−4Re(ε̂d

T )
Fππ(0)

T mτs(m2
τ − s)

Cππ(m2
τ +2s)(3m2

τ +2s)

)
, (B.37)

which we can integrate to obtain directly deviations from the SM and non-SM
differential decay rate:

J2 =
∫ m2

τ

4m2
π

dsI2, J0 =
∫ m2

τ

4m2
π

dsI0. (B.38)

These integrated momenta can be taken to the SM value by setting ε̂d
T → 0, and we

can obtain a clean observable to probe this parameter:

J2 = JSM
2 (1−aRe(ε̂d

T )), J0 = Γππ(1−bRe(ε̂d
T )), (B.39)

with

a = 4
Fππ

T
Cππ

mτ

∫ m2
τ

4m2
π

dsI0
s(m2

τ − s)
(m2

τ +2s)2

(∫ m2
τ

4m2
π

dsI0
3m2

τ +2s
m2

τ +2s

)−1

,

b = 4
Fππ

T
Cππ

mτ

∫ m2
τ

4m2
π

dsI0
s(m2

τ − s)
(m2

τ +2s)(3m2
τ +2s)

(∫ m2
τ

4m2
π

dsI0

)−1

. (B.40)

For the Kπ case, the scalar form factor becomes non-negligible near the threshold,
but can still be considered smaller than the vector form factor, so small corrections
of the order |FS(s)|2

|FV (s)|2
to the momenta I0,2 shall be considered.
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In this way, one obtains (δV ≡ 2Re(εD
L + εD

R ))

I0 =
M3

τ

768π3 G2
µ |Vus|2C2

πK̄|F
Kπ

V (s)|2(1+δV )λ
3/2
Kπ

(
1− s

M2
τ

)2{3sFKπ
T (0)

MτCπK̄
Reε

s
T +1+

2s
M2

τ

}
(1+δ0) ,

(B.41)
with the small correction given by

δ0 =
3∆KπM2

τ

(
1+ 2sReεs

S
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)
λKπ

[
−3MτsFKπ
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]
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0 (s)
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V (s)
∣∣∣2 . (B.42)

Proceeding analogously for the second moment, it is found that

I2 =
M3

τ

3840π3 G2
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(B.43)
with

δ2 =
5∆KπM2

τ

(
1+ 2sReεs

S
Mτ (ms−mu)

)
λKπ

[
−5MτsFKπ

T (0)Reεs
T +(3M2

τ +2s)
]
∣∣∣FKπ

0 (s)
∣∣∣2∣∣∣FKπ

V (s)
∣∣∣2 . (B.44)

Thus, we can use eq. (B.37) also for the Kπ case, provided we correct it with the
factor 1+δ2−δ0.

This is a work in progress, which was the main project for Santiago Paz’s Master’s
Thesis, presented at TAU2025 [128], and will be published soon [127].
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Model-independent approach to η → π+π−γ and η ′→ π+π−γ , Phys. Lett. B 707
(2012) 184 [1108.2419].

https://doi.org/10.1103/PhysRevD.86.031501
https://doi.org/10.1103/PhysRevD.86.031501
https://arxiv.org/abs/1205.3770
https://doi.org/10.1103/PhysRevD.86.077504
https://arxiv.org/abs/1206.3968
https://doi.org/10.1103/PhysRevD.90.074019
https://arxiv.org/abs/1409.4311
https://doi.org/10.1103/PhysRevD.93.074017
https://arxiv.org/abs/1510.02799
https://doi.org/10.1016/j.physletb.2017.10.002
https://arxiv.org/abs/1704.05774
https://doi.org/10.1103/PhysRevD.102.034022
https://arxiv.org/abs/2006.10576
https://doi.org/10.1103/PhysRevD.24.1808
https://doi.org/10.1103/PhysRevD.85.054018
https://arxiv.org/abs/1201.2135
https://doi.org/10.1103/PhysRevD.88.056001
https://arxiv.org/abs/1305.5751
https://doi.org/10.1103/PhysRevD.90.034013
https://arxiv.org/abs/1311.3366
https://doi.org/10.1103/PhysRevD.91.014010
https://arxiv.org/abs/1411.1159
https://doi.org/10.1103/PhysRevLett.106.162303
https://arxiv.org/abs/1009.1681
https://doi.org/10.1126/science.aay6641
https://doi.org/10.1007/JHEP01(2013)119
https://arxiv.org/abs/1211.1845
https://doi.org/10.1016/j.physletb.2011.12.008
https://doi.org/10.1016/j.physletb.2011.12.008
https://arxiv.org/abs/1108.2419


REFERENCES 183

[362] J. Leutgeb and A. Rebhan, Hadronic light-by-light contribution to the muon g−2
from holographic QCD with massive pions, Phys. Rev. D 104 (2021) 094017
[2108.12345].

[363] S. Holz, M. Hoferichter, B.-L. Hoid and B. Kubis, Precision Evaluation of the η-
and η ’-Pole Contributions to Hadronic Light-by-Light Scattering in the Anomalous
Magnetic Moment of the Muon, Phys. Rev. Lett. 134 (2025) 171902
[2411.08098].

[364] J.S.R. Chisholm, Rational approximants defined from double power series, Math.
Comp. 27 (1973) 841.

[365] J.S.R. Chisholm and J. McEwan, Rational approximants defined from double power
series, Proc. R. Soc. Lond. A 336 (1974) 421.

[366] R. Hughes Jones, General rational approximants in N-variables, Journal of
Approximation Theory 16 (1976) 201.

[367] P. Masjuan and P. Sánchez-Puertas, Phenomenology of bivariate approximants: the
pi0 to e+e- case and its impact on the electron and muon g-2, 1504.07001.

[368] P. Masjuan and P. Sánchez-Puertas, η and η ′ decays into lepton pairs, JHEP 08
(2016) 108 [1512.09292].

[369] R. Escribano, S. Gonzàlez-Solís, P. Masjuan and P. Sánchez-Puertas, η ’
transition form factor from space- and timelike experimental data, Phys. Rev. D 94
(2016) 054033 [1512.07520].

[370] A. Nyffeler, Precision of a data-driven estimate of hadronic light-by-light scattering
in the muon g−2: Pseudoscalar-pole contribution, Phys. Rev. D 94 (2016) 053006
[1602.03398].

[371] X.-K. Guo, Z.-H. Guo, J.A. Oller and J.J. Sanz-Cillero, Scrutinizing the η-η ′
mixing, masses and pseudoscalar decay constants in the framework of U(3) chiral
effective field theory, JHEP 06 (2015) 175 [1503.02248].

[372] F. Guerrero and A. Pich, Effective field theory description of the pion form-factor,
Phys. Lett. B 412 (1997) 382 [hep-ph/9707347].

[373] G.P. Lepage and S.J. Brodsky, Exclusive Processes in Quantum Chromodynamics:
Evolution Equations for Hadronic Wave Functions and the Form-Factors of Mesons,
Phys. Lett. B 87 (1979) 359.

[374] V. Braun, G. Korchemsky and D. Müller, The Uses of conformal symmetry in
QCD, Prog. Part. Nucl. Phys. 51 (2003) 311 [hep-ph/0306057].

[375] G.P. Lepage, Adaptive multidimensional integration: VEGAS enhanced, J. Comput.
Phys. 439 (2021) 110386 [2009.05112].

[376] T. Lin, M. Bruno, X. Feng, L.-C. Jin, C. Lehner, C. Liu et al., Lattice QCD
calculation of the π0-pole contribution to the hadronic light-by-light scattering in the
anomalous magnetic moment of the muon, Rep. Prog. Phys. 88 (2025) 080501
[2411.06349].

https://doi.org/10.1103/PhysRevD.104.094017
https://arxiv.org/abs/2108.12345
https://doi.org/10.1103/PhysRevLett.134.171902
https://arxiv.org/abs/2411.08098
https://doi.org/10.1090/S0025-5718-1973-0382928-6
https://doi.org/10.1090/S0025-5718-1973-0382928-6
https://doi.org/10.1098/rspa.1974.0028
https://doi.org/10.1016/0021-9045(76)90050-2
https://doi.org/10.1016/0021-9045(76)90050-2
https://arxiv.org/abs/1504.07001
https://doi.org/10.1007/JHEP08(2016)108
https://doi.org/10.1007/JHEP08(2016)108
https://arxiv.org/abs/1512.09292
https://doi.org/10.1103/PhysRevD.94.054033
https://doi.org/10.1103/PhysRevD.94.054033
https://arxiv.org/abs/1512.07520
https://doi.org/10.1103/PhysRevD.94.053006
https://arxiv.org/abs/1602.03398
https://doi.org/10.1007/JHEP06(2015)175
https://arxiv.org/abs/1503.02248
https://doi.org/10.1016/S0370-2693(97)01070-8
https://arxiv.org/abs/hep-ph/9707347
https://doi.org/10.1016/0370-2693(79)90554-9
https://doi.org/10.1016/S0146-6410(03)90004-4
https://arxiv.org/abs/hep-ph/0306057
https://doi.org/10.1016/j.jcp.2021.110386
https://doi.org/10.1016/j.jcp.2021.110386
https://arxiv.org/abs/2009.05112
https://doi.org/10.1088/1361-6633/adf147
https://arxiv.org/abs/2411.06349


184 REFERENCES

[377] J. Leutgeb, J. Mager and A. Rebhan, Superconnections in AdS/QCD and the
hadronic light-by-light contribution to the muon g−2, Phys. Rev. D 111 (2025)
114001 [2411.10432].

[378] J.H. Kuhn, A.I. Onishchenko, A.A. Pivovarov and O.L. Veretin, Heavy mass
expansion, light by light scattering and the anomalous magnetic moment of the muon,
Phys. Rev. D 68 (2003) 033018 [hep-ph/0301151].

[379] Z. Ye, J. Arrington, R.J. Hill and G. Lee, Proton and Neutron Electromagnetic
Form Factors and Uncertainties, Phys. Lett. B 777 (2018) 8 [1707.09063].

[380] C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath,
K. Hadjiyiannakou, K. Jansen et al., Proton and neutron electromagnetic form
factors from lattice QCD, Phys. Rev. D 100 (2019) 014509 [1812.10311].

[381] R.J. Hill and G. Paz, Model independent extraction of the proton charge radius from
electron scattering, Phys. Rev. D 82 (2010) 113005 [1008.4619].

[382] W.M. Alberico, S.M. Bilenky, C. Giunti and K.M. Graczyk, Electromagnetic form
factors of the nucleon: New Fit and analysis of uncertainties, Phys. Rev. C 79 (2009)
065204 [0812.3539].

[383] J. Arrington, W. Melnitchouk and J.A. Tjon, Global analysis of proton elastic form
factor data with two-photon exchange corrections, Phys. Rev. C 76 (2007) 035205
[0707.1861].

[384] JPAC collaboration, Exclusive tensor meson photoproduction, Phys. Rev. D 102
(2020) 014003 [2005.01617].

[385] SND collaboration, Search for direct production of the f1(1285) resonance in e+e−
collisions, Phys. Lett. B 800 (2020) 135074 [1906.03838].

[386] I. Danilkin and M. Vanderhaeghen, Light-by-light scattering sum rules in light of
new data, Phys. Rev. D 95 (2017) 014019 [1611.04646].

[387] G.A. Schuler, F.A. Berends and R. van Gulik, Meson photon transition
form-factors and resonance cross-sections in e+ e- collisions, Nucl. Phys. B 523
(1998) 423 [hep-ph/9710462].

[388] P. Colangelo, F. Giannuzzi and S. Nicotri, Hadronic light-by-light scattering
contributions to (g−2)µ from axial-vector and tensor mesons in the holographic
soft-wall model, Phys. Rev. D 109 (2024) 094036 [2402.07579].

[389] H.-Y. Cheng, Y. Koike and K.-C. Yang, Two-parton Light-cone Distribution
Amplitudes of Tensor Mesons, Phys. Rev. D 82 (2010) 054019 [1007.3541].

[390] V.M. Braun, N. Kivel, M. Strohmaier and A.A. Vladimirov, Electroproduction of
tensor mesons in QCD, JHEP 06 (2016) 039 [1603.09154].

[391] T.M. Aliev and M.A. Shifman, Old Tensor Mesons in QCD Sum Rules, Phys. Lett.
B 112 (1982) 401.

https://doi.org/10.1103/PhysRevD.111.114001
https://doi.org/10.1103/PhysRevD.111.114001
https://arxiv.org/abs/2411.10432
https://doi.org/10.1103/PhysRevD.68.033018
https://arxiv.org/abs/hep-ph/0301151
https://doi.org/10.1016/j.physletb.2017.11.023
https://arxiv.org/abs/1707.09063
https://doi.org/10.1103/PhysRevD.100.014509
https://arxiv.org/abs/1812.10311
https://doi.org/10.1103/PhysRevD.82.113005
https://arxiv.org/abs/1008.4619
https://doi.org/10.1103/PhysRevC.79.065204
https://doi.org/10.1103/PhysRevC.79.065204
https://arxiv.org/abs/0812.3539
https://doi.org/10.1103/PhysRevC.76.035205
https://arxiv.org/abs/0707.1861
https://doi.org/10.1103/PhysRevD.102.014003
https://doi.org/10.1103/PhysRevD.102.014003
https://arxiv.org/abs/2005.01617
https://doi.org/10.1016/j.physletb.2019.135074
https://arxiv.org/abs/1906.03838
https://doi.org/10.1103/PhysRevD.95.014019
https://arxiv.org/abs/1611.04646
https://doi.org/10.1016/S0550-3213(98)00128-X
https://doi.org/10.1016/S0550-3213(98)00128-X
https://arxiv.org/abs/hep-ph/9710462
https://doi.org/10.1103/PhysRevD.109.094036
https://arxiv.org/abs/2402.07579
https://doi.org/10.1103/PhysRevD.82.054019
https://arxiv.org/abs/1007.3541
https://doi.org/10.1007/JHEP06(2016)039
https://arxiv.org/abs/1603.09154
https://doi.org/10.1016/0370-2693(82)91078-4
https://doi.org/10.1016/0370-2693(82)91078-4


REFERENCES 185

[392] BELLE collaboration, Study of π0 pair production in single-tag two-photon
collisions, Phys. Rev. D 93 (2016) 032003 [1508.06757].

[393] G. Källén, Elementary particle physics, Addison-Wesley, Reading, MA (1964).

[394] M. Knecht, S. Narison, A. Rabemananjara and D. Rabetiarivony, Scalar meson
contributions to aµ from hadronic light-by-light scattering, Phys. Lett. B 787 (2018)
111 [1808.03848].

[395] W. Qin, L.-Y. Dai and J. Portolés, Two and three pseudoscalar production in e+e−
annihilation and their contributions to (g − 2)µ , JHEP 03 (2021) 092
[2011.09618].

[396] R. Escribano, J.A. Miranda and P. Roig, Radiative corrections to the
τ-→(P1P2)−vτ (P1,2=π ,K) decays, Phys. Rev. D 109 (2024) 053003
[2303.01362].

[397] P. Masjuan, A. Miranda and P. Roig, τ data-driven evaluation of Euclidean
windows for the hadronic vacuum polarization, Phys. Lett. B 850 (2024) 138492
[2305.20005].

[398] S.-J. Wang, Z. Fang and L.-Y. Dai, Two body final states production in
electron-positron annihilation and their contributions to (g − 2)µ , JHEP 07 (2023)
037 [2302.08859].

[399] P. Roig and P. Sánchez-Puertas, Axial-vector exchange contribution to the hadronic
light-by-light piece of the muon anomalous magnetic moment, Phys. Rev. D 101
(2020) 074019 [1910.02881].

[400] A. Pich and J. Portolés, The Vector form-factor of the pion from unitarity and
analyticity: A Model independent approach, Phys. Rev. D 63 (2001) 093005
[hep-ph/0101194].

[401] D. Gómez Dumm and P. Roig, Dispersive representation of the pion vector form
factor in τ → ππντ decays, Eur. Phys. J. C 73 (2013) 2528 [1301.6973].

[402] S. Gonzàlez-Solís and P. Roig, A dispersive analysis of the pion vector form factor
and τ−→ K−KSντ decay, Eur. Phys. J. C 79 (2019) 436 [1902.02273].

[403] G. Eichmann, C.S. Fischer and R. Williams, Kaon-box contribution to the
anomalous magnetic moment of the muon, Phys. Rev. D 101 (2020) 054015
[1910.06795].

[404] A. Miramontes, A. Bashir, K. Raya and P. Roig, Pion and Kaon box contribution
to aHLbL

µ , Phys. Rev. D 105 (2022) 074013 [2112.13916].

[405] A.S. Miramontes, K. Raya, A. Bashir, P. Roig and G. Paredes-Torres, Radially
excited pion: electromagnetic form factor and the box contribution to the muon’s g-2*,
Chin. Phys. 49 (2025) 083108 [2411.02218].

[406] A. Miranda, P. Roig and P. Sánchez-Puertas, Axial-vector exchange contribution
to the hyperfine splitting, Phys. Rev. D 105 (2022) 016017 [2110.11366].

https://doi.org/10.1103/PhysRevD.93.032003
https://arxiv.org/abs/1508.06757
https://doi.org/10.1016/j.physletb.2018.10.048
https://doi.org/10.1016/j.physletb.2018.10.048
https://arxiv.org/abs/1808.03848
https://doi.org/10.1007/JHEP03(2021)092
https://arxiv.org/abs/2011.09618
https://doi.org/10.1103/PhysRevD.109.053003
https://arxiv.org/abs/2303.01362
https://doi.org/10.1016/j.physletb.2024.138492
https://arxiv.org/abs/2305.20005
https://doi.org/10.1007/JHEP07(2023)037
https://doi.org/10.1007/JHEP07(2023)037
https://arxiv.org/abs/2302.08859
https://doi.org/10.1103/PhysRevD.101.074019
https://doi.org/10.1103/PhysRevD.101.074019
https://arxiv.org/abs/1910.02881
https://doi.org/10.1103/PhysRevD.63.093005
https://arxiv.org/abs/hep-ph/0101194
https://doi.org/10.1140/epjc/s10052-013-2528-1
https://arxiv.org/abs/1301.6973
https://doi.org/10.1140/epjc/s10052-019-6943-9
https://arxiv.org/abs/1902.02273
https://doi.org/10.1103/PhysRevD.101.054015
https://arxiv.org/abs/1910.06795
https://doi.org/10.1103/PhysRevD.105.074013
https://arxiv.org/abs/2112.13916
https://doi.org/10.1088/1674-1137/add259
https://arxiv.org/abs/2411.02218
https://doi.org/10.1103/PhysRevD.105.016017
https://arxiv.org/abs/2110.11366


186 REFERENCES

[407] V. Pascalutsa, V. Pauk and M. Vanderhaeghen, Light-by-light scattering sum
rules constraining meson transition form factors, Phys. Rev. D 85 (2012) 116001
[1204.0740].

[408] F. Jegerlehner, Leading-order hadronic contribution to the electron and muon g−2,
EPJ Web Conf. 118 (2016) 01016 [1511.04473].

[409] M. Knecht, S. Peris, M. Perrottet and E. de Rafael, New nonrenormalization
theorems for anomalous three point functions, JHEP 03 (2004) 035
[hep-ph/0311100].

[410] L.D. Landau, On the angular momentum of a system of two photons, Dokl. Akad.
Nauk Ser. Fiz. 60 (1948) 207.

[411] C.-N. Yang, Selection Rules for the Dematerialization of a Particle Into Two Photons,
Phys. Rev. 77 (1950) 242.

[412] V. Pauk and M. Vanderhaeghen, Single meson contributions to the muon‘s
anomalous magnetic moment, Eur. Phys. J. C 74 (2014) 3008 [1401.0832].

[413] L.-Y. Dai, J. Fuentes-Martín and J. Portolés, Scalar-involved three-point Green
functions and their phenomenology, Phys. Rev. D 99 (2019) 114015
[1902.10411].

[414] G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Rescattering effects in
the hadronic-light-by-light contribution to the anomalous magnetic moment of the
muon, Phys. Rev. Lett. 118 (2017) 232001 [1701.06554].

[415] J. Bijnens, N. Hermansson-Truedsson, L. Laub and A. Rodríguez-Sánchez, The
two-loop perturbative correction to the (g−2)µ HLbL at short distances, JHEP 04
(2021) 240 [2101.09169].

[416] J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Constraints
on the hadronic light-by-light in the Melnikov-Vainshtein regime, JHEP 02 (2023)
167 [2211.17183].

[417] J. Mager, L. Cappiello, J. Leutgeb and A. Rebhan, Longitudinal short-distance
constraints on hadronic light-by-light scattering and tensor meson contributions to
the muon g−2, Phys. Rev. Lett. 135 (2025) 091901 [2501.19293].

[418] J.M. Márquez, G.L. Castro and P. Roig, Michel parameters in the presence of
massive Dirac and Majorana neutrinos, JHEP 11 (2022) 117 [2208.01715].

[419] L. Gan, B. Kubis, E. Passemar and S. Tulin, Precision tests of fundamental physics
with η and η ’ mesons, Phys. Rept. 945 (2022) 1 [2007.00664].

[420] S. Tulin, New weakly-coupled forces hidden in low-energy QCD, Phys. Rev. D 89
(2014) 114008 [1404.4370].

[421] R. Escribano, S. Gonzàlez-Solís and E. Royo, Sensitivity of the η(’)→π0γγ and
η ’→ηγγ decays to a sub-GeV leptophobic U(1)B boson, Phys. Rev. D 106 (2022)
114007 [2207.14263].

https://doi.org/10.1103/PhysRevD.85.116001
https://arxiv.org/abs/1204.0740
https://doi.org/10.1051/epjconf/201611801016
https://arxiv.org/abs/1511.04473
https://doi.org/10.1088/1126-6708/2004/03/035
https://arxiv.org/abs/hep-ph/0311100
https://doi.org/10.1016/B978-0-08-010586-4.50070-5
https://doi.org/10.1016/B978-0-08-010586-4.50070-5
https://doi.org/10.1103/PhysRev.77.242
https://doi.org/10.1140/epjc/s10052-014-3008-y
https://arxiv.org/abs/1401.0832
https://doi.org/10.1103/PhysRevD.99.114015
https://arxiv.org/abs/1902.10411
https://doi.org/10.1103/PhysRevLett.118.232001
https://arxiv.org/abs/1701.06554
https://doi.org/10.1007/JHEP04(2021)240
https://doi.org/10.1007/JHEP04(2021)240
https://arxiv.org/abs/2101.09169
https://doi.org/10.1007/JHEP02(2023)167
https://doi.org/10.1007/JHEP02(2023)167
https://arxiv.org/abs/2211.17183
https://doi.org/10.1103/dxwr-gpsl
https://arxiv.org/abs/2501.19293
https://doi.org/10.1007/JHEP11(2022)117
https://arxiv.org/abs/2208.01715
https://doi.org/10.1016/j.physrep.2021.11.001
https://arxiv.org/abs/2007.00664
https://doi.org/10.1103/PhysRevD.89.114008
https://doi.org/10.1103/PhysRevD.89.114008
https://arxiv.org/abs/1404.4370
https://doi.org/10.1103/PhysRevD.106.114007
https://doi.org/10.1103/PhysRevD.106.114007
https://arxiv.org/abs/2207.14263


REFERENCES 187

[422] R. Escribano, S. Gonzàlez-Solís and E. Royo, Assessment of the a2(1320)
tensor-meson contribution to η/η ′→ π0γγ decays, 2510.00787.

[423] R. Escribano, E. Royo and P. Sanchez-Puertas, New-physics signatures via CP
violation in η(′) → π0µ+µ− and η → ηµ+µ− decays, JHEP 05 (2022) 147
[2202.04886].

[424] KLOE-2 collaboration, Measurement of η → π0γγ branching fraction with the
KLOE detector, 2505.09285.

[425] H. Dembinski and P. Ongmongkolkul Version 2.32.0, Released Nov 9, 2025,
https://pypi.org/project/iminuit/.

[426] H. Dembinski Version 0.2.2, Released: Aug 16, 2023,
https://pypi.org/project/jacobi/.

[427] A. Pich, Precision Tau Physics, Prog. Part. Nucl. Phys. 75 (2014) 41 [1310.7922].

[428] P. Roig, Hadronic and radiative decays of the tau lepton, Ph.D. thesis, Valencia U.,
2010. 1301.7626.

[429] A. Rodríguez-Sánchez, Hadronic tau decays, 2504.21732.

[430] V. Cirigliano, J. Jenkins and M. Gonzalez-Alonso, Semileptonic decays of light
quarks beyond the Standard Model, Nucl. Phys. B 830 (2010) 95 [0908.1754].

[431] A. Guevara, G. López Castro and P. Roig, Weak radiative pion vertex in
τ−→ π−ντℓ

+ℓ− decays, Phys. Rev. D 88 (2013) 033007 [1306.1732].

[432] A. Guevara, G.L. Castro and P. Roig, Improved description of dilepton production
in τ-→ντP- decays, Phys. Rev. D 105 (2022) 076007 [2111.09994].

[433] M. Antonelli, V. Cirigliano, A. Lusiani and E. Passemar, Predicting the τ strange
branching ratios and implications for Vus, JHEP 10 (2013) 070 [1304.8134].

[434] F.V. Flores-Baéz and J.R. Morones-Ibarra, Model Independent Electromagnetic
corrections in hadronic τ decays, Phys. Rev. D 88 (2013) 073009 [1307.1912].

[435] J.H. Kuhn and E. Mirkes, Structure functions in tau decays, Z. Phys. C 56 (1992)
661.

[436] D.A.L. Aguilar, J. Rendón and P. Roig, CP violation in two-meson Tau decays
induced by heavy new physics, JHEP 01 (2025) 105 [2409.05588].

[437] W.J. Marciano and A. Sirlin, Electroweak Radiative Corrections to tau Decay, Phys.
Rev. Lett. 61 (1988) 1815.

[438] E. Braaten and C.-S. Li, Electroweak radiative corrections to the semihadronic decay
rate of the tau lepton, Phys. Rev. D 42 (1990) 3888.

[439] J. Erler, Electroweak radiative corrections to semileptonic tau decays, Rev. Mex. Fis.
50 (2004) 200 [hep-ph/0211345].

https://arxiv.org/abs/2510.00787
https://doi.org/10.1007/JHEP05(2022)147
https://arxiv.org/abs/2202.04886
https://arxiv.org/abs/2505.09285
https://pypi.org/project/iminuit/
https://pypi.org/project/jacobi/
https://doi.org/10.1016/j.ppnp.2013.11.002
https://arxiv.org/abs/1310.7922
https://arxiv.org/abs/1301.7626
https://arxiv.org/abs/2504.21732
https://doi.org/10.1016/j.nuclphysb.2009.12.020
https://arxiv.org/abs/0908.1754
https://doi.org/10.1103/PhysRevD.88.033007
https://arxiv.org/abs/1306.1732
https://doi.org/10.1103/PhysRevD.105.076007
https://arxiv.org/abs/2111.09994
https://doi.org/10.1007/JHEP10(2013)070
https://arxiv.org/abs/1304.8134
https://doi.org/10.1103/PhysRevD.88.073009
https://arxiv.org/abs/1307.1912
https://doi.org/10.1007/BF01474741
https://doi.org/10.1007/BF01474741
https://doi.org/10.1007/JHEP01(2025)105
https://arxiv.org/abs/2409.05588
https://doi.org/10.1103/PhysRevLett.61.1815
https://doi.org/10.1103/PhysRevLett.61.1815
https://doi.org/10.1103/PhysRevD.42.3888
https://arxiv.org/abs/hep-ph/0211345


188 REFERENCES

[440] R. Omnès, On the Solution of certain singular integral equations of quantum field
theory, Nuovo Cim. 8 (1958) 316.

[441] I. Rosell, J.J. Sanz-Cillero and A. Pich, Quantum loops in the resonance chiral
theory: The Vector form-factor, JHEP 08 (2004) 042 [hep-ph/0407240].

[442] A. Pich, I. Rosell and J.J. Sanz-Cillero, Form-factors and current correlators:
Chiral couplings L(10)mu) **r(mu) and C(87)**r(mu) at NLO in 1/N(C), JHEP 07
(2008) 014 [0803.1567].

[443] J.A. Miranda and P. Roig, Effective-field theory analysis of the τ−→ π−π0ντ

decays, JHEP 11 (2018) 038 [1806.09547].

[444] S. Gonzàlez-Solís, A. Miranda, J. Rendón and P. Roig, Exclusive hadronic tau
decays as probes of non-SM interactions, Phys. Lett. B 804 (2020) 135371
[1912.08725].

[445] BELLE-II collaboration, The Belle II Physics Book, PTEP 2019 (2019) 123C01
[1808.10567].

[446] BABAR collaboration, Measurement of the spectral function for the τ−→ K−KSντ

decay, Phys. Rev. D 98 (2018) 032010 [1806.10280].

[447] S. Gonzàlez-Solís, A. Miranda, J. Rendón and P. Roig, Effective-field theory
analysis of the τ−→ K−(η(′),K0)ντ decays, Phys. Rev. D 101 (2020) 034010
[1911.08341].

[448] S. Weinberg, Charge symmetry of weak interactions, Phys. Rev. 112 (1958) 1375.

[449] C. Leroy and J. Pestieau, Tau Decay and Second Class Currents, Phys. Lett. B 72
(1978) 398.

[450] A. Pich, ’Anomalous’ η Production in Tau Decay, Phys. Lett. B 196 (1987) 561.

[451] S. Descotes-Genon and B. Moussallam, Analyticity of ηπ isospin-violating form
factors and the τ → ηπν second-class decay, Eur. Phys. J. C 74 (2014) 2946
[1404.0251].

[452] R. Escribano, S. Gonzàlez-Solís and P. Roig, Predictions on the second-class
current decays τ−→ π−η(′)ντ , Phys. Rev. D 94 (2016) 034008 [1601.03989].

[453] BABAR collaboration, Studies of tau- —> eta K-nu and tau- —> eta pi- nu(tau) at
BaBar and a search for a second-class current, Phys. Rev. D 83 (2011) 032002
[1011.3917].

[454] BABAR collaboration, Study of high-multiplicity 3-prong and 5-prong tau decays at
BABAR, Phys. Rev. D 86 (2012) 092010 [1209.2734].

[455] A. Guevara, G. López-Castro and P. Roig, τ−→ η(′)π−ντγ decays as
backgrounds in the search for second class currents, Phys. Rev. D 95 (2017) 054015
[1612.03291].

https://doi.org/10.1007/BF02747746
https://doi.org/10.1088/1126-6708/2004/08/042
https://arxiv.org/abs/hep-ph/0407240
https://doi.org/10.1088/1126-6708/2008/07/014
https://doi.org/10.1088/1126-6708/2008/07/014
https://arxiv.org/abs/0803.1567
https://doi.org/10.1007/JHEP11(2018)038
https://arxiv.org/abs/1806.09547
https://doi.org/10.1016/j.physletb.2020.135371
https://arxiv.org/abs/1912.08725
https://doi.org/10.1093/ptep/ptz106
https://arxiv.org/abs/1808.10567
https://doi.org/10.1103/PhysRevD.98.032010
https://arxiv.org/abs/1806.10280
https://doi.org/10.1103/PhysRevD.101.034010
https://arxiv.org/abs/1911.08341
https://doi.org/10.1103/PhysRev.112.1375
https://doi.org/10.1016/0370-2693(78)90148-X
https://doi.org/10.1016/0370-2693(78)90148-X
https://doi.org/10.1016/0370-2693(87)90821-5
https://doi.org/10.1140/epjc/s10052-014-2946-8
https://arxiv.org/abs/1404.0251
https://doi.org/10.1103/PhysRevD.94.034008
https://arxiv.org/abs/1601.03989
https://doi.org/10.1103/PhysRevD.83.032002
https://arxiv.org/abs/1011.3917
https://doi.org/10.1103/PhysRevD.86.092010
https://arxiv.org/abs/1209.2734
https://doi.org/10.1103/PhysRevD.95.054015
https://arxiv.org/abs/1612.03291


REFERENCES 189

[456] G. Hernández-Tomé, G. López Castro and P. Roig, G-parity breaking in
τ−→ η(′)π−ντ decays induced by the η(′)γγ form factor, Phys. Rev. D 96 (2017)
053003 [1707.03037].

[457] G. Hernández-Tomé, G. López Castro and D. Portillo-Sánchez, τ-→π-ηντ

decay induced by QED one-loop effects, Phys. Rev. D 108 (2023) 113001
[2308.08067].

[458] BELLE collaboration, Precise measurement of hadronic tau-decays with an eta
meson, Phys. Lett. B 672 (2009) 209 [0811.0088].

[459] S. Arteaga, L.-Y. Dai, A. Guevara and P. Roig, Tension between e+e-→ηπ-π+ and
τ-→ηπ-π0ντ data and nonstandard interactions, Phys. Rev. D 106 (2022) 096016
[2209.15537].

[460] E.A. Garcés, M. Hernández Villanueva, G. López Castro and P. Roig,
Effective-field theory analysis of the τ−→ η(′)π−ντ decays, JHEP 12 (2017) 027
[1708.07802].

[461] M. Jamin, A. Pich and J. Portolés, What can be learned from the Belle spectrum for
the decay - tau- —> nu(tau) K(S) pi-, Phys. Lett. B 664 (2008) 78 [0803.1786].

[462] D.R. Boito, R. Escribano and M. Jamin, K pi vector form-factor, dispersive
constraints and tau —> nu(tau) K pi decays, Eur. Phys. J. C 59 (2009) 821
[0807.4883].

[463] V. Bernard, D.R. Boito and E. Passemar, Dispersive representation of the scalar
and vector Kπ form factors for τ → Kπντ and Kℓ3 decays, Nucl. Phys. B Proc. Suppl.
218 (2011) 140 [1103.4855].

[464] V. Bernard, First determination of f+(0)|Vus| from a combined analysis of τ → Kπντ

decay and πK scattering with constraints from Kℓ3 decays, JHEP 06 (2014) 082
[1311.2569].

[465] R. Escribano, S. González-Solís, M. Jamin and P. Roig, Combined analysis of the
decays τ−→ KSπ−ντ and τ−→ K−ηντ , JHEP 09 (2014) 042 [1407.6590].

[466] M. Jamin, J.A. Oller and A. Pich, Scalar K pi form factor and light quark masses,
Phys. Rev. D 74 (2006) 074009 [hep-ph/0605095].

[467] D.R. Boito, R. Escribano and M. Jamin, K π vector form factor constrained by
τ−> K piντ and Kl3 decays, JHEP 09 (2010) 031 [1007.1858].

[468] B. Moussallam, Analyticity constraints on the strangeness changing vector current
and applications to tau —> K pi nu(tau), tau —> K pi pi nu(tau), Eur. Phys. J. C 53
(2008) 401 [0710.0548].

[469] M. Jamin, J.A. Oller and A. Pich, S wave K pi scattering in chiral perturbation
theory with resonances, Nucl. Phys. B 587 (2000) 331 [hep-ph/0006045].

[470] M. Jamin, J.A. Oller and A. Pich, Strangeness changing scalar form-factors, Nucl.
Phys. B 622 (2002) 279 [hep-ph/0110193].

https://doi.org/10.1103/PhysRevD.96.053003
https://doi.org/10.1103/PhysRevD.96.053003
https://arxiv.org/abs/1707.03037
https://doi.org/10.1103/PhysRevD.108.113001
https://arxiv.org/abs/2308.08067
https://doi.org/10.1016/j.physletb.2009.01.047
https://arxiv.org/abs/0811.0088
https://doi.org/10.1103/PhysRevD.106.096016
https://arxiv.org/abs/2209.15537
https://doi.org/10.1007/JHEP12(2017)027
https://arxiv.org/abs/1708.07802
https://doi.org/10.1016/j.physletb.2008.04.049
https://arxiv.org/abs/0803.1786
https://doi.org/10.1140/epjc/s10052-008-0834-9
https://arxiv.org/abs/0807.4883
https://doi.org/10.1016/j.nuclphysbps.2011.06.024
https://doi.org/10.1016/j.nuclphysbps.2011.06.024
https://arxiv.org/abs/1103.4855
https://doi.org/10.1007/JHEP06(2014)082
https://arxiv.org/abs/1311.2569
https://doi.org/10.1007/JHEP09(2014)042
https://arxiv.org/abs/1407.6590
https://doi.org/10.1103/PhysRevD.74.074009
https://arxiv.org/abs/hep-ph/0605095
https://doi.org/10.1007/JHEP09(2010)031
https://arxiv.org/abs/1007.1858
https://doi.org/10.1140/epjc/s10052-007-0464-7
https://doi.org/10.1140/epjc/s10052-007-0464-7
https://arxiv.org/abs/0710.0548
https://doi.org/10.1016/S0550-3213(00)00479-X
https://arxiv.org/abs/hep-ph/0006045
https://doi.org/10.1016/S0550-3213(01)00605-8
https://doi.org/10.1016/S0550-3213(01)00605-8
https://arxiv.org/abs/hep-ph/0110193


190 REFERENCES

[471] M. Jamin, A. Pich and J. Portolés, Spectral distribution for the decay tau —>
nu(tau) K pi, Phys. Lett. B 640 (2006) 176 [hep-ph/0605096].

[472] M. Finkemeier and E. Mirkes, The Scalar contribution to tau –> k pi tau-neutrino,
Z. Phys. C 72 (1996) 619 [hep-ph/9601275].

[473] BELLE collaboration, Study of tau- —> K(S) pi- nu(tau) decay at Belle, Phys. Lett.
B 654 (2007) 65 [0706.2231].

[474] J. Gasser and H. Leutwyler, Low-Energy Expansion of Meson Form-Factors, Nucl.
Phys. B 250 (1985) 517.

[475] FLAG collaboration, FLAG Review 2024, 2411.04268.

[476] BABAR collaboration, Search for CP Violation in the Decay
τ−−> π−K0

S (>= 0π0)νtau, Phys. Rev. D 85 (2012) 031102 [1109.1527].

[477] V. Cirigliano, A. Crivellin and M. Hoferichter, No-go theorem for nonstandard
explanations of the τ → KSπντ CP asymmetry, Phys. Rev. Lett. 120 (2018) 141803
[1712.06595].

[478] J. Rendón, P. Roig and G. Toledo Sánchez, Effective-field theory analysis of the
τ−→ (Kπ)−ντ decays, Phys. Rev. D 99 (2019) 093005 [1902.08143].

[479] F.-Z. Chen, X.-Q. Li, S.-C. Peng, Y.-D. Yang and H.-H. Zhang, CP asymmetry in
the angular distributions of τ → KSπντ decays. Part II. General effective field theory
analysis, JHEP 01 (2022) 108 [2107.12310].

[480] R. Escribano, P. Masjuan and P. Sánchez-Puertas, η and η ′ transition form
factors from rational approximants, Phys. Rev. D 89 (2014) 034014 [1307.2061].

https://doi.org/10.1016/j.physletb.2006.06.058
https://arxiv.org/abs/hep-ph/0605096
https://doi.org/10.1007/s002880050284
https://arxiv.org/abs/hep-ph/9601275
https://doi.org/10.1016/j.physletb.2007.08.045
https://doi.org/10.1016/j.physletb.2007.08.045
https://arxiv.org/abs/0706.2231
https://doi.org/10.1016/0550-3213(85)90493-6
https://doi.org/10.1016/0550-3213(85)90493-6
https://arxiv.org/abs/2411.04268
https://doi.org/10.1103/PhysRevD.85.031102
https://arxiv.org/abs/1109.1527
https://doi.org/10.1103/PhysRevLett.120.141803
https://arxiv.org/abs/1712.06595
https://doi.org/10.1103/PhysRevD.99.093005
https://arxiv.org/abs/1902.08143
https://doi.org/10.1007/JHEP01(2022)108
https://arxiv.org/abs/2107.12310
https://doi.org/10.1103/PhysRevD.89.034014
https://arxiv.org/abs/1307.2061

	Table of contents
	1 Tests of The Standard Model
	1.1 The Standard Model
	1.1.1 Gauge Group of the Standard Model
	1.1.2 Electro-weak interactions
	1.1.3 Strong Interactions

	1.2 Tests within The Standard Model: muon's anomalous magnetic moment, a
	1.2.1 g - 2 measurement: Past (CERN and BNL), Present (FNAL), and Future (J-PARC)
	1.2.2 Theory Initiative
	1.2.2.1 QED contributions
	1.2.2.2 EW contributions
	1.2.2.3 QCD Contributions I: Hadronic Vacuum Polarization
	1.2.2.4 QCD Contributions II: Hadronic Light-by-Light

	1.2.3 How to sum HLbL contributions to a? The Master formula


	2 Resonance Chiral Theory: An Effective Field Theory for QCD around a GeV
	2.1 Effective Field Theories
	2.2 Chiral Perturbation Theory
	2.2.1 QCD and Chiral Symmetry
	2.2.2 Chiral Currents and Chiral Symmetry Breaking
	2.2.3 Light Pseudoscalar Mesons as Pseudo-Goldsone bosons
	2.2.4 PT for Mesons
	2.2.4.1 Transformation properties of the Goldstone Bosons
	2.2.4.2 Large NC limit

	2.2.5 PT Lagrangian

	2.3 Chiral Lagrangians for Massive Spin 1 Fields
	2.3.1 RT Lagrangian: Vector Meson Resonances


	3 0,,  transition form factors in resonance chiral theory and aP-poles
	3.1 Pseudoscalar Transition Form Factor (P **): The essential input
	3.2 Pseudoscalar Pole Contributions
	3.2.1 RT Lagrangian: V+V'+P'
	3.2.2 Transition Form Factors in RT
	3.2.3 Matching to Asymptotic QCD
	3.2.4 TFF global fit

	3.3 Equivalence of RT TFF with the Canterbury Approximants
	3.3.1 Definition of Canterbury Approximants
	3.3.2 CA to RT Mapping

	3.4 0,, -pole contributions to a within RT
	3.4.1 Assessment of systematic theory uncertainties
	3.4.2 Results
	3.4.3 Comparison with other approaches

	3.5 Conclusions and Outlook

	4 Proton-Box contribution to aHLbL
	4.1 Contribution to aHLbL
	4.2 Proton Form Factors
	4.2.1 Data-Driven Form Factors
	4.2.2 Lattice QCD Form Factors

	4.3 Results and Outlook

	5 Tensor Meson Pole Contributions to aHLbL within RT
	5.1 Tensor Meson Transition Form Factors (T**)
	5.1.1 High-Energy behavior of the Form Factors
	5.1.2 Helicity Basis

	5.2 Tensor Pole Contributions
	5.3 RT Lagrangian: V+V'+P'+T
	5.3.1 Minimal Lagrangian: No Derivatives
	5.3.1.1 Systematic and Statistical errors

	5.3.2 Minimally Extended Model: TVV
	5.3.2.1 F3T(0,0) ballpark within RT


	5.4 Complete Extension: A full consistent account of operators with derivatives
	5.4.1 Counting of Operators and their contributions
	5.4.2 Contribution to the TFFs
	5.4.3 Toy Fit


	6 Towards a full evaluation of aHLbL within RT
	6.1 Pseudoscalar Box Contributions
	6.2 Axial Pole Contributions
	6.3 Scalar Pole Contributions
	6.4 Other Contributions
	6.5 Comparison with other approaches
	6.6 Conclusions and outlook

	7 Conclusions and Perspectives
	Appendix A Guide for useful computational tools
	Appendix B Beyond Form Factors: Precise Angular Tests in Hadronic  Decays
	B.1 Weak Effective Field Theory
	B.2 One Hadron Modes
	B.3 Two Hadron Modes
	B.3.1 General Distributions
	B.3.2 The  channel
	B.3.3 The K  channel

	B.4 WEFT for Two Hadron modes
	B.4.1 Angular Observables of the Two-Hadron Mode in the WEFT


	References

