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Resumen

El modelo estándar de la f́ısica de part́ıculas (SM) es la teoŕıa f́ısica más
poderosa que tenemos en la ciencia. Pese a su enorme poder de predicción,
existen fenómenos que se escapan del alcance explicativo del SM y a los que
conocemos como f́ısica más allá del modelo estándar o simplemente como
nueva f́ısica (NP). Este trabajo de tesis tiene como objetivo estudiar po-
tenciales efectos de nueva f́ısica usando para ello decaimientos hadrónicos
del leptón Tau a uno y dos mesones pseudoscalares. Se estudian a detalle
particularmente los decaimientos a un mesón pseudoescalar: τ− → π−ντ
y τ− → K−ντ y los decaimientos a dos mesones pseudoescalares τ− →
(Kπ)−ντ y τ− → K−K0ντ , además nos beneficiamos mucho de los decaimien-
tos τ− → Kη(′)ντ y τ− → π−π0ντ .

Nuestros análisis están basados en el uso de teoŕıas efectivas, concreta-
mente en el uso del SMEFT a bajas enerǵıas, donde hemos empleado oper-
adores de dimensión seis.

Para el estudio de los factores de forma relevantes hacemos uso de la
Teoŕıa Quiral de Perturbaciones (ChPT), de relaciones de dispersión y de
datos de lattice.

Nuestra búsqueda se centrará en el estudio de interacciones no estándar
y para ello estudiaremos distintos observebles como Dalitz plots, espectros,
branching ratios y asimetŕıas forward-backward. Estudiaremos también los
posibles efectos que pudiera tener nueva f́ısca pesada en la violación de CP.

La finalidad de este trabajo es hacer notar que la f́ısica del Tau no es sólo
un laboratorio muy limpio para estudiar QCD a bajas enerǵıas (hecho por el
que es bien conocida) sino que además resulta sumamente útil para explorar
posibles señales de nueva f́ısica. Esta es una razón más para considerar a los
decaimientos hadrónicos del Tau como canales fundamentales de estudio en
el experimento Belle-II.
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Abstract

The Standard model of particle physics (SM) is the most powerful physical
theory that we have in science. Despite its predictive power, we have phe-
nomena that are not understood in the framework of the SM to which we
refer as physics beyond the standard model or as new physics (NP). The pur-
pose of this thesis work is to study potential new physics effects using one-
and two-pseudoscalar meson hadronic Tau decays. We study in detail the
one-meson decay modes: τ− → π−ντ and τ− → K−ντ , and the two-meson
decay modes: τ− → (Kπ)−ντ y τ− → K−K0ντ . We also benefit a lot from
the decays τ− → Kη(′)ντ and τ− → π−π0ντ .

Our analysis is based on effective field theories, particularly in the SMEFT
at low energies. We have used dimension six operators.

For our study of the relevant form factors we have used Chiral Perturba-
tion Theory (ChPT), dispersion relations and lattice data.

Our research focuses in the study of non-standard interactions. With
this in mind, we will study several observables like Dalitz plots, spectra,
branching ratios and forward-backward asymmetries. We will also study the
potential effects of heavy new physics in CP violation.

The aim of this work is to point out that Tau physics is more than a
clean low energy QCD laboratory (for which is very well known). We want
to show that the Tau lepton can also be used as a probe of NP. This is yet
another reason for considering hadronic Tau decays as golden modes at the
Belle-II experiment.
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Chapter 1

The Tau Lepton: an invaluable
tool in the search for new
physics

“Ars longa, vita brevis”

Hipócrates

1.1 General introduction

The Standard Model (SM) of particle physics [1, 2, 3] is without ques-
tion the most successful physical theory that we have and probably the most
beautiful intellectual construction conceived by humankind, but even with all
its predictive power and beauty, we know that the SM cannot be the whole
story. Despite its success, there are many open questions in high energy
physics that the SM does not answer. In many of those cases, the failure
comes from the fact that the theoretical framework of the SM was not even
constructed to handle such questions, that is why the SM must be extended
somehow. Some of the problems within the SM are the following:

• Neutrino masses: This is the most obvious of the problems since in
the SM neutrinos are assumed to be massless by definition, but, on
the other hand, we know from oscillation experiments that they do
have mass, although this mass is unusually small. This fact must be
incorporated in the SM and there are several ways to do it that we will
discuss very briefly along this thesis.
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• Matter-Antimatter asymmetry: There is much more matter than an-
timatter in the universe and we do not fully understand why this is
so.

• Dark sector: The SM particles compose only the 5% of the mat-
ter/energy content of the universe, the other 95% is called the dark
sector and we do not know exactly what it is. This dark sector has one
component known as dark matter, which is needed to explain at least
three different phenomena: the rotational speeds of galaxies, gravi-
tational lensing in dark regions, and the anisotropies in the cosmic
microwave background. The other component, known as dark energy
-about which we know even less than about dark matter-, is needed to
explain the acceleration of the universe among other things.

Finding an answer to any of these open questions is the main concern of the
high energy physics community and the general theoretical physics commu-
nity nowadays. As we have anticipated before, the solution to those problems
is beyond the scope of the SM and belongs to what we call New Physics, or
NP for short, this is an appropriate name since we do not fully understand
what is behind those processes and in this respect the laws of physics gov-
erning them are in some sense ‘new’.

There are basically two approaches when one deals with NP problems,
one is to construct specific models to try to answer very specific questions,
this approach is really elegant and it is usually ambitious, in the sense that
one needs to assume many things like the symmetries and degrees of freedom
that play a role at the relevant energy scale assumed in the model. The other
approach is to work with the problems in a model independent way, this is
achieved with the help of the so called Effective Field Theories (EFTs), in
this approach one does not assume heavy degrees of freedom or symmetries
realized at high energy scales, one just starts with what is fully known and
from there by extending the Lagrangian of the theory with more terms al-
lowed by the low energy symmetries one tries to ‘guess’ what is happening at
higher energy scales. The second approach is more conservative than the first
one, and the fact that it is essentially model-independent makes it specially
suitable and powerful to handle NP searches. This is why we chose to follow
the second approach in this thesis. We will discuss Effective Field Theories
in great detail in chapter 2 and throughout the whole work.

There are of course other open questions that need physics beyond the
standard model besides the three that were pointed out previously, as for
example: why are the forces of nature of such different strengths?, why are
there three generations of particles?, and how can we stabilize the electroweak
scale under radiative corrections?, just to mention a few, however we chose
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the neutrino mass problem, the matter-antimatter asymmetry and the dark
sector as the most fundamental problems and the most urgent priorities in
particle physics nowadays.

1.2 Tau Physics

The Tau lepton was discovered by Martin Perl at the SLAC-LBL collab-
oration using e+e− collisions [4, 5]. The name they chose for the new particle
[5] Tau or τ comes from the first letter of the greek word τριτoς which means
‘the third’, in allusion to the three charged leptons e, µ, and τ .

The Tau lepton is the heaviest lepton and it belongs to the third gener-
ation of particles. Being the mass the only difference between generations,
the tau lepton is similar to the electron and muon in any other respect, so
that, electrons, muons and taus have the same interactions with the photon,
the W and the Z bosons, or in other words, they all have the same electric
and weak interactions.

There is one more fundamental interaction present in the SM, the strong
force, what can we say about it? of course leptons do not ‘feel’ it, so again,
electrons, muons and Taus behave in a similar way. They are all ‘blind’ to
the strong force, but here there is something that makes the Tau lepton re-
ally special. Given its large mass (Mτ ≈ 1.777 GeV [6]), unlike electrons
and muons, Taus are capable of decaying into hadrons, this fact makes the
Tau lepton a really helpful tool when one studies low energy QCD. Although
it does not feel the strong force by itself, it serves as a bridge to study low
energy QCD phenomena in a rather clean environment.

The decays of the Tau lepton to hadrons referred previously are known
as semileptonic decays, note that in this special case when we say hadrons
we really mean mesons because the Tau cannot decay into baryons. The
reason is very simple, although the mass of the Tau is enough to decay into
one proton which is the lightest of the baryons, this process is forbidden by
the conservation of baryon number, it would necessarily have to decay into
a proton-antiproton pair, but the Tau is not massive enough to do that.

The study of the Tau lepton or Tau physics as we will say from now on is
not only important as a tool to study low energy QCD phenomena, although
that by itself is so fundamental that it deserves special attention, Tau physics
is much broader and deeper. It is useful in many areas of particle physics,
for example in the determination of the value of the strong coupling constant
αS at low energies. We will see this in great detail in section 2.3 (see fig-
ure 2.3). Tau physics is also very useful in a determination of the value of
the Cabibbo-Kobayashi-Maskawa matrix parameter Vus, which is competi-
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tive with the results from kaon decays. It is also fundamental in the study of
lepton universality and in new physics searches like the study of lepton flavor
and lepton number violations, CP violation, and potential modifications of
the Lorentz structure of the fundamental interactions. As a matter of fact,
one of the main purposes in this thesis work is to use Tau physics to study
possible NP scenarios.

Before we start our searches for NP signals, it is important to discuss
the things that are already well established, so we are going to discuss how
leptonic and hadronic decays of the Tau lepton proceed according to the SM
of particle physics.

1.2.1 Leptonic decays of the Tau lepton

Due to its large mass, the Tau lepton has many different ways to decay,
or many open channels as we like to say. Some of those channels are purely
leptonic and some of them have hadrons in the final state, these are the
semileptonic decays we mentioned previously. From all these possibilities,
leptonic decays are special in the sense that they are really easy to calculate.
They are basically an extension of muon decay and proceed trough the ex-
change of a W -boson. This is the so called weak charged-current interaction
and is governed by the following Lagrangian 1

Lcc = − g

2
√

2

∑
`

Wµν̄`γ
µ(1− γ5)`+ h.c. , (1.1)

where Wµ =
W 1
µ−iW 2

µ√
2

2 creates a physical W− boson. From the previous
expression we see that the W boson couples to the leptons with the same
strength, so that lepton universality for the charged weak interactions is
evident.

According to the Feynman rules, the generic form for an amplitude that
comes from eq. (1.1) is given by,

M =

(−ig
2
√

2

)2

Jν†W

(
gνµ −

qνqµ
M2

W

)( −i
q2 −M2

W

)
JµW , (1.2)

where,

JµW = ν̄`γ
µ(1− γ5)` ,

Jµ†W = ¯̀′γµ(1− γ5)ν`′ .
(1.3)

1See chapter 2 for a general discussion of the weak charged-current interaction and a
complete discussion of the SM.

2W i
µ refer to the weak isospin components of this gauge boson.
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For a small momentum transfer, |qµ| � MW , the W -boson propagator
reduces to an effective four-fermion interaction just as in the Fermi Theory
of muon and beta decays. As a result the effective Hamiltonian density
becomes,

Heff =
GF√

2
J†WµJ

µ
W , (1.4)

where GF/
√

2 = g2/(8M2
W ).

Even though one has the SM, which is the full theory in this case, it is
sometimes convenient to work with effective theories. For Tau decays, one
uses the Fermi theory for practical reasons just as occurs with the muon de-
cay. We basically do not lose anything considering the W -propagator shrunk
to a point while we gain a lot of operational power. We will see shortly
that the same effective field theory ideas can also be applied to the hadronic
decays, where it turns out to be even more convenient to use effective La-
grangians since we will always be working in the low energy regime of QCD.

The partial width for the τ− → ντ`
−ν̄` decays is given by,

Γ(τ− → ντ`
−ν̄`) =

G2
FM

5
τ SEW

192π3
f

(
m2
`

M2
τ

)
(1 + δ`τRC) , (1.5)

where SEW resums the short-distance electroweak corrections [7, 8, 9, 10, 11,
12, 13, 14], f(x) = 1− 8x+ 8x3 − x4 − 12x2 log(x), and

δ`τRC =
α

2π

[
25

4
− π2 +O

(
m2
`

M2
τ

)]
+ ... (1.6)

takes into account QED radiative corrections.

1.2.2 Hadronic decays of the Tau lepton

Hadronic or semileptonic Tau decays are decays of the Tau lepton that
have hadrons (really mesons) in the final state. These decays have proved to
be of fundamental importance in the study of low energy QCD, this is a well
known fact. In this work we want to show that semileptonic Tau decays are
much more than a clean low energy QCD laboratory. We will see that they
are also very useful in the search for new physics effects and for this reason
they will have a leading role in this thesis work.

The mass of the Tau lepton is really large compared with the mass of light
mesons like pions and kaons, therefore, the Tau has many semileptonic chan-
nels open, starting with the simple decays into one meson (two body decays)
like τ− → π−ντ and τ− → K−ντ , passing to decays into two mesons (three
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body decays) like τ− → π−π0ντ and τ− → (Kπ)−ντ , to higher multiplicities
like decays into 3, 4 and 5 mesons. Multiplicities higher than 5 mesons are
kinematically allowed, but they do not have too much phenomenological in-
terest.

The semileptonic decays of the Tau lepton proceed through the exchange
of a W -boson according to the SM, just as purely leptonic decays. The
interaction is again given by the weak charged-current Lagrangian,

Lcc = − g

2
√

2
Wµūγ

µ(1− γ5)(Vudd+ Vuss) + h.c. , (1.7)

where Vud and Vus are elements of the CKM (or quark-mixing) matrix, Vud
mediates the strangeness conserving decays while Vus mediates the strangeness
changing decays, both will be very useful in our studies along this work.

The simplest hadronic decays are the one-meson decay modes τ− → P−ντ
where P = π,K. Here the kinematics is fixed since these are two-body de-
cays, then the decay rates can be trivially calculated and are given by the
following expression,

Γ(τ− → π−ντ ) =
G2
F |Vud|2f 2

πM
3
τ SEW

8π

(
1− m2

π

M2
τ

)
(1 + δτπem) , (1.8)

where fπ is the pion decay constant and the quantity δτπem accounts for the
electromagnetic radiative corrections. For the channel τ− → K−ντ , the decay
rate is exactly as in eq. (1.8) but replacing Vud → Vus, fπ → fK , mπ → mK

and δτπem → δτKem .
The constants fπ and fK come from the relevant matrix elements

〈π−(p)|d̄γµγ5u|0〉 = −i
√

2fπp
µ , 〈K−(p)|s̄γµγ5u|0〉 = −i

√
2fKp

µ , (1.9)

where fπ ∼ 92 MeV and fK ∼ 110 MeV, whose values are measured from
the decays π− → µ−ν̄µ and K− → µ−ν̄µ, respectively. Note that the values
for fπ and fK can also be determined from Lattice QCD [15] and in fact we
will use the lattice values for fπ and fK in chapter 5 when we discuss a global
effective field theory analysis for tau decays.

For the two-meson decay modes τ− → (PP ′)ντ , the matrix elements are
more complicated than the simple one-meson formulas (1.9) since in this
case the matrix elements are parametrized in terms of functions and not just
constants. These functions that parametrize the hadronization process are
known as form factors and they appear inside the matrix elements in the
following way

〈P−P ′0|d̄iγµu|0〉 = CPP ′

[(
p− − p0 −

∆PP ′

s
q

)µ
F PP ′

V (s) +
∆PP ′

s
qµF PP ′

S (s)

]
,

(1.10)
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where d̄i is either d̄ or s̄, pµ− and pµ0 are the momenta of the charged and
neutral pseudoscalars, ∆PP ′ = m2

P −m2
P ′0 , q

µ = (p−+ p0)µ is the momentum
transfer, s = q2 and F PP ′

V (s) and F PP ′
S (s) are the vector and the scalar form

factors, respectively. In chapters 3, 4 and 5, we will discuss in more detail
the scalar and vector form factors, additionally, we will add a tensor form
factor to our analysis which will play a key role, specially in chapter 3. Also
in appendix C you will find more information about all the form factors that
we will discuss in the text. The global normalization coefficients CPP ′ are
chosen so that the vector form factor F PP ′

V (s) is one at lowest order in Chiral
Perturbation Theory (see section 2.3.2), the values for CPP ′ for each of the
channels are 3 ,

Cππ =
√

2 , CKK̄ = −1 , CKπ =
1√
2
, CπK̄ = −1 , CKη =

√
3

2
. (1.11)

The hadronic invariant mass distribution for the two-meson decay modes
is given by

dΓ

ds
=
G2
F |Vui|2M3

τ

768π3
SEWC

2
PP ′

(
1− s

M2
τ

)
×
[(

1 +
2s

M2
τ

)
λ

3/2
PP ′|F PP ′

V (s)|2 + 3
∆2
PP ′

s2
λ

1/2
PP ′|F PP ′

S (s)|2
]
,

(1.12)

where λPP ′ ≡ λ(s,m2
P− ,m

2
P ′0)/s

2, SEW resums the short-distance electroweak
corrections and λ(x, y, z) = x2 +y2 +z2−2xy−2xz−2yz is the usual Kallen
function.

In chapters 3, 4 and 5 we will see how expressions (1.8) and (1.12) are
modified in the presence of new physics.

1.3 Different searches for new physics

There are two different ways to look for new particles and new interactions
beyond the SM. One is to produce the new particles directly and the other
is to measure the effects of these new particles indirectly through quantum
effects. In the following two points we explain exactly what we mean by this:

• Direct detection: according to Einstein’s famous formula E = mc2,
new particles could be produced in collider experiments if the energy
of the collisions is high enough. This has been the route that led to the

3For simplicity, the physical η meson was identified with the η8 of flavor SU(3).
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discovery of many of the elementary particles of the SM like the W±

and Z bosons in 1983 at CERN, and more recently the Higgs boson
in 2012, also at CERN. Since the discovery of the Higgs, the SM is
complete, so that we do not know exactly what we are looking for, in
the sense that we do not know how many new particles and interactions
are present at higher energies, or if they exist at all. On the one hand,
we have the possibility that they are just around the corner waiting to
be discovered by the next generation of particle accelerators, but on the
other hand, we have the possibility that these particles are so massive
that they are very far to be produced directly.

• Indirect detection: new heavy particles and potential new interactions
could be observed indirectly through quantum corrections (loop effects)
if the measurements are sufficiently precise. As a matter of fact, some
particles were postulated to explain several observables before they
were actually produced in collider experiments. A famous example is
the charm quark, which was first proposed to explain the branching
ratio for the process KL → µ+µ−. Without the charm quark the calcu-
lation for the branching ratio of KL → µ+µ− was predicted to be much
larger than experimentally measured. This is a consequence of the GIM
mechanism which states that there are no flavor-changing neutral cur-
rents in the SM. We will briefly discuss the GIM mechanism in chapter
2.

Since the new physics energy scale could be extraordinarily high, the second
point is particularly useful in the current searches. In fact, this indirect
approach fits perfectly within the EFT tools and techniques that we have
mentioned before and it is the one that we will follow in this thesis.

1.4 Organization of the Thesis

So far, we have discussed some important aspects of Tau physics in this
chapter. In chapter 2 we will discuss in detail the fundamentals of effective
field theories, first, we will explain some generalities of EFTs and then we will
review meticulously two fundamental examples, namely: the Standard Model
Effective Field Theory (SMEFT) and Chiral Perturbation Theory (ChPT).
These two examples will serve to illustrate the main ideas behind EFTs, and
will also serve as the basic ingredients of this thesis.

In chapters 3 to 5, we present our results. In chapter 3, we analyze
in detail the decays τ− → (Kπ)−ντ . In chapter 4 we study the decay
τ− → K−K0ντ and also discuss very briefly the decays τ− → K−η(′)ντ .
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In chapter 5 we take advantage of our results in chapters 3 and 4 and per-
form a global analysis of hadronic Tau decays.

Finally, in chapter 6 we summarize our main findings and present our
conclusions.

Several appendices complement this thesis: the first three of them in-
clude necessary technical details on the formalism used to describe the pseu-
doGoldstone bosons in chiral Lagrangians, the hadronic currents and their
corresponding form factors. Appendix D includes the main results on polar-
ization observables in the τ− → π−`+`−ντ decays (this work was started in
my master thesis) and Appendix E summarizes my most recent results, on
neutral-current generalized neutrino interactions, within a global analysis.

Before concluding this chapter, we want to say that Tau physics is in a
golden age. The precise measurements achieved mainly thanks to the Z and
B factories [16, 17] have promoted this area to the level of precision necessary
to test the SM and its possible extensions in a manner which is complemen-
tary or even competitive with other usual low-energy probes, such as nuclear
β decays or semileptonic pion and kaon decays and also with the high-energy
measurements at LHC scales. We expect that the analysis carried out in this
work can serve as a motivation for the experimental Tau Physics groups at
Belle(-II) [18].

This chapter was mostly based in refs. [19, 20], and ref. [21] was very
helpful. Finally, the recent book on weak decays [22] by Buras was also ex-
tremely useful.

While writing this work I benefited a lot from previous PhD theses that
inspired me and helped me to clarify many concepts and ideas, the following
works were specially helpful [23, 24, 25, 26].
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Chapter 2

Effective Field Theories

2.1 Introduction

Effective Theories are ubiquitous in physics and are the poster child ap-
proach in the construction of physical theories. By this we mean that they
are always the first step when modeling physical phenomena. We can track
back the use of effective theories to the very beginning of physics itself. Just
to mention an example, consider Newton’s laws, we know today that they
are just an effective way to describe the motion of particles in the sense that
their regime of applicability breaks down for high speeds and also for small
scales. Just like Newton’s laws there are plenty of examples of effective the-
ories in classical physics as well as quantum physics.

This notion of breaking of applicability is what characterizes effective
theories and is what allows us to define such theories in the following way:
An effective theory is a theory which only describes the physics below some
scale Λ, as opposed to a fundamental theory which should be valid up to
arbitrarily high energies.

In this thesis we are only interested in quantum field theories, so that we
particularize the general definition given above for general effective theories
to the realm of quantum fields, the result is what we know as effective field
theories of EFTs for short. These are going to be the foundations under
which all this thesis work is constructed and all the results we are going to
present here have to do with EFTs in one way or another.

Physical theories have three fundamental ingredients:

(i) Symmetries
(ii) Degrees of freedom
(iii) Stable quantum vacuum
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Naturally, EFTs must have these three ingredients as any other rea-
sonable theory, the only special thing is that the degrees of freedom and
symmetries might not be those of the fundamental or “full” theory. It might
be the case that some degrees of freedom are not present at the energy scale
we are working with. Also the symmetry at the scale of interest might not
be the complete symmetry of the full theory, or it can be a combination of
both situations. Note that the stable quantum vacuum requirement is not a
problem, since it is trivially the same in the full theory and in the EFT. At
this point it is natural to ask if one can construct a valid theory with incom-
plete degrees of freedom and possibly incomplete symmetries. The answer is
yes and we have been doing this all the time, sometimes without noticing.
There is just one caveat, we can construct such theories but they will only
work for energies bounded from above by some scale Λ, where new degrees of
freedom and possibly new symmetries might appear. The theoretical basis
behind the construction of EFTs can be formulated in terms of a theorem,
first stated by S. Weinberg [27]:
“To any given order in perturbation theory, and for a given set of asymptotic
states, the most general possible Lagrangian containing all terms allowed by
the assumed symmetries will yield the most general S-matrix elements con-
sistent with analyticity, perturbative unitarity, cluster decomposition and
assumed symmetry principles.”

Having said that, the idea to construct EFTs is very simple, one im-
plements an expansion in a parameter λ = E/Λ in the form of a Taylor
series, where each term in the expansion comes from different pieces of a
Lagrangian Leff called the effective Lagrangian. Note that Leff must be
constructed with the symmetries and degrees of freedom adequate to the en-
ergy scale we are working with as it was clear from the Weinberg’s theorem
stated in the previous paragraph. Conceptually, the idea is to expand Leff
as a string of operators with different energy dimension

Leff = L≤D + L≤D+1 + L≤D+2 + ... , (2.1)

where D is the dimension of spacetime. From the previous equation we see
that while computing amplitudes we can pull out different powers of λ = E/Λ
from each of the terms of the effective Lagrangian. We will explain in detail
the energy dimension of operators and their classification in what follows, for
now it suffices to say that we will work with D = 4.

Note from Weinberg’s statement that we can have in principle an infinite
number of terms in Leff if we just follow blindly the three points stated
previously: (i), (ii) and (iii), that is, there is an infinite number of terms
consistent with fixed degrees of freedom and symmetries and this is really
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bad because the theory loses any predictive power. To prevent this problem
there is an additional fourth point which is a key concept in EFTs and is
unique in this kind of theories:

(iv) Power counting

Power counting allows us to arrange calculations in order to have a finite
number of terms and this fundamental point is what makes EFTs possible.
Power counting is closely related with renormalizability. Remember that in
the SM there are no infinities in the calculations since they can be absorbed
in the free parameters of the theory in a systematic way. Although EFTs
are not renormalizable in the old sense, power counting saves the day since
it organizes our calculations in order to produce finite results at any desired
order in the EFT expansion. At the end the required precision is going to
be dictated by the experiments, thus, we need to make our power expansion
such that the ratio (E/Λ)n is sufficiently small when compared with experi-
mental uncertainties. There is nothing sacred about renormalizability, for all
the calculations and for all practical purposes, a non-renormalizable theory
is just as good as a renormalizable theory, provided that we are satisfied with
a finite accuracy ε, and this is of course always the case.

Mathematically this means that our accuracy ε must satisfy the following
relation:

ε ≤
(
E

Λ

)Dmax−4

, (2.2)

where Dmax is the highest dimension needed in our operators to achieve a
given precision ε.

A natural question that arises now is the following: is all the high energy
dependence completely lost in the low energy theory?. The answer is no, the
effects of the heavy particles (high energy scale Λ) in the low energy dynamics
is only manifest through corrections proportional to a negative power of the
high energy scale Λ or through renormalization. This is a manifestation of
the famous Appelquist-Carazonne theorem [28] also known as the decoupling
theorem. Decoupling is the reason behind the natural separation of physical
scales, this is for example why we do not need to know about the bottom
quark to describe the hydrogen atom 1, and in general this is why we do not
need to know about heavy particles to study low energy phenomena. Just to
stress the fundamental character and importance of the decoupling theorem,
here I would like to add a beautiful phrase that I read from Cliff Burgess [29]:

1Of course mb affects the e−p interaction in the hydrogen atom, but this effect is

suppressed by the ratio
(
me
mb

)2

, which is negligible in that context.
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“Decoupling is a very good thing, since it means that the onion of knowledge
can be peeled one layer at a time.”

EFTs are very useful in particle physics. In the old days they were used
to understand the theoretical foundations of the weak interactions with the
famous Fermi Theory, which was the first attempt to describe processes like
muon and beta decays. Now we know the Electroweak Theory, which is the
corresponding full theory for the electric and weak interactions, but we keep
using the Fermi Theory in our calculations of low energy weak processes like
muon, tau, or beta decays due to its power and its computational advantages.
Another old example is that of the Euler-Heisenberg Lagrangian, which is an
EFT of QED that describes photon-photon scattering in a theory with no
electrons, that is, integrating out the electron field. This approach is really
useful in the calculations and has all the features of QED at low energies.
Another good example of a useful EFT is that of Chiral Perturbation Theory
(ChPT), in this case the use of ChPT is not just for computational conve-
nience, again, despite we know the fundamental theory of strong interactions
(QCD), for tau decays, the power series in the αs parameter is not conver-
gent since we are in the domain of non-perturbative QCD, thus, we have at
least two options: change the nature of the degrees of freedom from quarks
and gluons to mesons in order to have a convergent calculation, i.e. work
with EFTs; or use numerical methods, i.e. Lattice QCD. Here, as we have
stated before, we follow the first approach. There are many other examples,
but we would like to mention one more that is going to be ubiquitous in this
work, that is the one that treats the SM itself as an EFT, as we will see,
this is just an extension of the SM Lagrangian that incorporates operators of
higher dimension than four. We will discuss the Fermi Theory, ChPT, and
the SMEFT in more detail in what follows.

Note that there is always a fundamental scale for each of the EFTs. For
the Fermi Theory it is the mass of the W-boson, for the Euler-Heisenberg
EFT it is the mass of the electron, for ChPT we have the mass of the ρ me-
son, and for the SMEFT we do not have an obvious scale, but it is reasonable
to suppose that New Physics is above the Electroweak scale.

Note also that we can distinguish between two different approaches when
dealing with EFTs. We have the top-down approach when we start with the
fundamental theory and we want to construct an effective theory at low en-
ergies, that is, we go from high to low energies. The Euler-Heisenberg EFT
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and the Fermi Theory2 are examples of this top-down approach. On the
other hand, we have the bottom-up approach when we do not know the fun-
damental theory, but we have a reasonable low energy theory that we try to
extend by using EFT techniques. The SMEFT is an example of this bottom-
up approach. Sometimes the bottom-up approach is also used when we have
the full theory but we cannot do the matching for some reason, this occurs
for example at low energies in QCD when the theory is non-perturbative. To
avoid this last problem we construct ChPT with the low energy degrees of
freedom and symmetries, following the bottom-up approach.

For the convenience of the reader, we summarize all the information pre-
sented in the previous three paragraphs regarding the specific examples of
EFTs we chose, their fundamental scales and the approach they belong to in
the following table.

Low Energy EFT Full Theory Fundamental Scale Approach
SM ? TeVs? Bottom-Up

Euler-Heisenberg Theory QED me ∼511 KeV Top-Down
Fermi Theory SM mW ∼80 GeV Top-Down

ChPT QCD mρ ∼1 GeV Bottom-Up

Table 2.1: Examples of EFTs

The fundamental piece in the study of EFTs is the effective Lagrangian
(or the effective Hamiltonian), which contains all the relevant information of
our physical systems. We construct the effective Lagrangian Leff depending
on the approach that we are trying to implement, in the top-down approach
we have the fundamental theory and from there we integrate out (remove)
the heaviest particles and match onto a low energy theory, as a result we
will produce new operators and new couplings. This process is expressed
mathematically in the following equation

LHigh → LLow =
∑
n

L(n)
Low . (2.3)

The Lagrangians LHigh and LLow will agree in the infrared, but will differ
in the ultraviolet. An example of this is the Fermi V − A Theory of Weak
interactions, where one starts with the SM Lagrangian and integrates out the
W boson ending up with a Lagrangian composed of dimension 6 operators.

2Nowadays we treat the Fermi Theory in the top-down approach because we know the
EW Theory, but at the beginning it was constructed following the bottom-up approach
by Fermi since he did not know the fundamental theory behind.
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On the other hand, when we try to explore the UV completion for low-
energy theories we can extend our low energy Lagrangian following the
bottom-up approach as we show below

Leff = L0 +
∑
i,k

c
(k)
i

Λi−4
O

(k)
i (φL) , (2.4)

where L0 is the low energy renormalizable Lagrangian (for example the SM
Lagrangian), Λ is the new physics scale, φL are the low energy degrees of

freedom (for instance the SM degrees of freedom), O
(k)
i are operators with

different dimensions, and c
(k)
i are the corresponding couplings known as the

Wilson coefficients 3. Note that the sum is over both indices i and k since
we can have several different operators with the same dimension. We will
see an explicit example of this in section 2.2 when we discuss the SMEFT.
There is another possibility in the bottom-up approach in which we have to
change completely the degrees of freedom in our description of our system
for some reason. As we have pointed out before, this occurs for example in
ChPT, when it is convenient to change the original degrees of freedom (quarks
and gluons) to mesons in order to have convergent calculations since the
full theory (QCD) is strongly coupled. We will discuss Chiral Perturbation
Theory in section 2.3.

From eqs. (2.3) and (2.4) we see that the result of working with EFTs
is that at the end we have a string of operators with different dimensions
contributing to the physical processes. There is a natural classification for
these operators that follows directly from dimensional analysis. Since we
are working with natural units and also in four-dimensional space-time, the
Lagrangian must have dimension of E4:

[L] = 4 , (2.5)

therefore, the different operators and couplings will satisfy the following re-
lations

[Oi] = di → αi ∼
1

Λdi−4
, (2.6)

this allows us to classify the operators according to their dimension:

• Relevant (di < 4)

• Marginal (di = 4)

3The Wilson coefficients c
(k)
i are dimensionless, but they could depend logarithmically

on the scale Λ.
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• Irrelevant (di > 4)

as we can see from eq. (2.6) the operators Oi behave very differently for
each of these three categories, their names are taken from their behaviour at
energies lower than the scale Λ, while irrelevant operators are suppressed by
the high energy scale Λ, relevant operators are reinforced. Finally, marginal
operators are equally important at all energy scales and quantum effects can
make them look relevant or irrelevant depending on the particular system.

Finally, before concluding this section, we want to mention that it was
mostly based on the reviews [30, 31, 32, 33, 34, 35, 36] and on the books
[37, 29].

2.2 Standard Model Effective Field Theory

(SMEFT)

2.2.1 Standard Model

Before discussing the SMEFT, it is important and appropriate at this
point to discuss the SM first since it is ultimately the root and the basis of
this work and the whole area of particle physics.

The SM is the most successful theory in physics along with general rela-
tivity, it describes three of the four fundamental forces known in nature: the
strong force, the electromagnetic force and the weak force. These last two
forces are ultimately unified and together they are known as the electroweak
interaction. The remaining force known as gravity is described by general
relativity quite remarkably.

The SM is a gauge theory constructed in the framework of Quantum Field
Theory with SU(3)c×SU(2)L×U(1)Y as the gauge group. The SU(3)c part of
the group describes the strong interaction which is known as Quantum Chro-
modynamics (QCD) and the remaining SU(2)L×U(1)Y group describes the
electroweak force that we mentioned in the previous paragraph. The symme-
try group of the SM fixes the interactions, thus, the number and properties
of the vector gauge bosons is fixed. We have as many vector bosons as gener-
ators in the gauge group, for example, eight vector bosons for SU(3)c known
as gluons and represented by the fields Gi

µ, three for SU(2)L represented by
the fields W i

µ and one for U(1)Y represented by Bµ. We will shortly see that
the W± bosons are a linear combination of the W 1

µ and W 2
µ bosons and also

that the photon and the Z boson are both linear combinations of the W 3
µ

and the Bµ fields. As in any gauge theory, the vector bosons are introduced
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replacing the normal derivative ∂µ with the covariant derivative Dµ,

Dµ = ∂µ + ig ~Wµ · ~I + ig′Bµ
Y

2
, (2.7)

where ~I = (I1, I2, I3) is a compact form to write the three generators of the
SU(2)L group and Y is the only generator of the U(1)Y group and is known as
the hypercharge. In this section we only concentrate on the electroweak part
of the Lagrangian, we will consider the strong part in the next section when
we discuss ChPT. The explicit form for ~I depends on the representation we
choose for the matter content, as we will see, it turns out that nature chooses
doublets (Ii = τi/2 where τi are the three Pauli matrices) and singlets (Ii =

0). Once we choose the representation for ~I, the value of Y is automatically
fixed through the Gell-Mann-Nishijima relation,

Q = I3 +
Y

2
. (2.8)

The gauge fields are not static entities, they of course have their own
dynamics, therefore we have to construct the proper dynamical terms in
the Lagrangian, this is trivially done for the case of the Bµ field from the
experience with gauge invariance in QED which can be easily extended for
the construction of the dynamical terms for the W i

µ fields following the ideas
of Yang-Mills,

Lgauge = −1

4
W i
µνW

µνi − 1

4
BµνB

µν . (2.9)

The terms W i
µν , and Bµν are respectively the field strength tensors for

SU(2)L, and U(1)Y and are given by the following equations:

W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkWµjWνk, i, j, k = 1, 2, 3, (2.10)

Bµν = ∂µBν − ∂νBµ . (2.11)

Note from eq. (2.9) that gauge symmetry forbids the construction of mass
terms for the gauge bosons, but, on the other hand we know that the W±

and the Z bosons do have mass. We will see that this is possible via the
Higgs mechanism.

From our previous discussion, we see that at the end we only have three
independent parameters coming from Lgauge, these are the three independent
gauge couplings: g and g′ that we saw explicitly before, and gs that we will
see in the next section. Each of these gauge couplings are determined from
experiments.

So far we have discussed the electroweak gauge sector, now it is time
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to discuss the matter content and the interactions between matter and the
gauge bosons. Matter is composed of fundamental particles of spin 1/2, so
that, these particles are fermions. These fermions divide into two groups:
quarks and leptons.

Quarks participate in all fundamental interactions: they are the only par-
ticles that ‘feel’ the strong force, they also ‘feel’ the electromagnetic force,
the weak force and gravity. These particles are the smallest constituents of
hadronic matter, like the atomic nuclei present everywhere or the pions and
kaons that we observe in cosmic rays. Quarks accommodate in two different
ways: baryons and mesons 4. Baryons are composed of three quarks and
mesons are composed of a quark-antiquark pair, both states are singlets of
color or colorless as we like to say it. Baryons and mesons together form
what we know as hadrons.

Leptons participate in three of the four fundamental interactions, they
are ‘blind’ to the strong force, so that QCD is the only one absent. Lep-
tons are divided into two categories: the charged ones and the neutral ones.
The charged ones ‘feel’ the electromagnetic force, the weak force and gravity,
and the neutral ones are called neutrinos and only ‘feel’ the weak force and
gravity. For each of the charged leptons there is a neutrino partner. For the
convenience of the reader we have summarized the matter content of the SM
in the following table.

1st generation 2nd generation 3rd generation
quarks u (up) c (charm) t (top)

d (down) s (strange) b (bottom)
leptons νe (electron neutrino) νµ (muon neutrino) ντ (tau neutrino)

e (electron) µ (muon) τ (tau)

Table 2.2: Matter content of the SM.

Unlike the gauge boson sector where everything was fixed, there is noth-
ing that constraints the number and the properties of fermions, the only
requirement for fermions is that they must fulfil a representation of the sym-
metry group and that these representations comply with the cancellation of
quantum anomalies.

The matter content shown in table 2.2 is the one that fulfils the cur-
rent phenomenology, as we can see, matter accommodates in three different
families or generations, where all of them have exactly the same properties

4It is believed that quarks could accommodate in more general color-neutral config-
urations. These are known as exotic hadrons. Examples of these configurations are
tetraquarks and pentaquarks.
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except for the mass. In principle there is no theoretical argument in the SM
that forbids more families of particles, we could just as well have a fourth
generation of quarks and leptons that accomplishes with the cancellation of
quantum anomalies, but at the end experiment tells us that there are just
three families and that is all that matters.

The left-handed components of quarks and leptons accommodate in the

SU(2)L doublets, qmL =

(
um
dm

)
, and lmL =

(
νm
e−m

)
and the right-handed

components accommodate in the SU(2)L singlets umR, dmR and e−mR. The
m subscript labels the family, thus m = 1, 2, 3. Some authors refer to this
arrange as the ‘qudle’ representation for a useful mnemonic.

Now that we have the fundamental pieces of matter, we can easily con-
struct the Lagrangian corresponding to the fermion sector Lf as a collection
of massless Dirac Lagrangians with the appropriate covariant derivatives,

Lf =
3∑

m=1

[
qmLi /DqmL + lmLi /DlmL + umRi /DumR + dmRi /DdmR

+ emRi /DemR

]
,

(2.12)

fermion mass terms are forbidden because the weak interaction is chiral since
it treats the left and right components of fermions in a different way. As in
the case of the gauge bosons, the masses of the fermions are also acquired
through the Higgs mechanism.

The covariant derivatives in eq. (2.12) provide the interaction between
the fermions and the weak gauge bosons W± and Z and also between the
charged fermions and the photon. As we will see these interactions divide in
two categories charged-current (CC) and neutral-current (NC) interactions.

For clarity purposes let us discuss the leptonic part of eq. (2.12) first,

Lf,L = −1

2
(ν̄eLēL)

(
g /W 3 − g′ /B g( /W 1 − i /W 2)
g( /W 1 + i /W 2) −g /W 3 − g′ /B

)(
νeL
eL

)
+ g′ēR /BeR ,

(2.13)
where we have used the fact that the hypercharge for the lepton doublet and
singlet is Y = −1 and Y = −2, respectively. The off-diagonal terms in eq.
(2.13) form the charged-current interaction Lagrangian,

L(CC)
f,L = −g

2

(
ν̄eL( /W 1 − i /W 2)eL + ēL( /W 1 + i /W 2)νeL

)
, (2.14)

here, it is convenient to define a field W µ that annihilates W+ bosons and
creates W− bosons as,

W µ ≡ W µ
1 − iW µ

2√
2

, (2.15)
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substituting eq. (2.15) in eq. (2.14), we obtain,

L(CC)
f,L = − g√

2

(
ν̄eL /WeL + ēL /W

†
νeL

)
= − g

2
√

2
ν̄eγ

µ(1− γ5)eWµ + h.c

= − g

2
√

2
jµW,LWµ + h.c ,

(2.16)

where the leptonic charged-current jµW,L is defined as,

jµW,L = ν̄eγ
µ(1− γ5)e . (2.17)

As we have seen on chapter 1, formula (2.16) plays a central role in this
thesis work since tau decays are mediated via the charged-current interaction.
We will use the effective realization of the (V − A) interaction shown in eq.
(2.16) and its generalization to more complex spin-one currents and also the
effective realization of general scalar, pseudoscalar and tensor interactions
along this work.

From the diagonal terms in eq. (2.13) we also have a neutral-current
interaction given by the Lagrangian,

L(NC)
f,L = −1

2

[
ν̄eL(g /W 3 − g′ /B)νeL − ēL(g /W 3 + g′ /B)eL − 2g′ēR /BeR

]
. (2.18)

The electromagnetic force is hidden inside the previous Lagrangian, to
decouple it Glashow suggested that the photon field Aµ and a new neutral
boson field Zµ are a mixture of the W µ

3 and Bµ bosons as shown in the
following equation,

Aµ = sin θWW
µ
3 + cos θWB

µ ,

Zµ = cos θWW
µ
3 − sin θWB

µ , (2.19)

the angle θW is known as the weak mixing angle, the Glashow angle or the
Weinberg angle sometimes. Substituting eq. (2.19) in eq. (2.18) we can write
the neutral-current Lagrangian in the form,

L(NC)
f,L =− g

2 cos θW

[
ν̄eL /ZνeL − (1− 2 sin2 θW )ēL /ZeL + 2 sin2 θW ēR /ZeR

]
+ g sin θW ē /Ae ,

(2.20)

where the couplings g and g′ satisfy the relation g sin θW = g′ cos θW in order
to cancel the interaction between the photon and the neutrinos. Note that

26



the last piece of eq. (2.20) is just the QED Lagrangian, so that we can make
the identification g sin θW = e.

Finally, the neutral-current Lagrangian can be written as,

L(NC)
f,L = L(Z)

f,L + L(γ)
f,L , (2.21)

where L(γ)
f,L is the QED Lagrangian and L(Z)

f,L is the part of the neutral-current
corresponding to the Z boson which is given by the following expression,

L(Z)
f,L = − g

2 cos θW
jµZ,LZµ , (2.22)

where the explicit form for the leptonic weak neutral current is,

jµZ,L = 2gνLν̄eLγ
µνeL + 2g`LēLγ

µeL + 2g`RēRγ
µeR , (2.23)

with gfL = If3 − qf sin2 θW and gfR = −qf sin2 θW .
Sometimes it is also convenient to write the leptonic weak neutral current

in the form

jµZ,L = ν̄eγ
µ(gνV − gνAγ5)νe + ēγµ(g`V − g`Aγ5)e , (2.24)

where gfV = gfL + gfR = If3 − 2qf sin2 θW and gfA = gfL − gfR = If3 .
The results can be trivially extended for the case of three generations, we

just have to replace eq. (2.17) and eq. (2.23) in the following way,

jµW,L = 2ν̄Lγ
µ`L = 2

∑
α=e,µ,τ

ν̄αLγ
µ`αL , (2.25)

jµZ,L = 2gνLν̄Lγ
µνL + 2g`L

¯̀
Lγ

µ`L + 2g`R
¯̀
Rγ

µ`R , (2.26)

where `L =

eLµL
τL

 and νL =

νeLνµL
ντL

.

So far, we have discussed the charged and neutral weak interactions of
leptons but we can obtain similar expressions for quarks starting again with
eq. (2.12) and following exactly the same procedure. In fact, the formulas
for the charged and neutral weak interactions for quarks are given exactly
by eq. (2.16) and eq. (2.22) respectively. The only difference comes in the
currents, here eq. (2.17) and eq. (2.23) are replaced by,

jµW,Q = 2q̄ULγ
µVCKMq

D
L , (2.27)
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jµZ,Q =2gUL q̄
U
Lγ

µqUL + 2gUR q̄
U
Rγ

µqUR

+ 2gDL q̄
D
L γ

µqDL + 2gDR q̄
D
Rγ

µqDR ,
(2.28)

with

qUL =

uLcL
tL

 , qUR =

uRcR
tR

 ,

qDL =

dLsL
bL

 , qDR =

dRsR
bR

 , (2.29)

where VCKM is known as the Cabibbo-Kobayashi-Maskawa matrix [38, 39],
which incorporates the mixing between the different quark flavors. Note that
the mixing is only present for the weak charged current in the quark sector,
there is no mixing for the leptonic weak charged current nor for the leptonic
and quark weak neutral currents.

We write the values for the neutral weak couplings that appear in eqs.
(2.23), (2.24), (2.26) and (2.28) in the following table,

Fermions gL gR gV gA
νe,νµ,ντ gνL = 1

2
gνR = 0 gνV = 1

2
gνA = 1

2

e,µ,τ g`L = −1
2

+ s2
W g`R = s2

W g`V = −1
2

+ 2s2
W g`A = −1

2

u,c,t gUL = 1
2
− 2

3
s2
W gUR = −2

3
s2
W gUR = 1

2
− 4

3
s2
W gUA = 1

2

d,s,b gDL = −1
2

+ 1
3
s2
W gDR = 1

3
s2
W gDV = −1

2
+ 2

3
s2
W gDA = −1

2

Table 2.3: Values for gL, gR, gV and gA.

The weak neutral current interactions will not play a major role in this
work since tau decays via the weak charged current, but they are fundamental
in our understanding of neutrino physics.

Now it is time to discuss the scalar sector. As we pointed out before, in
the SM, the masses of the W and Z gauge bosons, as well as those of the
fermions, are generated through the Higgs mechanism [40, 41, 42, 43] where

one introduces a scalar doublet φ =

(
φ+

φ0

)
and constructs the following

Lagrangian,
Lφ = (Dµφ)†Dµφ− V (φ) , (2.30)

where,
V (φ) = µ2φ†φ+ λ(φ†φ)2 , (2.31)

the first thing to note from the previous Lagrangian is that λ must be greater
than zero since the potential must be bounded from below and also that µ2
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must be less than zero in order to realize the spontaneous symmetry breaking.
It is convenient to write the Higgs potential in eq. (2.31) in the following

equivalent form,

V (φ) = λ

(
φ†φ− v2

2

)2

, (2.32)

where we have defined v ≡
√
−µ2
λ

and we have neglected an irrelevant con-
stant term.

Since λ > 0, we see from eq. (2.32) that the potential has a minimum for

φ†φ =
v2

2
. (2.33)

The vacuum of the theory must be electrically neutral so that the charged
part of the doublet φ must have a zero value in the vacuum, on the other
hand, the neutral part of the doublet φ can have a nonzero value in the
vacuum, in fact, in order to satisfy eq. (2.33) we must have the following
relation for the vacuum expectation value (VEV),

〈φ〉 =
1√
2

(
0
v

)
. (2.34)

The Higgs doublet φ =

(
φ+

φ0

)
can be conveniently written in the unitary

gauge as

φ(x) =
1√
2

(
0

v +H(x)

)
, (2.35)

where only the physical degrees of freedom appear explicitly, namely the
Higgs boson field H(x).

The dynamics of the Higgs field and the interactions of the Higgs and the
gauge bosons can be derived from eq. (2.30). First note that in the unitary
gauge the covariant derivative becomes

Dµφ(x) =

[
∂µ +

i

2
g ~Wµ · ~τ +

i

2
g′Bµ(x)

]
φ(x)

=
1√
2

(
i g√

2
Wµ(x)[v +H(x)]

∂µ − i
2

g
cos θW

Zµ(x)[v +H(x)]

)
,

(2.36)
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thus, the Higgs Lagrangian in eq. (2.30) takes the following form

Lφ =
1

2
(∂H)2 +

g2

4
(v +H)2W †

µW
µ +

g2

8 cos2 θW
(v +H)2ZµZ

µ − λ

4
(H2 + 2vH)2

=
1

2
(∂H)2 − λv2H2 − λvH3 − λ

4
H4 +

g2v2

4
W †
µW

µ +
g2v2

8 cos2 θW
ZµZ

µ

+
g2v

2
W †
µW

µH +
g2v

4 cos2 θW
ZµZ

µH +
g2

4
W †
µW

µH2 +
g2

8 cos2 θW
ZµZ

µH2 ,

(2.37)

focusing on the second equality we have that the first term is just the kine-
matical term for the Higgs field, the second term gives the mass for the Higgs
boson, the third and fourth terms are cubic and quartic self interactions of
the Higgs boson, the fifth and sixth terms are the masses for the W and
Z bosons, and the last four terms are cubic and quartic interactions of the
Higgs with the W and Z gauge bosons.

The explicit form for the masses of the Higgs, the W± and the Z bosons
is given by,

mH =
√

2λv2 =
√
−2µ2 ,

mW =
gv

2
,

mZ =
gv

2 cos θW
, (2.38)

the mass of the Higgs is a free parameter of the SM, so that it has to be fixed
by experiment, on the other hand, the masses of the W± and Z bosons are
predicted once the SM parameters are fixed.

One of the most useful parameters to test the SM is the ρ parameter
defined in the following equation

ρ =
m2
W

m2
Z cos2 θW

= 1 , (2.39)

where we have used eq. (2.38). The relation in (2.39) is only valid at tree
level, that value is of course modified by loop corrections.

The last piece in our discussion of the SM Lagrangian is the Yukawa
Lagrangian LY uk which gives the masses for the fermions

LY uk = −
3∑

m,n=1

[Γumnq̄mLφ̃unR + Γdmnq̄mLφdnR + Γemn
¯̀
mLφenR] + h.c , (2.40)
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where φ =

(
φ+

φ0

)
and φ̃ ≡ iτ 2φ† =

(
φ0†

−φ−
)

.

As we have pointed out before, there are no right-handed neutrinos in
the SM so that we do not have neutrino masses in the SM, but we know
that neutrinos do have mass from oscillation experiments, to reconcile this
fact it is clear that we must extend the SM to include a mechanism for the
mass generation of neutrinos. This can be done in several ways, one is the
exact analogue of eq. (2.40) in which one just adds right-handed neutrinos by
hand as happens with all the other leptons, if that is the case we have Dirac
neutrinos, the other possibility is that the mass of the neutrinos is generated
with left-handed neutrinos only or with right-handed neutrinos only but not
a mixture of both as happens with Dirac neutrinos, for this second possibility
we have Majorana neutrinos. This is still an open question in particle physics
and is beyond the scope of this thesis work.

Finally, putting all the pieces together we have that the SM is described
by the following Lagrangian 5

L = Lf + Lgauge + Lφ + LY uk , (2.41)

where we have a total of 19 independent parameters:

• 3 gauge couplings (g, g′, gs)

• 6 quark masses

• 3 masses for the charged leptons

• 3 mixing angles from the CKM matrix

• 1 CP phase also from the CKM matrix

• 2 parameters from the scalar sector (µ2 and λ)

• θQCD

It is amazing how the previous Lagrangian with its 19 independent param-
eters describes the electroweak and the strong force with such a level of
accuracy. To convince oneself of the predictive power of the SM it is enough
to take a look at the PDG [6] and see how well the SM is describing the
vast majority of the processes. There are very few exceptions, which we call
anomalies, that are in tension with the SM prediction. Those anomalies tend
to disappear with time (they were due to statistical fluctuations in the early

5Gauge fixing, as well as ghost and the θQCD terms (in the case of QCD) are omitted.
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data and/or coming from underestimated theory/experimental errors). All
these facts make the SM the most precise theory in the history of physics.

This section was mostly based on the two amazing books [44, 45] and the
famous review [46].

2.2.2 SMEFT

Now that we have introduced the SM, it is time to discuss the Standard
Model Effective Field Theory (SMEFT) which is the framework on which this
thesis relies. First we suppose that the EW symmetry is linearly realized 6

and that there is no new physics below the electroweak scale, so that all
possible new degrees of freedom appear at a scale ΛNP that is above the
EW scale. As a consequence of this assumption, new higher-dimensional
operators need to be introduced,

L = L(4)
SM +

1

Λ

∑
k

c
(5)
k O

(5)
k +

1

Λ2

∑
k

c
(6)
k O

(6)
k +O

(
1

Λ3

)
, (2.42)

where L(4)
SM is the usual renormalizable SM Lagrangian and all these high-

dimensional operators (O5
k, O

6
k, ...) are suppressed by powers of ΛNP . This

natural suppression allows us to neglect operators of dimension equal or
greater than 7 as a first approximation.

The operators O5
k and O6

k are constructed with the symmetries and de-
grees of freedom of the SM. It turns out that with these requirements we
only have one operator of dimension 5 [47], the so called Weinberg operator,
and 59 independent operators of dimension 6 (barring flavor structure and
hermitian conjugation) [48].

The Lagrangian corresponding to the Weinberg operator is given by

L5 =
c5

ΛNP

εij ¯̀
ci
Lφ

jεkl`
k
Lφ

l , (2.43)

where φ =

(
φ+

φ0

)
and `L =

(
νL
eL

)
. After spontaneous symmetry breaking we

obtain a Majorana mass term for the neutrinos

L5 =
1

2
mνεabν

a
Lν

b
L + h.c , (2.44)

with mν = c5v2

2ΛNP
. From experimental data mν ≤ 0.5 eV, so, one expects the

energy scale for new physics to be around ΛNP ≥ 6 × 1014 GeV assuming

6If the EW symmetry were non-linearly realized, we would need to use chiral La-
grangians as occurs in ChPT.
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that c5 ∼ 1, which is natural.
For the dimension 6 operators there are a total of 59 independent opera-

tors [48] as we can see in figures 2.1 and 2.2. Only eight of these operators
will contribute to low-energy charged current processes, namely:
four-fermion operators:

O(3)
`q = (¯̀γµτa`)(q̄γµτ

aq) , (2.45)

Oqde = (¯̀e)(d̄q) + h.c. , (2.46)

O`q = (¯̀
ae)ε

ab(q̄bu) + h.c. , (2.47)

OT`q = (¯̀
aσ

µνe)εab(q̄bσµνu) + h.c. , (2.48)

vertex corrections:

Oφφ = i(φT εDµφ)(ūγµd) + h.c. , (2.49)

O(3)
φq = i(φ†Dµτaφ)(q̄γµτ

aq) + h.c , (2.50)

and also two more operators that introduce some modifications to the Fermi
constant:

O(3)
`` =

1

2
(¯̀γµτa`)(¯̀γµτ

a`) , (2.51)

O(3)φ` = i(φ†Dµτaφ)(¯̀γµτ
a`) + h.c. , (2.52)

where, as usual, τa are the three Pauli matrices

τ 1 =

(
0 1
1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0
0 −1

)
. (2.53)

The previous eight operators are the only ones that contribute to semilep-
tonic decays [49], and for this reason they will be extremely useful in chapters
4, 5 and 6, where we will analyze semileptonic tau decays. Our calculations
will be given not in terms of SMEFT itself, but with its low energy limit,
that sometimes is referred as LEFT (from low-energy EFT). The running of
the couplings from a scale of 1 TeV to the scale of the Z mass and from there
to the scale of the tau mass has been studied in ref. [50].

It is interesting to point out that the work [48] that obtained the 59
independent dimension 6 operators was part of a masters thesis, in that
work they realized that many of the operators first discussed in [51] were
dependent on each other through the use of equations of motion.
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Figure 2.1: Dimension-six operators other than the four-fermion ones, from
Ref. [48].

2.3 QCD and Chiral Perturbation Theory

2.3.1 Quantum Chromodynamics

So far, we have discussed in detail the electroweak part of the SM, which is
contained in the SU(2)L⊗U(1)Y gauge group. Now we will discuss the strong
force, which is contained in the SU(3)C group in order to give a complete
and self-contained discussion of the Standard Model.

The gauge group SU(3)C is left unbroken after spontaneous symmetry
breaking, as a consequence of this fact, the gluons remain massless. There
are eight gluons, one for each of the generators of SU(3)C that together with
the quarks represent the degrees of freedom of QCD. Besides the SU(3)C and
the Lorentz symmetries, the strong interaction Lagrangian is also invariant
under charge conjugation (C), parity (P) and time reversal (T), its explicit
form is given by

LQCD = −1

4
Gi
µνG

µνi +
6∑
r=1

qr[i /D −mr]qr , (2.54)
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Figure 2.2: Four-fermion operators, from Ref. [48].

with

qr =

q1
r

q2
r

q3
r

 (2.55)

and
Gi
µν = ∂µG

i
ν − ∂νGi

µ − gsfijkGj
µG

k
ν , i, j, k = 1, ..., 8 , (2.56)

Dµ = ∂µ + i
gs
2
λiGi

µ , (2.57)

where λi are the eight Gell-Mann matrices and fijk are the structure constants
of SU(3),

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

(2.58)
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abc 123 147 156 246 257 345 367 458 678

fabc 1 1
2

−1
2

1
2

1
2

1
2

−1
2

√
3

2

√
3

2

Table 2.4: Totally antisymmetric nonvanishing structure constants of SU(3).

From the previous equations we see that the quarks are in the fundamen-
tal representation and the gluons are in the adjoint representation (as any
other gauge boson) of the gauge group SU(3)C .

There are many features that make QCD really special, for instance:
(i) The gluons have a color charge, this means that not only quarks interact
with other quarks via the exchange of gluons, gluons themselves interact with
other gluons. In fact, according to eqs. (2.54) and (2.56), we have trilinear
and quadrilinear interactions between the gluons. This is similar to what we
saw for the W± and the Z gauge bosons. This feature is inherited by the
fact that SU(3) is a non-abelian group.
(ii) The strength of the strong interaction reduces as the energy of those
interactions increases.
(iii) There is a scale ΛQCD at which hadronization takes place and at which
QCD becomes non-perturbative. This means that we cannot do perturbative
calculations with quarks and gluons at that scale or below. There is nothing
wrong with the theory per se, it is just that we are used to do perturbative
calculations and we do not know exactly what to do when we have strongly
coupled theories. When we work with tau decays we fall exactly in that
regime and to avoid this problem with the QCD Lagrangian we work in an
effective field theory framework, this EFT is called chiral perturbation theory
(ChPT) and we will discuss it in detail in the following section.
(iv) Quarks are confined inside hadrons, if we try to separate them ever-
increasing amounts of energy are required, so that, it becomes energetically
favorable to create a quark-antiquark pair, turning the initial hadron into a
pair of hadrons.

Point (ii) is called asymptotic freedom and is a well established fact from
QCD since 1973 when it was discovered by David Gross and Frank Wilczek
[52] and independently by David Politzer [53]. In fig. 2.3 you can see this
behavior of QCD; when you go to high energies or equivalently low distance
scales, the strong coupling αs(s) becomes smaller and smaller, and when you
go to low energies the αs(s) coupling becomes bigger and bigger.

Points (iii) and (iv) are part of what is known as color confinement. Color
confinement is not yet analytically proven and is one of the millenium prize
problems, but otherwise is really well established by experiments and by
lattice QCD calculations.
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αs(MZ
2) = 0.1179 ± 0.0010

α
s(

Q
2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)

DIS jets (NLO)
Heavy Quarkonia (NLO)

e+e- jets/shapes (NNLO+res)
pp/p-p (jets NLO)

EW precision fit (N3LO)
pp (top, NNLO)
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 0.2
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 0.3

 0.35

 1  10  100  1000

Figure 2.3: Measurements of the αs coupling as a function of energy Q (ex-
perimental dots) compared with QCD prediction (solid lines), from Ref. [6].

From the QCD Lagrangian (2.54) we see that QCD is a vector theory,
that is, it treats right-handed and left-handed spinors in the same manner.
The fact that QCD is a vector theory enables one to construct mass terms
as you can see in eq. (2.54). In table 2.5 you can see the masses for the six
quarks, the quarks u, d and s are known as light quarks and the quarks c,
b and t are known as heavy quarks (’light’ and ’heavy’ compared to ΛQCD).
Note that the errors for the light quark masses are big compared with the
corresponding errors for the heavy quark masses, this is due to the fact
that non-perturbative QCD effects are dominant for the light quarks. If one
works with the light quarks only (as we will), one obtains several accidental
symmetries.

From table 2.5 we see that the masses for the up and down quarks are
really close. If we set mu = md in a first approximation, the Lagrangian
in eq. (2.54) acquires a new symmetry called Isospin symmetry. With this
assumption the theory is invariant under the continuous group of isospin
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Flavor Mass Charge
u 2.2+0.5

−0.4 MeV 2/3
d 4.7+0.5

−0.3 MeV −1/3
s 95+9

−3 MeV −1/3
c 1.275+0.025

−0.035 GeV 2/3
b 4.18+0.04

−0.03 GeV −1/3
t 173.0± 0.4 GeV 2/3

Table 2.5: Mass and charge of quarks [6]. The u-, d-, and s-quark masses
are estimates of the so-called “current-quark masses” in the MS scheme at a
scale µ = 2 GeV. The c- and b- quark masses are the “running” masses in the
MS scheme, while for the t mass, we report the PDG “direct measurements”
result. The charge is given in units of the elementary charge e.

rotations
ψi → (ei~α·

~τ
2 )ijψj , (2.59)

where i, j run over the values u, d and ~τ = (τ1, τ2, τ3) is a vector arrange
with the three Pauli matrices. The associated Noether current is given by,

jµa = ψ̄γµ
τa

2
ψ , (2.60)

this is the SU(2) isospin symmetry, although it is broken since the up and
down quark masses are not exactly the same, we can always assume the sym-
metry as a first approximation and if needed, take isospin breaking effects,
which will always be very small (proportional to md −mu).

The same ideas can be extended to include the s quark, that is, we can
go from the SU(2) to the SU(3) isospin group, although in this last case
the assumption that mu = md = ms is not as strong as the previous one
mu = md, due to the fact that the mass of the strange quark is not that
close to the mass of the other light quarks, in any case, the SU(3) accidental
quasi-symmetry turns out to be really useful when analyzing the hadronic
spectra.

As a consequence of the SU(2) and SU(3) flavor symmetries we see
that mesons and baryons form multiplets which are representations of those
groups.

Note that this new SU(3) isospin symmetry is very different to the pre-
vious SU(3)C gauge symmetry, the isospin is an accidental flavor symmetry
while the other is an exact gauge symmetry. There is at least one more area
in the context of strong interactions in which the SU(3) group plays a fun-
damental role. This is the chiral symmetry group of QCD for vanishing u, d,
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and s quark masses, which is given by the direct product SU(3)L× SU(3)R.
We will study chiral symmetry in great detail in the following section when
we review chiral perturbation theory.

It is important to mention at this point that the QCD Lagrangian given in
eq. (2.54) is not the most general Lagrangian that one can construct, there
is one additional term consistent with the Lorentz and the SU(3)C gauge
symmetries that can be included in (2.54) that has the following form,

Lθ =
θ

16π2
TrG̃µνG

µν , (2.61)

where Gµν = Ga
µνT

a is the gluon field strength tensor and G̃µν = 1
2
εµναβG

αβ

is the dual of the gluon field strength tensor. Note that although this term
can be written as a total derivative, or surface term, it cannot be ignored
since the gauge fields do not necessarily vanish at infinity.

This is the famous θQCD parameter that we mentioned in section 2.2.1,
which is one of the 19 parameters that conform the SM. This parameter
is very special in the sense that it is very suppressed and we do not have
a fundamental theoretical reason that explains why this is the case, that is
why some authors sometimes exclude this parameter and speak about 18 free
parameters in the SM. Although we do not have a deep theoretical reason,
we know from phenomenology that this parameter theta is almost zero. In
fact from the upper limit on the neutron’s electric dipole moment at 90% CL
[54, 55],

|dn| ≤ 2.9× 10−26 e cm , (2.62)

we have that the parameter θ 7 must be extraordinarily small:

|θQCD| ≤ 10−10 . (2.63)

It is important to note that the θQCD term given in eq. (2.61) violates
CP. Actually, it is the only term that can violate CP in the strong sector,
however, due to the suppression of θQCD, CP is conserved for all practical
purposes in QCD. The fact that we do not have a fundamental theoretical
argument to impose CP conservation in QCD could be perceived as a fine
tuning problem. This is an open question in physics and is known as the
strong CP problem. A possible solution to this problem is the Peccei-Quinn
theory [56], which proposes a new pseudoscalar particle known as the axion.
In this thesis work, we will not deal with the strong CP problem in any of the
subsequent chapters. Given that QED satisfies the CP symmetry trivially,

7In fact, this applies to a linear combination of θ with the argument of the determinant
of the mass matrix, which is called θQCD.
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one expects that measurable violations of the CP symmetry come only from
the weak force.

While writing this section on QCD, the books [57] and [58] were extremely
helpful. The review [59] is also a very clear exposition of the subject.

2.3.2 Chiral Perturbation Theory (ChPT)

Previously, we saw that if we set mu = md = ms we obtain an accidental
SU(3) flavor symmetry, if we go further and set the masses to zero, the group
of symmetries is enlarged. To see this, let us write the QCD Lagrangian in
eq. (2.54) for the light quarks in the massless approximation

LQCD = −1

4
Gi
µνG

µνi +
∑

f=u,d,s

(qfLi /DqfL + qfRi /DqfR) , (2.64)

where qf =

(
qfL
qfR

)
. Note from eq. (2.64) that the left- and right-handed

components of the quarks decouple in the massless limit. This means that
we can make independent U(3) transformations on the left- and right-handed
components of the quark spinors

ψiL → Lijψ
j
L ,

ψiR → Ri
jψ

j
R , (2.65)

where Lij ∈ U(3)L and Ri
j ∈ U(3)R, so that the new group of symmetries is

U(3)L ⊗ U(3)R.
This new symmetry group can be conveniently decomposed in the follow-

ing way: U(3)L ⊗ U(3)R ∼ SU(3)L ⊗ SU(3)R ⊗ U(1)V ⊗ U(1)A, where we
now have the special unitary groups, baryon symmetry and axial symmetry.
As we will see SU(3)L ⊗ SU(3)R is spontaneously broken, U(1)V is realized
and U(1)A is anomalous.

U(1)V refers just to a global rephasing of the left- and right-handed fields,
that is,

ψiL → eiαψiL ,

ψiR → eiαψjR , (2.66)

this symmetry known as baryon number is realized in nature, but note that
is completely different to gauge symmetries in the sense that baryon number
is an accidental symmetry, it was not required from first principles.

U(1)A refers to opposite rephasings for the left- and right-handed fields

ψiL → eiβψiL ,

ψiR → e−iβψjR , (2.67)
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the axial symmetry U(1)A is exact in the classical theory, but it is broken by
quantum effects in QCD [60, 61].

The chiral symmetry SU(3)L ⊗ SU(3)R refers to transformations of the
type in eq. (2.65) with the additional condition that Lij and Ri

j must have
a determinant equal to one (that is, Lij and Ri

j must be unitary, unimodular
3× 3 matrices). This symmetry is spontaneously broken by the presence of
the operator 〈ψ̄iRψjL〉 as we see in the following equation

〈ψ̄iRψjL〉 = v3δij , (2.68)

so that, the vacuum of QCD is not symmetric under general SU(3)L⊗SU(3)R
transformations. However, the QCD vacuum is invariant under a subgroup
of the chiral group, namely SU(3)V , that is, for the case of equal left- and
right-handed transformations we have the symmetry breaking pattern

SU(3)L ⊗ SU(3)R → SU(3)V . (2.69)

According to Goldstone’s theorem, we have eight Nambu-Goldstone bosons
as a consequence of this spontaneous breaking of the chiral symmetry, that
is, one Nambu-Goldstone boson for each generator of the symmetry that
is broken. These eight Nambu-Goldstone bosons correspond to the meson
octet; pions, kaons and the eta.

The spontaneous breaking of the chiral symmetry is responsible for the
fact that we only see one meson octet and not two, if the QCD vacuum were
symmetric under the full SU(3)L⊗SU(3)R group, we would observe two me-
son octets with opposite parity, but since this group breaks to SU(3)V , only
the pseudoscalar octet is allowed, and that is indeed what we see in nature.

Strictly speaking the mesons in the octet are not exactly Nambu-Goldstone
bosons since they do have a mass, however their masses are very light com-
pared with the masses of all the other hadrons, this is specially true for the
pions, which are much lighter than the ρ meson, which is the next hadron
with the same flavor quantum numbers in the mass spectrum. Due to this
fact, these mesons are known as pseudo Nambu-Goldstone particles. This
mass gap rapidly suggests the idea of using an effective field theory, and this
is precisely what is done. The effective field theory that describes the strong
interactions between the light mesons is known as Chiral Perturbation The-
ory (ChPT) [62, 63].

Also note that there is one more apparent symmetry in the Lagrangian
(2.64), this symmetry, known as conformal symmetry, is related to the fact
that there is no apparent scale when we have massless quarks, however, the
hadronization process introduces one scale to the problem, this scale is de-
noted as ΛQCD, and has an approximate value of ΛQCD ∼ 300 MeV. Hence,
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at the end conformal symmetry is anomalous.
For the convenience of the reader we write a summary of the realized and

broken symmetries of the Lagrangian in eq. (2.64) in what follows,

Symmetries:

• Conformal Symmetry: anomalous

• U(3)L ⊗ U(3)R ∼ SU(3)L ⊗ SU(3)R ⊗ U(1)V ⊗ U(1)A

– SU(3)L ⊗ SU(3)R → SU(3)V : spontaneously broken

– U(1)V : realized

– U(1)A: anomalous

Having understood all the symmetries of the massless QCD Lagrangian
in eq. (2.64) and particularly the chiral symmetry breaking pattern, now it
is time to discuss the Chiral Perturbation Theory Lagrangian [27, 62, 63].
Note that since QCD is not perturbative in this regime, it is impossible to do
a matching between QCD and ChPT, therefore ChPT must be constructed
entirely with the Nambu-Goldstone fields as the degrees of freedom, following
the bottom-up approach.

The Lagrangian is constructed according to the Callan, Coleman, Wess,
and Zumino (CCWZ) prescription [64, 65] 8 where the Nambu-Goldstone
fields are parametrized in the following way

U(φ) = u(φ)2 = exp

[
i

√
2Φ

f

]
, (2.70)

with,

Φ(x) ≡ λaφa√
2

=


1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8

 , (2.71)

for the moment, the f in eq. (2.70) is just a constant with dimensions of
energy in order to have a dimensionless argument for the exponential. As
we will see in what follows, f will turn out to be the decay constant for the

8The CCWZ formalism is discussed in appendix A.
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pion.
In this prescription, U(φ) transforms as

U(φ)→ LU(φ)R† , (2.72)

so, the Lagrangian for ChPT must be constructed with terms with products
of the form UU †. But UU † = 1, so that the lowest order Lagrangian must
contain derivatives in order to have dynamics for the Goldstones

L2 =
f 2

4
〈∂µU †∂µU〉 , (2.73)

where 〈U〉 stands for the trace of the matrix U and the 4 in the denominator
is chosen so that we have a canonical normalization for the kinematic terms
of the Goldstones. Note that the effective Lagrangian describes a theory
of weakly interacting Goldstone bosons at low energy. The Goldstone boson
couplings are proportional to their momentum, and so vanish at low-energies.

Also note from eq. (2.72) that while U transforms linearly, the Goldstone
fields φa transform non-linearly. This is an example of a non-linear realization
of a symmetry.

Expanding U(φ) to fourth order in Φ we arrive to the following expression
for L2

L2 =
1

2
〈∂µΦ∂µΦ〉+

1

12f 2
〈(Φ←→∂ µΦ)(Φ

←→
∂ µΦ)〉+O

(
Φ6/f 4

)
, (2.74)

where (Φ
←→
∂ µΦ) ≡ Φ(∂µΦ) − (∂µΦ)Φ. The first term is the usual kinetic

term canonically normalized and the second term is a four-boson interaction
between two fields with two derivatives of the field. The only important
parameter here is the constant f , once it is fixed (through pion decay, for
example) every other pion-pion process is predicted.

From the lowest order Lagrangian in eq. (2.73) we already see some gen-
eral features that must be satisfied by higher order Lagrangians, for example
the pair of derivatives in (2.73). In general the Lagrangian will be given in a
power series of momentum or, equivalently, in a power series of derivatives,
and the number of these derivatives must be even in order to accomplish the
parity conservation of the strong force.

Leff (U) =
∑
n

L2n . (2.75)

The Lagrangian in eq. (2.73) and more generally, any Lagrangian of the
form shown in eq. (2.75) describes processes of the form ππ → ππ, 4π, 6π,
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etc, but does not describe electromagnetic or weak processes for pions and
does not even take into account the pion masses. If we want to introduce
all those effects we need to extend our lowest order Lagrangian L2 via the
introduction of external fields, that is, via the introduction of sources. With
that in mind, one starts again with the QCD Lagrangian for the light quarks
in the chiral limit (2.64) and introduce external fields vµ, aµ, s, p, and t̄µν ,
such that they couple to the quarks in the following way [62, 63, 66]

LQCD = L0
QCD + q̄γµ(vµ + γ5aµ)q − q̄(s− iγ5p)q + q̄σµν t̄

µνq , (2.76)

with t̄µν defined in the following way

t̄µν =
8∑

a=0

λa

2
t̄µνa , (2.77)

where λa are the eight Gell-Mann matrices that we have introduced before

and λ0 =
√

2
nf
Inf×nf

9.

Quark masses, and electromagnetic and semileptonic weak interactions
can be incorporated if we make the following identifications in eq. (2.76):

rµ ≡ vµ + aµ = eQAµ + ... ,

`µ ≡ vµ − aµ = eQAµ +
e√

2 sin θW
(W †

µT+ + h.c.) + ... ,

s = M+ ... , (2.78)

where Q and M denote the quark-charge and quark-mass matrices respec-
tively, and T+ is a 3× 3 matrix with the appropriate CKM parameters,

Q =

2
3

0 0
0 −1

3
0

0 0 −1
3

 , M =

mu 0 0
0 md 0
0 0 ms

 , T+ =

0 Vud Vus
0 0 0
0 0 0

 .

(2.79)
The tensor part in eq. (2.76) is specially important in this work since it is
involved in an interesting CP violating observable that we will study in detail
in chapter 4. This structure will also lead to the study of the tensor form
factors for the different decay channels that we will analyze in this thesis.

Due to the inclusion of these external fields, the original global chiral
symmetry SU(3)L⊗SU(3)R in L0

QCD is now promoted to a local one for the

9This ninth matrix λ0 together with the eight Gell-Mann matrices forms a basis of the
Lie algebra for U(3).
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new LQCD in eq. (2.76)

q → RqR + LqL ,

s+ ip → R(s+ ip)L† ,

`µ → L`µL
† + iL∂µL

† ,

rµ → RrµR† + iR∂µR
† ,

tµν → RtµνL
† , (2.80)

where the tensor source t̄µν in eq. (2.76) and the tensor source tµν in eq.
(2.80) are related by a change of basis,

ψ̄σµν t̄
µνψ = ψ̄Lσ

µνt†µνψR + ψ̄Rσ
µνtµνψL , (2.81)

so that, the only difference is that tµν and t†µν are expressed in the chiral
basis

t̄µν = P µνλρ
L tλρ + P µνλρ

R t†λρ ,

tµν = P µνλρ
L t̄λρ , (2.82)

where the explicit form for the chiral projectors is given by

P µνλρ
R =

1

4
(gµλgνρ − gνλgµρ + iεµνλρ) ,

P µνλρ
L = (P µνλρ

R )† . (2.83)

Finally, with the transformation properties for the external fields given in
(2.80) we can easily construct the lowest order effective Lagrangian analogous
to the one in eq. (2.73). As basic ingredients we have the covariant derivatives

DµU = ∂µU − irµU + iU`µ ,

DµU
† = ∂µU

† + iU †rµ − i`µU † , (2.84)

and the field strength tensors

F µν
x = ∂µxν − ∂νxµ − i[xµ, xν ] , x = r, ` . (2.85)

The lowest order effective Lagrangian invariant under local chiral sym-
metry has the form [62, 63]

L2 =
f 2

4
〈DµU

†DµU + U †χ+ χ†U〉 , (2.86)

where χ = 2B0(s+ ip). Note that at this point we have only encountered two
free parameters: f and B0. The first, as we have pointed out before, is just
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the pion decay constant and the second is related to the quark condensate,
both in the chiral limit. Let us see this explicitly by computing the chiral
currents from the effective action. First note that

exp(iZ) =

∫
DqDq̄DGµexp

[
i

∫
d4xLQCD

]
=

∫
DUexp

[
i

∫
d4xLeff

]
.

(2.87)
At lowest order in momenta, Z reduces to S2 =

∫
d4xL2. Therefore, we

have the following relations:

JµL =
δS2

δ`µ
=
i

2
f 2DµU

†U =
f√
2
DµΦ− i

2
(Φ
←→
D µΦ) +O

(
Φ3/f

)
,

JµR =
δS2

δrµ
=
i

2
f 2DµUU

† = − f√
2
DµΦ− i

2
(Φ
←→
D µΦ) +O

(
Φ3/f

)
.(2.88)

Thus, the physical interpretation of the chiral coupling f is clear, f is the
pion decay constant, defined as

〈0|(JµA)12|π+〉 ≡ i
√

2fpµ . (2.89)

Similarly, for the B0 constant we have,

q̄jLq
i
R = − δS2

δ(s− ip)ji = −f
2

2
B0U(φ)ij ,

q̄jRq
i
L = − δS2

δ(s+ ip)ji
= −f

2

2
B0U(φ)†ij , (2.90)

thus, B0 is related to the quark condensate

〈0|q̄jqi|0〉 = −f 2B0δ
ij . (2.91)

These two constants characterize completely ChPT at O(p2).
Following the same logic, we can construct the next-to-leading order

(NLO) effective Lagrangian, which appears at O(p4). Note that this is pre-
cisely the order at which the tensor source appears for the first time (there
was no tensor interaction for L2 in eq. (2.86)). So, it is convenient to analyze
the NLO Lagrangian L4 with and without tensor sources in order to isolate
the modifications introduced by them. First, turning off the tensor source
t̄µν , we have

L4 =L1〈DµU
†DµU〉2 + L2〈DµU

†DνU〉〈DµU †DνU〉
+ L3〈DµU

†DµUDνU
†DνU〉+ L4〈DµU

†DµU〉〈U †χ+ χ†U〉
+ L5〈DµU

†DµU(U †χ+ χ†U)〉+ L6〈U †χ+ χ†U〉2

+ L7〈U †χ− χ†U〉2 + L8〈χ†Uχ†U + U †χU †χ〉
− iL9〈F µν

R DµUDνU
† + F µν

L DµU
†DνU〉+ L10〈U †F µν

R UFLµν〉
+H1〈FRµνF µν

R + FLµνF
µν
L 〉+H2〈χ†χ〉 .

(2.92)
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From eq. (2.85) we see that at O(p4) we have ten additional parameters
Li with i = 1, ..., 10. The parameters H1 and H2 do not contain Goldstone
bosons, so that they are not phenomenologically relevant in this thesis work.

Now let us go back to the general tensor case. In this case it is not
convenient to work directly with the set (U, F µν

L,R, χ, tµν) since these building
blocks transform differently under a chiral transformation (see eq. (2.80) and
this can complicate things as the order in the EFT expansion increases. For
this reason we introduce the following redefinitions [67]

uµ = i[u†(∂µ − irµ)u− u(∂µ − ilµ)u†] ,

hµν = ∇µuν +∇νuµ ,

fµν± = uF µν
L u† ± u†F µν

R u ,

tµν± = u†tµνu† ± utµν†u ,
χ± = u†χu† ± uχ†u , (2.93)

where signs are correlated. With these convenient redefinitions, all the oper-
ators in eq. (2.93) transform in the same way

hXh† , X = uµ, f
µν
± , t

µν
± , ... (2.94)

where h ∈ SU(3)V . This allows us to define a unique covariant derivative for
all the terms in eq. (2.94)

∇µX + [Γµ, X] , Γµ =
1

2

[
u†(∂µ − irµ)u+ u(∂µ − ilµ)u†

]
. (2.95)

The field strength tensor comes naturally from the covariant derivative
in the following way

[∇µ,∇ν ]X = [Γµν , X] , (2.96)

where,

Γµν = ∂µΓν − ∂νΓµ + [Γµ,Γν ] =
1

4
[uµ, uν ]−

i

2
f+µν . (2.97)

The conclusion is that the sets {U (†), F µν
L,R, χ

(†), t
(†)
µν} and {uµ, hµν , fµν± , tµν± , χ±}

are completely equivalent.
Now that we have finally introduced all the basic ingredients for chiral La-

grangians, it is easy to see that the addition of the tensor source will modify
our previous Lagrangian at O(p4) in eq. (2.92), amazingly this modification
is introduced by four new terms only, in fact, the new chiral Lagrangian L4

is given by [66]

L4 = Λ1〈tµν+ f+µν〉 − iΛ2〈tµν+ uµuν〉+ Λ3〈tµν+ t+µν〉+ Λ4〈tµν+ 〉2 . (2.98)
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From these four additional terms, only the one with Λ2 is phenomenologically
relevant for our analyses since it is the only one involving two derivatives for
the Goldstones. This part of the discussion is of fundamental importance in
this thesis, since tensor interactions play a main role, specially in chapter 4.

This section is heavily based on the amazing reviews [68, 69] and on the
book [70]. Refs. [32, 33] were also very helpful, specially in the understanding
of the CCWZ formalism, which is a key ingredient in ChPT and which is
discussed in detail in appendix A.

2.3.3 Resonance Chiral Theory

In the previous section, we have made clear the necessity of introducing
ChPT in the study of hadronic tau decays. We saw that a description in
terms of quarks and gluons as degrees of freedom is meaningless for these
decays. For this reason we changed from quarks and gluons to mesons as the
relevant degrees of freedom.

Resonance Chiral Theory (RChT) [74, 75, 76, 77] is a phenomenological
Lagrangian framework with pseudoGoldstone bosons and resonances as ac-
tive fields, which is driven by chiral and unitary symmetries. The large-NC

limit of QCD [78, 79] is a useful expansion parameter for RChT.

The chiral symmetry for the pseudoGoldstones and the unitary symmetry
for the resonances (together with the discrete symmetries of QCD and gen-
eral symmetries of QFT) determine the possible operators in the Lagrangian
of RChT.

Still, these symmetries (as in ChPT) cannot tell us the values of the coef-
ficients of the different operators. In ChPT, couplings of operators with the
same chiral counting should share order of magnitude (a similar reasoning is
more difficult in RChT as it may depend on the order in 1/NC , the number
of resonance fields, the chiral counting -for its IR limit- itself, etc.).

It is good -for RChT’s predictivity- that the known short-distance be-
haviour of QCD [71, 72, 73] imposes constraints on Green functions and
related form factors that relate some of the resonance couplings. This pro-
cedure, which has been carried out systematically [74, 75, 76, 77, 80, 81, 82,
83, 84], is also supported phenomenologically [85, 86, 87, 88, 89, 90, 91, 92,
181, 94, 95, 96, 97, 98, 99]. In fact, UV QCD provides a good argument
for disregarding operators which are subleading in the chiral counting within
RChT. This limits, in practice, the number of operators to be included for a
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given calculation.

The Lagrangian of RChT includes kinetic terms for the resonances, oper-
ators akin to those in ChPT (but with different values for the corresponding
LECs, as those in ChPT include the effect of the integrated-out resonances)
and operators with resonance fields. The latter can also include pseudoGold-
stones and couplings to external sources.

We will give, for definiteness, the Lagrangian corresponding to the inter-
actions of the lightest vector mesons in case there is only one resonance field.
This is [74]

L =
FV

2
√

2
〈Vµνfµν+ 〉+ i

GV√
2
〈Vµνuµuν〉 , (2.99)

where the chiral tensors fµν+ and uµ were defined in the previous section, for
ChPT, and Vµν is an antisymmetric tensor field whose flavor structure is the
same as that of Φ for the pseudoGoldstone bosons (i. e., π ↔ ρ, K ↔ K∗,
η8,1 ↔ ω8,1); being FV and GV real couplings with dimensions of energy.

With this minimal Lagrangian it is possible to compute the two-meson
form factors that are the seed of the phaseshift in the dispersive approach
employed throughout this work (see appendix C for more details). Ref. [100]
gives a concise introduction to RChT. More detailed accounts are given in
Refs. [23, 24, 26].
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Chapter 3

Effective-field theory analysis of
the τ−→ (Kπ)−ντ decays

3.1 Summary

So far, we have presented all the tools that we need in the previous chap-
ters. Now it is time to apply them to the study of the different hadronic tau
decays that we promised at the beginning of this thesis. In this chapter we
start studying the τ− → (Kπ)−ντ decays in the framework of the Standard
Model Effective Field Theory (SMEFT) which was discussed in chapter 2.
We include the leading dimension six operators and work at linear order in
the effective couplings. Here is a brief summary of what you are going to
encounter along this chapter:
i) we study in detail the CP violation induced by heavy New Physics in the
τ → πKSντ channel, following the approach in ref. [101], where it was proved
unambiguously that it is impossible to understand within this framework the
corresponding anomaly in the CP asymmetry 1 measured by BaBar [102]. We
confirmed this result, and as a novelty, we allow for reasonable variations of
the hadronic input involved and study the associated uncertainty;
ii) among other things, we have studied the spectrum of the decay τ− →
π−KSντ as a function of the invariant mass of the di-meson system. In this
respect, we are the first to show that the anomalous bump present in the
published Belle data for the KSπ

− invariant mass distribution [103] close to
threshold cannot be due to heavy NP;
iii) we also study the constraints imposed in the effective couplings of the
theory. In fact we are the first to constrain the heavy NP effective cou-
plings using τ− → (Kπ)−ντ decays and we show that they are competitive

1This CP asymmetry will be defined in the following section.
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with other traditional low-energy probes like those found in hyperon semilep-
tonic decays and those obtained in the effective tensor interactions of Kaon
(semi)leptonic decays 2;
iv) moreover, we compare the SM predictions with the possible deviations
caused by heavy NP in a couple of Dalitz plot distributions, in the forward-
backward asymmetry and in the di-meson invariant mass distribution. Fi-
nally we discuss the most interesting measurements to be performed at Belle-
II using these decays data.

3.2 Introduction

In chapter 1, we have made clear the importance of Tau physics as a
powerful tool for precision electroweak studies and also as a clean low energy
QCD laboratory. There, we also had the opportunity to mention briefly
other interesting ways in which Tau physics can be very useful, for example
in the searches for: lepton flavor and lepton number violations, CP violation,
and potential new interactions due to heavy NP. In this chapter we discuss
precisely, how Tau physics is important in two of these topics, namely: CP
violation and new physics interactions.

As can be inferred from the four points stated in the summary, at the
beginning of the chapter, we were motivated to do this study basically by
the following reasons,

• Check the results in ref. [101], which disprove earlier claims [104, 105,
106] that tensor interactions could explain the BaBar CP anomaly in
τ → KSπντ decays [102]. This corresponds to the measurement of
ACP , defined in the following way:

ACP =
Γ(τ+ → π+KS ν̄τ )− Γ(τ− → π−KSντ )

Γ(τ+ → π+KS ν̄τ ) + Γ(τ− → π−KSντ )
= −3.6(2.3)(1.1)×10−3 ,

(3.1)
which disagrees remarkably with the SM prediction ACP = 3.32(6) ×
10−3, driven by neutral kaon mixing [107, 108], probed with high ac-
curacy in semileptonic kaon decays [6]. In fact, the SM prediction is
slightly modified by the experimental conditions corresponding to the
reconstruction of the KS at the B-factory, yielding ACP = 3.6(1)×10−3

[109], which increases the discrepancy at the 2.8 σ level. As a novelty of
our treatment, we will discuss the uncertainty induced on ACP by the

2As we will see in section 5, our effective couplings are not competitive with those
coming from effective scalar interactions in semileptonic Kaon decays, they are only com-
petitive if we only restrict to the tensor couplings.
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error of the tensor form factor modulus, while for its phase uncertainty
we will follow ref. [101]. This point is extremely important because
the CP violation present in the SM [39] is clearly insufficient to under-
stand the baryon asymmetry of the universe [110, 111, 112] so that any
hint of NP involving CP violation becomes a candidate for providing
with a clue to understand the enormous matter-antimatter imbalance.
With respect to this BaBar anomaly, however, the related Belle mea-
surement [113] of a binned CP asymmetry in the same decay channel
analyzing the decay angular distributions is compatible with zero, as
expected in the SM with a permille level precision. An explanation of
this discrepancy is needed, and this is precisely one of the goals of this
work.

• Three data points at the beginning of the KSπ
− spectra measured by

Belle [103] have been excluded from the reference fits or signalled as
controversial in the dedicated analyses [114, 115, 116, 117, 118, 119, 120,
121] and are at variance with the prediction [122]. To our knowledge,
only Ref. [123] was able to describe these data points due to the effect
on the scalar form factor of the longitudinal correction to the K∗(892)
propagator induced by flavor symmetry breaking 3. We will study if it
is possible to explain these conflicting data points by the most general
description of heavy NP contributions modifying the τ− → ūsντ decays
in the SM.

• Within an effective field theory analysis of possible non-standard charged
current interactions, semileptonic tau decays [126, 127, 128] have been
proved competitive with the traditional semileptonic decays involving
light quarks [49, 129, 130, 131, 132, 133, 134, 135, 136, 50, 137], like
nuclear beta or leptonic and radiative pion decays. In this context, for
the Cabibbo-suppressed sector, hyperon semileptonic decays [132, 135]
cannot compete with (semi)leptonic Kaon decays [134], given the (very
accurately measured) dominant branching fractions of the latter and
the suppressed ones (at most at the permille level) of the former. This
intuitive reasoning suggests that strangeness-changing tau decays can
also give non-trivial bounds on non-standard charged current interac-
tions, although it is not likely that at a competitive level with K`(2,3)

decays (however, if we restrict to tensor interactions only, we will see

3As we will recall in section 3.5, the scalar form factor contribution that we employ
[124] was obtained as a result of analyzing strangeness-changing meson-meson scattering
[125] within Chiral Perturbation Theory [62, 63] with resonances [74, 75], accounting for
the leading flavor symmetry breaking.
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that our couplings are competitive with the ones coming from K`(2,3)

decays). The present work will make these statements precise.

We published the results that we are going to present in this chapter in ref.
[138] and a shorter discussion can be found in the proceedings [139].

3.3 Effective theory analysis of τ− → ντ ūs

The lepton number conserving effective Lagrangian density constructed
with dimension six operators and invariant under the local SU(3)C⊗SU(2)L⊗
U(1)Y SM gauge group has the following form [48, 51],

L(eff) = LSM +
1

Λ2

∑
i

αiOi −→ LSM +
1

v2

∑
i

α̂iOi , (3.2)

with α̂i = (v2/Λ2)αi the dimensionless couplings encoding NP at a scale of
some TeV. Note that we have not included the Weinberg operator which has
dimension five since it does not contribute to our processes. The Weinberg
operator changes the lepton number in two units (∆L = 2) and lepton num-
ber violation is not present in our decays.

In this framework we can explicitly construct the leading low-scale O(1
GeV) effective Lagrangian (which has SU(3)C ⊗U(1)em local gauge symme-
try) for the strangeness-changing semi-leptonic transitions upon integrating
out the heavy degrees of freedom [49, 129],

Lcc =
−4GF√

2
Vus

[
(1 + [vL]``)¯̀

Lγµν`LūLγ
µsL + [vR]`` ¯̀Lγµν`LūRγ

µsR

+ [sL]`` ¯̀Rν`LūRsL + [sR]`` ¯̀Rν`LūLsR

+ [tL]`` ¯̀Rσµνν`LūRσ
µνsL

]
+ h.c. ,

(3.3)

where GF is the tree-level definition of the Fermi constant, L(R) stand for
left(right)-handed chiral projections and σµν = i [γµ, γν ] /2. Note that if
we set vL = vR = sL = sR = tL = 0, we recover the SM Lagrangian for
the strangeness-changing semileptonic tau decays, with momentum transfer
much smaller than the MW scale. Right-handed and wrong-flavor neutrino
contributions were neglected in equation (3.3) since they do not interfere
with the SM amplitudes and do not contribute at leading order in the NP
effective coefficients. The couplings vL, vR, sL, sR, tL are of course related
to the αi couplings of eq. (3.2). From the 59 independent operators with
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dimension six present in the SMEFT (see figures 2.1 and 2.2) only a handful
of them contribute to the charged-current processes that we are interested in
[129]. In fact only eight of these operators will contribute to the semileptonic
decays we are analyzing, namely:
- Four-fermion operators:

O(3)
`q = (¯̀γµτa`)(q̄γµτ

aq) , (3.4)

Oqde = (¯̀e)(d̄q) + h.c. , (3.5)

O`q = (¯̀
ae)ε

ab(q̄bu) + h.c. , (3.6)

OT`q = (¯̀
aσ

µνe)εab(q̄bσµνu) + h.c. , (3.7)

- Vertex corrections:

Oφφ = i(φT εDµφ)(ūγµd) + h.c. , (3.8)

O(3)
φq = i(φ†Dµτaφ)(q̄γµτ

aq) + h.c , (3.9)

- Two more operators that modify the Fermi constant:

O(3)
`` =

1

2
(¯̀γµτa`)(¯̀γµτ

a`) , (3.10)

O(3)φ` = i(φ†Dµτaφ)(¯̀γµτ
a`) + h.c. . (3.11)

The relation between the αi couplings in eq. (3.2) and the effective couplings
in eq. (3.3) is given by (assuming a weakly coupled scenario at the few-TeV
scale)

Vij[vL]``ij = 2Vij[α̂
(3)
φl ]`` + 2Vim[α̂

(3)
φq ]∗jm − 2Vim[α̂

(3)
lq ]``mj ,

Vij[vR]``ij = −[α̂φφ]ij ,

Vij[sL]``ij = −[α̂lq]
∗
``ji ,

Vij[sR]``ij = −Vim[α̂qde]
∗
``jm ,

Vij[tL]``ij = −[α̂tlq]
∗
``ji . (3.12)

Besides Lorentz invariance, the only assumptions behind eq. (3.3) are the
local gauge symmetries at low-energies (U(1)em and SU(3)C of electrody-
namics and chromodynamics, respectively) and the absence of light non-SM
particles.

It is convenient to recast the spin-zero contributions in terms of currents
with defined parity (scalar and pseudoscalar) in the following way

Lcc = −GFVus√
2

(1 + εL + εR)
[
τ̄ γµ(1− γ5)ν` · ū[γµ − (1− 2ε̂R)γµγ5]s

+ τ̄(1− γ5)ν` · ū[ε̂s − ε̂pγ5]s+ 2ε̂T τ̄σµν(1− γ5)ν` · ūσµνs
]

+ h.c. ,

(3.13)
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where: εL,R = vL,R, εs = sL + sR, εp = sL − sR, and εT = tL. In eq. (3.13)
we have particularized the Lagrangian for the tau lepton case (` = τ), and
we have also introduced the convenient notation ε̂i = εi/(1 + εL + εR) [126]
for i = R, S, P, T 4. In this way, our Lagrangian in eq. (3.13) is equivalent to
the one in eq. (9) of Ref. [101] working at linear order in the epsilon Wilson
coefficients.

3.4 Semileptonic τ decay amplitude

In this section we calculate the decay amplitudes corresponding to the
τ− → K̄0π−ντ and the τ− → K−π0ντ decays. The first thing to note is that
due to the parity of pseudoscalar mesons, only the vector, scalar and tensor
currents give a non-zero contribution to the decay amplitude (see appendix
B for a general discussion of hadronic matrix elements), as shown in the
following equation 5 6

M =MV +MS +MT

=
GFVus

√
SEW√

2
(1 + εL + εR)[LµH

µ + ε̂SLH + 2ε̂TLµνH
µν ] ,

(3.14)

where the leptonic currents have the following structure (p and p′ are the
momenta of the tau lepton and its neutrino, respectively),

Lµ = ū(p
′
)γµ(1− γ5)u(p) ,

L = ū(p
′
)(1 + γ5)u(p) ,

Lµν = ū(p
′
)σµν(1 + γ5)u(p) ,

(3.15)

and the vector, scalar and tensor hadronic matrix elements for the case of
the τ− → K̄0π−ντ decay, are defined as follows

Hµ = 〈π−K̄0|s̄γµu|0〉 = QµF+(s) +
∆Kπ

s
qµF0(s) , (3.16)

4We note that this reshuffling is not convenient when comparing neutral and charged
current processes and also when analyzing different semileptonic tau decays with an odd
and an even number of pseudoscalar mesons, respectively [128]. Since εi = ε̂i at linear
order in these coefficients, we may use εi instead of ε̂i when comparing to works which use
the former instead of the latter.

5Eq.(3.14) displays clearly that the renormalization scale dependence of the Wilson
coefficients ε̂i needs to be cancelled by the one of the hadron matrix elements. As it is
conventional, both are defined in the MS scheme at µ = 2 GeV.

6For convenience, the short-distance electroweak correction factor SEW [7, 8, 9, 10, 11,
12, 13, 14] is written as an overall constant, although it only affects the SM contribution.
The error of this simplification is negligible working at leading order in the ε̂i coefficients
[126, 127].
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H = 〈π−K̄0|s̄u|0〉 = FS(s) , (3.17)

Hµν = 〈π−K̄0|s̄σµνu|0〉 = iFT (s)(pµKp
ν
π − pµπpνK) , (3.18)

where qµ = (pπ+pK)µ, Qµ = (pK−pπ)µ− ∆Kπ

s
qµ, s = q2, and ∆ij = m2

i −m2
j .

The hadron matrix elements H, Hµ and Hµν were decomposed in terms of
the allowed Lorentz structures, taking into account the discrete symmetries
of the strong interactions, and a number of scalar functions of the invariant
mass of the Kπ system: the FS(s), F+(s), F0(s) and FT (s) form factors;
which encode the details of the hadronization process.

The τ− → K−π0ντ decay is completely analogous. Neglecting (tiny)
isospin corrections, the only difference is given by the Clebsch-Gordan flavor
symmetry factor of

√
2 between both decay channels, that is

√
2FK−π0

0,+,T (s) =

F K̄0π−
0,+,T (s).

From equations (3.15) one can easily see that the vector and the scalar
currents are related through the Dirac equation, to see this, let us multiply
the leptonic vector current by qµ

qµLµ = qµū(p′)γµ(1− γ5)u(p)

= (pτ − pν)ū(p′)γµ(1− γ5)u(p)

= ū(p′)(/pτ − /pν)(1− γ
5)u(p)

= ū(p′)(1 + γ5)Mτu(p) ,

(3.19)

therefore, we find the following relation

L =
Lµq

µ

Mτ

. (3.20)

Similarly, one can find a relation between the vector and the scalar hadronic
matrix elements by taking the four-divergence of equation (3.16). This yields

FS(s) =
∆Kπ

ms −mu

F0(s) . (3.21)

Taking into account the previous two equations, we conclude that the scalar
and vector contributions in eq. (3.14) can be treated jointly by doing the
convenient replacement

∆Kπ

s
→ ∆Kπ

s

[
1 +

sε̂s
Mτ (ms −mu)

]
. (3.22)

Obtaining the three independent form factors (F0(s), F+(s) and FT (s)) using
as much experimental and theoretical knowledge as possible is the subject of
the next section.
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3.5 Hadronization of the scalar, vector and

tensor currents

In this section we study in detail the scalar, vector and tensor form fac-
tors. These are crucial in this work since they are needed SM inputs for
binding the non-standard interactions. Therefore, it is fundamental to ob-
tain them reliably (including associated errors) in order to have precise NP
limits. We calculate the form factors using chiral perturbation theory, dis-
persion relations and lattice data. For the scalar and vector form factors this
approach is discussed in refs. [116, 117, 121, 124]. We construct the tensor
form factor following ref. [127] where an analogue work for the τ− → π−π0ντ
channel was done. This tensor form factor is very special in this work, as
we will see, it is connected with the ACP observable that we introduced in
section 4.2 and that we will study in much more detail in section 4.6. In
appendix C you can find more information about all the form factors that
we will discuss in the text.

We will start our discussion with a brief reminder of the approach em-
ployed for the scalar form factor, F0(s). In a series of papers [125, 124, 140,
141, 142] an analysis for meson-meson scattering within Chiral Perturba-
tion Theory with resonances for strangeness-changing coupled-channels was
carried out and very precise information on the corresponding scalar form
factors, light quark masses and related chiral low-energy constants was ob-
tained. We benefit from that analysis here 7. In particular, we employ the
update presented in Ref. [142] for the dispersive representation of the Kπ
channel, together with its corresponding uncertainties 8.

Now we will discuss the vector form factor F+(s). In refs. [116, 117, 121],
a dispersion relation for F+(s) was formulated and it was seen that a thrice-
subtracted dispersion relation was optimal:

F+(s) = exp

[
α1s+

α2

2
s2 +

∫ ∞
sπK

ds
′ δ

1/2
1 (s)

(s′)3(s′ − s− iε)

]
, (3.23)

where α1, α2, and the one to set F+(0) = 1 are the three subtraction con-
stants, and sπK = (mK̄0 + mπ−)2. Eq. (3.23) shows that each additional
subtraction in the dispersion relation gives rise to a further suppression fac-

7We thank Matthias Jamin for providing us with these data.
8For the analysis of the Kπ spectra near threshold it is particularly important to

employ a scalar form factor that is consistent with the information coming from S-wave
Kπ scattering (including the coupled channels Kη and Kη′). The scalar form factor
obtained in Ref. [142] is included in the RChL version of TAUOLA [90], but not in other
releases.
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tor 1/s
′
in the integrand, enhancing the relative importance of the low-energy

input.
In eq. (3.23) Watson’s final-state interactions theorem [143] was used.

It states that below inelasticities the phase of the form factor equals the
scattering phase of the Kπ system (δ

1/2
1 (s) in this case, as it has spin one

and isospin one half). For this decay channel, departures are expected above
(mK + mη)

2 ∼ 1.022 GeV2. These are accounted for in the analyses cited
above and are included in our study. We consider as reference input the
results obtained in section 3 of Ref. [117] (without using constraints from
Kaon decays [117, 118] or information from τ− → K−ηντ decays [144, 121]).
The corresponding systematic and statistical errors of F+(s) that we use can
be traced back to the results in Table 1 of Ref. [117]: the (correlated) sta-
tistical errors of the fitted parameters characterizing F+(s) are those coming
from the fit and given in this table and the systematic errors are estimated
from the differences induced by changing scut between the different columns
of that table for a given F0(s). The phase δ

1/2
1 (s) is confronted to data in Fig.

2 of Ref. [117]. The fine agreement of |F+(s)| with the corresponding mea-
surements can be appreciated in various plots of the papers quoted above.

To finish this section, we study the hadronization of the tensor current,
which was presented in equation (3.18). We will start with the calculation of
this matrix element using Chiral Perturbation Theory. This will give us its
normalization at zero-momentum transfer (equivalently, it will fix the first
–and only in this case– subtraction constant). The energy dependence will be
obtained solving numerically the dispersion relation, where the input phase
corresponds to the one of the vector form factor in the elastic region [101].

The appropriate effective Lagrangian according to Ref. [66] is shown in
the following equation,

L = Λ1〈tµν+ f+µν〉 − iΛ2〈tµν+ uµuν〉+ ... , (3.24)

where tµν+ = u†tµνu†+ utµν†u, and uµ = i[u†(∂µ− irµ)u− u(∂µ− i`µ)u†]. The

non-linear representation of the pseudo-Goldstone bosons is u = exp
(

i√
2F
φ
)

where F is the pion decay constant in the chiral limit, and `µ and rµ are left-
and right-handed sources (also appearing in the operator with coefficient Λ1

through fµν+ = uF µν
L u†+u†F µν

R u via the familiar field-strength tensors F µν
L,R).

The symbol 〈...〉 denotes a trace in flavour space. The Λi are (real) low-
energy constants which cannot be fixed by symmetries alone.
The explicit form of φ is given as follows:
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φ =


π0+ηq√

2
π+ K+

π− −π0+ηq√
2

K0

K− K
0

ηs

 , (3.25)

where ηq and ηs are the non-strange and strange components of the η − η′
mesons (see e. g. eqs. (9) and (10) in ref. [96] and related discussion, we have
used the excellent approximation π3 ∼ π0 which comes from neglecting the
isospin-suppressed mixing of the neutral pion with the η − η′ mesons [145]).
At the quark level (with corresponding field ψ), the tensor current has the
form ψ̄σµν t̄

µνψ, where according to Ref. [66] and as we have discussed in
chapter 2, the tensor source (t̄µν) is related to its chiral projections (tµν and
tµν †) by means of

tµν = P µνλρ
L t̄λρ, 4P µνλρ

L = (gµλgνρ − gµρgνλ + iεµνλρ) . (3.26)

Now let us compute the functional derivative of eq. (3.24) with respect to
t̄αβ. The first thing to note is that only the operator with coefficient Λ2

contributes to the decays we are analyzing,

δL
δt̄αβ

= −iΛ2
δ

δt̄αβ
〈tµν+ uµuν〉 . (3.27)

Putting the left and right sources to zero, expanding u in powers of φ and
using the first of eqs. (3.26) we obtain,

δL
δt̄αβ

=
−2iΛ2

F 2

δ

δt̄αβ

[(
P µνλρ
L t̄λρ + t̄λρP

µνλρ
R

)
∂µφ∂νφ

]
= −iΛ2

F 2
[∂αφ, ∂βφ] .

(3.28)
In the calculation of the matrix element i〈π0K−| ∂L

∂t̄αβ
|0〉 we need the element

(1, 3) of the previous matrix, which yields:

i

〈
π0K−

∣∣∣ δL
δt̄αβ

∣∣∣0〉 =
Λ2√
2F 2

(
pαKp

β
0 − pα0pβK

)
. (3.29)

From the same matrix element we obtain:

i

〈
π−K̄0

∣∣∣ δL
δt̄αβ

∣∣∣0〉 =
Λ2

F 2

(
pαKp

β
− − pα−pβK

)
, (3.30)

which checks explicitly the relative factor of 1√
2

between the matrix elements
for both decay channels.
As anticipated earlier, the value of Λ2 is not restricted by symmetry require-
ments and cannot be fixed from phenomenology. Fortunately, the lattice
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QCD evaluation of Ref. [146] found f K̄
0π−

T (0) = 0.417(15). This, together
with the fact that F K̄0π−

T (0) = Λ2

F 2 implies that Λ2 = (11.1± 0.4) MeV, that
we will use in our numerical analysis. This value is consistent within one
sigma with the one employed in Ref. [127] for the ππ channel.
Unlike the vector and scalar form factor cases, there is no experimental data
that can help us constructing FT (s) so that we must rely only on theory.
We calculate the energy-dependence of the tensor form factor FT (s) using
again a phase dispersive representation as it is shown in refs. [101] and [127];

FT (s)

FT (0)
= exp

[
s

π

∫ ∞
sπK

ds
′ δT (s

′
)

s′(s′ − s− iε)

]
, (3.31)

where F K̄0π−
T (0) = Λ2/F

2 was calculated previously at leading order in the
χPT framework (see eq. (4.17)), and sπK = (mK̄0 + mπ−)2. As in the
scalar case we have included one subtraction. In this case it is clear, that
lacking precise low-energy information, we cannot increase the number of
subtractions of FT (s). This, in turn, implies a sizable sensitivity to the
upper limit of the integral that is used numerically (scut), which is illustrated
in our figure 3.1, where we consider the cases scut = M2

τ , 4, 9 GeV2 [127] 9.
We take the differences between these curves as an estimate of our systematic
theoretical error on FT (s)/FT (0). In the right panel of figure 3.1 we show the
tensor form factor phase corresponding to δT (s) = δ+(s), with δ+(s) from
the fits in table 1 of Ref. [117]. In the inelastic region, our curve plotted
for δT (s) lies within the error band shown in figure 2 of Ref. [101] 10. It
is, however, important to note –for computing the CP asymmetry later on–
that our phase δ+(s) does not have a monotonous energy-dependence in this
region, as opposed to the curve in the middle of the uncertainty band for δT (s)
plotted in figure 2 of Ref. [101]. This oscillation of the phase is unambiguous
theoretically (as indicated, e. g., by the error band in figure 2 of Ref. [116])
and is supported by LASS data [148] (although the corresponding errors are
quite large). The data from Estabrooks et al. [149] are not conclusive in this
respect, as there are only a couple of points in the region of interest.

The phases of FT (s) and F+(s) can be related as shown in Ref. [101]. We
will not repeat their argument here, but only quote their main result: in the
elastic region, δT (s) = δ+(s) = δ

1/2
1 (s). We will also estimate violations of

this equation in the inelastic region (with their corresponding uncertainties)
following again Ref. [101] (see figure 2 in that reference).

9In principle, one could try to reduce this sensitivity following the strategies employed
in Ref. [147], but the procedure will again be limited in this case by the absence of
measurements sensitive to FT (s).

10Our phase is given in degrees while theirs is in radians.
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Figure 3.1: Modulus and phase, |FT (s)| (left) and δT (s) = δ+(s) (right), of
the tensor form factor, FT (s). On the left plot, the dotted line corresponds
to scut = 9 GeV2, the dashed one to scut = 4 GeV2, and the solid one to
scut = M2

τ .

3.6 Decay observables

In the rest frame of the τ lepton, the doubly differential decay width for
the τ− → KSπ

−ντ process is

d2Γ

dsdt
=

1

32(2π)3M3
τ

|M|2 , (3.32)

where |M|2 is given by eq. (3.43), s is the invariant mass of the π−KS system
taking values in the (mK0 +mπ−)2 ≤ s ≤M2

τ interval, and

t±(s) =
1

2s

[
2s(M2

τ +m2
K0 − s)−

(
M2

τ − s
) (
s+m2

π− −m2
K0

)
±
(
M2

τ − s
)√

λ(s,m2
π− ,m

2
K0)

]
,

(3.33)

with λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz being the usual Källen
function and t = (Pτ − pπ)2.

3.6.1 Dalitz plots

By combining the equations of section 3.4, we obtain the following form
for the amplitude (we will omit from now on the indices identifying the KSπ

−
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charge channel)

M =
GF√

2
Vus
√
SEW (1 + εL + εR)

[(
(pK − pπ)µ +

∆πK

s
(pπ + pK)µ

)
LµF+(s)

+
∆Kπ

s

(
1 +

sε̂s
Mτ (ms −mu)

)
(pπ + pK)µLµF0(s)

+ 2iε̂T (pµKp
ν
π − pµπpνK)LµνFT (s)

]
.

(3.34)

The previous equation can be written as follows:

M =
GF√

2
Vus
√
SEW (1 + εL + εR)(M0 +M+ +MT ) , (3.35)

where,

M+ =

(
(pK − pπ)µ +

∆πK

s
(pπ + pK)µ

)
LµF+(s) ,

M0 =
∆Kπ

s

(
1 +

sε̂s
Mτ (ms −mu)

)
(pπ + pK)µLµF0(s) ,

MT = 2iε̂T (pµKp
ν
π − pµπpνK)LµνFT (s) . (3.36)

The squared of the amplitude, computed from eq. (3.35), has six (all non-
vanishing) contributions: three of them coming from scalar-scalar (M00),
vector-vector (M++), and tensor-tensor (MTT ) contributions, and the remain-
ing three from interference terms (M0+,M0T , and M+T ). Their expressions
are

M0+ =
[
− 2M2

τRe[F+(s)F ∗0 (s)]∆Kπ

(
1 +

sε̂s
Mτ (ms −mu)

)
×
(
s(M2

τ − s+ ΣKπ − 2t) +M2
τ ∆Kπ

)]
,

(3.37)

MT+ = −4ε̂TM
3
τ sRe[FT (s)F ∗+(s)]

(
1− s

M2
τ

)
λ(s,m2

π,m
2
K) , (3.38)

MT0 =4∆Kπ ε̂TMτsRe[FT (s)F ∗0 (s)]

(
1 +

sεs
Mτ (ms −mu)

)
×
[
s(M2

τ − s+ ΣKπ − 2t) +M2
τ ∆Kπ

]
,

(3.39)

M00 = (∆Kπ)2M4
τ

(
1− s

M2
τ

)
|F0(s)|2

(
1 +

sε̂s
Mτ (ms −mu)

)2

, (3.40)
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M++ =|F+(s)|2
[
M4

τ (s+ ∆Kπ)2 −M2
τ s
(
2∆Kπ(−m2

K + s+ 2t−m2
π)

−∆2
Kπ + s(s+ 4t) + 4m2

Ks
2(m2

π − t) + 4s2t(s+ t−m2
π)
]
,

(3.41)

MTT =4ε̂2TF
2
T s

2
[
m4
π(M2

τ − s)− 2m2
π(M2

τ − s)(s+ 2t−m2
K)−m4

K(3M2
τ + s)

+ 2m2
K

(
(s+M2

τ )(s+ 2t)− 2M4
τ

)
− s

(
(s+ 2t)2 −M2

τ (s+ 4t)
) ]
,

(3.42)

where we have introduced ΣKπ = m2
π +m2

K .
Taking into account all previous contributions we can finally write the

unpolarized spin-averaged squared amplitude as follows

|M|2 = G2
F |Vus|2SEW (1+ εL+ εR)2(M0+ +MT+ +MT0 +M00 +M++ +MTT ) .

(3.43)
It is convenient in the study of the Dalitz plots to define the following ob-
servable introduced in Ref. [127]

∆̃(ε̂S, ε̂T ) =

∣∣∣|M(ε̂S, ε̂T )|2 − |M(0, 0)|2
∣∣∣

|M(0, 0)|2
, (3.44)

which is sensitive to the relative difference between the squared matrix ele-
ment in presence/absence of NP contributions (the SM case corresponds to
M(0, 0)).

In the left panel of figure 3.2 we show the Dalitz plot for the SM case in
the (s, t) variables, and in the left part of figures 3.3 and 3.4 we show the
corresponding plots for the values (ε̂S = −0.5, ε̂T = 0) and (ε̂S = 0, ε̂T = 0.6),
respectively. The election of these particular values of the ε̂S,T is discussed
in section 5.5.

In the SM plots (figure 3.2) it is clearly appreciated that the dynamics is
dominated by the K∗(892) vector resonance but the effect of its excitation
K∗(1410) and of the dynamically generated K∗0(700) [150], of the K∗0(1430)
and heavier states cannot be appreciated from the figure, although it is visible
both in F+(s) and the decay spectrum [116] and in F0(s) [142], respectively.
The left panel of figures 3.3 and 3.4 shows the relative modification of the
squared matrix element for non-zero reasonable values of ε̂S and ε̂T in the
(s, t) plane. Although large variations are seen in a couple of regions close
to the border of the Dalitz plot in figure 3.3 (left), these correspond to zones
with very suppressed probability, as can be seen in figure 3.2 (left). On the
contrary, the regions with larger probability have a small relative change,
according to figure 3.3 (left). In figure 3.4 (left) the region with the most
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Figure 3.2: Dalitz plot distribution |M|200 in the SM, eq. (3.43): Differential
decay distribution for τ− → KSπ

−ντ in the (s, t) variables (left). The right-
hand figure shows the differential decay distribution in the (s, cosθ) variables,
eq. (3.45). The Mandelstam variables, s and t, are normalized to M2

τ .

noticeable change (though still smaller than those seen in figure 3.3) is lo-
cated very close to the s minimum of the Dalitz plot, which has very small
probability density in figure 3.2 (left). This region quite overlaps with one of
the two mentioned for the fig. 3.3 left plot. Because of this feature, observing
a deviation from the SM result in this region could be due to both tensor and
non-standard scalar interactions. On the contrary, a deviation in the region
of small t values would be signalling spin-zero NP contribution. In any case,
changes are very small in the region most densely populated by measured
events in both left plots of figs. 3.3 and 3.4. Due to this, we conclude that it
will be extremely challenging to identify NP contributions in the (s, t) Dalitz
plot even with the large data samples accumulated by the end of operation
of Belle-II [18].

3.6.2 Angular distribution

In this section we are going to study the angular dependence of the decay
distribution. It is convenient to work in the rest frame of the hadronic system,
in which we have ~pπ + ~pK = ~pτ − ~pν = ~0, consequently the tau lepton and
the pion energies are given by Eτ = (s + M2

τ )/(2
√
s) and Eπ = (s + m2

π −
m2
K)/(2

√
s).

We will study the decay distribution in terms of the (s, cosθ) variables, where
θ is the angle between the three-momenta of the pion and the three-momenta
of the tau lepton, this angle is related to the invariant t variable by t =
M2

τ + m2
π − 2EτEπ + 2|~pπ||~pτ |cosθ, where |~pπ| =

√
E2
π −m2

π and |~pτ | =
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Figure 3.3: Dalitz plot distribution ∆̃(ε̂S, ε̂T ), eq. (3.44), in the τ− →
KSπ

−ντ decays: left-hand side corresponds to eq. (3.43) and the right-hand
side corresponds to the differential decay distribution in the (s, cosθ) vari-
ables, eq. (3.45), both with (ε̂S = −0.5, ε̂T = 0). The Mandelstam variables,
s and t, are normalized to M2

τ .

√
E2
τ −M2

τ
11.

Changing variables to (s, cosθ) in eq. (3.32) we obtain the following:

d2Γ

d
√
sdcosθ

=
G2
F |Vus|2SEW
128π3Mτ

(1 + εL + εR)2

(
M2

τ

s
− 1

)2

|~pπ−|
{

∆2
πK |F0(s)|2

×
(

1 +
sε̂S

Mτ (ms −mu)

)2

+ 16|~pπ− |2s2

∣∣∣∣−F+(s)

2Mτ

+ ε̂TFT (s)

∣∣∣∣2

+ 4|~pπ−|2s
(

1− s

M2
τ

)
cos2θ

[
|F+(s)|2 − 4sε̂2T |FT (s)|2

]
+ 4∆πK |~pπ−|

√
scosθ

×
(

1 +
sε̂S

Mτ (ms −mu)

)[
−Re

[
F0(s)F ∗+(s)

]
+

2sε̂T
Mτ

Re [FT (s)F ∗0 (s)]

]}
.

(3.45)

The Dalitz plots for the (s, cosθ) variables are shown on the right panels of
figures 3.2, 3.3 and 3.4 (in these last two the observable ∆̃(ε̂S, ε̂T ) is plotted).

11The tau lifetime and decay width (ττ and Γτ , respectively) are defined in the τ rest
frame. Consequently, their values are boosted in the reference frame considered in this
subsection.
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Figure 3.4: Dalitz plot distribution ∆̃(ε̂S, ε̂T ), eq. (3.44), in the τ− →
KSπ

−ντ decays: left-hand side corresponds to eq. (3.43) and the right-hand
side corresponds to the differential decay distribution in the (s, cosθ) vari-
ables, eq. (3.45), both with (ε̂S = 0, ε̂T = 0.6). The Mandelstam variables, s
and t, are normalized to M2

τ .

On figure 3.2 we plot the SM case, and in figures 3.3 and 3.4 we show Dalitz
plots for the values (ε̂S = −0.5, ε̂T = 0) and (ε̂S = 0, ε̂T = 0.6), respec-
tively. The SM plot gives equivalent information in the (s, cosθ) variables
as the one seen in the (s, t) variables (right versus left plot of figure 3.2).
Comparing both panels of figs. 3.3 one can see that one of the enhanced
regions in the (s, t) plot (the one at very low s values) is washed away in the
(s, cosθ) diagram, while the other is slightly further enhanced in a limited
region (0 ≤ cosθ ≤ 0.5). The comparison of the left and right plots of figure
3.4 shows that the enhanced area for large t values is a bit more prominent
in the (s, cosθ) distribution (for nearly maximal cosθ) although again it will
be very hard to disentangle these possible deviations from the SM patterns
in near future data.
Assuming approximate lepton universality, using the bounds from Ref. [134]
(obtained analyzing Kaon (semi)leptonic decays) ε̂S ∼ −8 × 10−4, ε̂T ∼
6×10−3 (maximum allowed absolute values at one standard deviation) mini-
mizes the deviations from the SM to unobservable level both in the (s, t) and
(s, cosθ) Dalitz plots.
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3.6.3 Decay rate

Integrating eq. (3.32) upon the t variable we obtain the invariant mass
distribution as follows

dΓ

ds
=
G2
F |Vus|2M3

τ SEW
384π3s

(1 + εL + εR)2

(
1− s

M2
τ

)2

λ1/2(s,m2
π,m

2
K)

× [XV A + ε̂SXS + ε̂TXT + ε̂2SXS2 + ε̂2TXT 2 ] ,

(3.46)

where

XV A =
1

2s2

[
3|F0(s)|2∆2

Kπ + |F+(s)|2
(

1 +
2s

M2
τ

)
λ(s,m2

π,m
2
K)

]
, (3.47a)

XS =
3

sMτ

|F0(s)|2 ∆2
Kπ

ms −md

, (3.47b)

XT =
6

sMτ

Re[FT (s)F ∗+(s)]λ(s,m2
π,m

2
K) , (3.47c)

XS2 =
3

2M2
τ

|F0(s)|2 ∆2
Kπ

(ms −mu)2
, (3.47d)

XT 2 =
4

s
|FT (s)|2

(
1 +

s

2M2
τ

)
λ(s,m2

π,m
2
K) . (3.47e)

Note from the previous equations that the only possible source of CP viola-
tion coming from the hadronic part is due to the Vector-Tensor interference,
we will comment about this in section 3.7.
In figure 3.5, we plot the invariant mass distribution of the Kπ system for
τ− → KSπ

−ντ decays for the SM case and for (ε̂S = −0.5, ε̂T = 0) and
(ε̂S = 0, ε̂T = 0.6) which would be realistic values for these couplings, ac-
cording to their impact on the decay width. Despite the logarithmic scale of
the plot, the deviations from the SM curve shown in figure 3.5 are too large
when they are confronted with the Belle measurements of this spectrum, as
we will see in the fits of section 5.5. This will allow us to set better bounds
on ε̂S,T than those used in this subsection.

3.6.4 Forward-backward asymmetry

Now we turn to the study of the forward-backward asymmetry, which is
defined in the following way

AKπ(s) =

∫ 1

0
dcosθ d2Γ

dsdcosθ
−
∫ 0

−1
dcosθ d2Γ

dsdcosθ∫ 1

0
dcosθ d2Γ

dsdcosθ
+
∫ 0

−1
dcosθ d2Γ

dsdcosθ

. (3.48)
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Figure 3.5: The K̄0π− hadronic invariant mass distribution for the SM (solid
line) and ε̂S = −0.5, ε̂T = 0 (dashed line) and ε̂S = 0, ε̂T = 0.6 (dotted line).
The decay distributions are normalized to the tau decay width.

We find the analytical expression for this observable substituting eq. (3.45)
into eq. (3.48) and integrating upon the cosθ variable with the following
result 12

AKπ =
3
√
λ(s,m2

π,m
2
K)

2s2[XV A + ε̂SXS + ε̂TXT + ε̂2SXS2 + ε̂2TXT 2 ]

(
1 +

sε̂S
Mτ (ms −mu)

)
∆πK

×
[
−Re[F0(s)F ∗+(s)] +

2sε̂T
Mτ

Re[FT (s)F ∗0 (s)]

]
.

(3.49)

Before studying the forward-backward asymmetry in the general case, it
is important to study its behaviour in the standard model case. If we set
εR = εL = ε̂S = ε̂T = 0 we get the SM forward-backward asymmetry, which
is plotted in the solid line of figure 3.6.

The important thing to note from the SM result in figure 3.6 (solid line)
is that the graph is peaked around

√
s ∼ 0.6 GeV so that this is an impor-

tant region to analyze and pay special attention. It was already emphasized

12In eq. (3.49) we use AKπ to emphasize the decay channel under consideration to
distinguish it to the other two-meson decay modes. Otherwise we will also be using the
most common notation AFB for this observable.
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long ago that a measurement of the forward-backward asymmetry in this
decay channel would be crucial in improving our knowledge of both vector
and scalar form factors [151] 13.

For the more general case where we include NP interactions, we have
figure 3.6, where we plot AKπ for the values (ε̂S = −0.5, ε̂T = 0) and
(ε̂S = 0, ε̂T = 0.6) 14, and we compare those plots with the SM case. There
we can see that for quite large ε̂T values some difference is appreciated for
the tensor case; otherwise it may not be possible to disentangle it from the
standard contribution. Conversely, for non-standard scalar interactions the
changes are more noticeable since AKπ flips sign with respect to the SM. Note
also that for scalar interactions the value of AKπ gets smaller in magnitude
as s increases. If it is possible to measure AKπ in a low-energy bin, this would
ease the identification of this type of NP in AKπ.

If we make the comparison with more realistic limits for the NP values
[134] (under the assumption of approximate lepton universality), it is impos-
sible to identify any departures from the SM prediction in this observable.
For this reason, we make use of the following convenient definition introduced
in Ref. [127]

∆AKπ = AKπ(s, ε̂S, ε̂T )−AKπ(s, 0, 0) . (3.50)

The corresponding (unmeasurably small) deviations from the SM result are
plotted in figure 3.7.

3.6.5 Limits on ε̂S and ε̂T

Our purpose in this section is to set bounds on the effective couplings ε̂S and
ε̂T . We achieve this by comparing the total width Γ (which depends explicitly
on the NP couplings ε̂S and ε̂T ) with the SM width Γ0 (obtained by neglecting
NP interactions which we get by setting ε̂S = ε̂T = 0). This comparison is
conveniently implemented with the introduction of the observable ∆ which
we define as follows

∆ ≡ Γ− Γ0

Γ0
= αε̂S + βε̂T + γε̂2S + δε̂2T , (3.51)

where we obtained the following results for the coefficients: α ∈ [0.30, 0.34],
β ∈ [−2.92,−2.35], γ ∈ [0.95, 1.13] and δ ∈ [3.57, 5.45].

13We note that in this reference, and also later on in Refs. [152, 119], the angle θ used to
compute AFB is defined between the three-momenta of the tau lepton and the KS in the
di-meson rest frame. Taking into account the different sign conventions, it can be checked
there is reasonable agreement with these works in the elastic region.

14Again, as we mentioned when we discussed the Dalitz plots, we will justify the use of
these particular values in the next section.
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Figure 3.6: Forward-backward asymmetry in τ− → KSπ
−ντ decays compared

with the SM prediction (solid line). The dashed line corresponds to ε̂S =
−0.5, ε̂T = 0, and the dotted line corresponds to ε̂S = 0, ε̂T = 0.6.

Figure 3.7: Deviations from the SM forward-backward asymmetry, ∆AKπ,
in τ− → KSπ

−ντ decays using the bounds from Ref. [134]. The solid line
corresponds to ε̂S = −8 × 10−4, ε̂T = 0 and the dashed line to ε̂S = 0,
ε̂T = 6× 10−3.
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With the help of the ∆ observable we obtain our limits for the ε̂S and ε̂T
couplings in two different ways. First, we set one of the couplings to zero
and obtain bounds for the other, and viceversa. This process gives us the
two parabolas shown in figure 3.8.

Figure 3.8: ∆ as a function of ε̂S for ε̂T = 0 (left hand) and of ε̂T for
ε̂S = 0 (right hand) for τ− → KSπ

−ντ decays. Horizontal lines represent
the values of ∆ according to the current measurement and theory errors (at
three standard deviations) of the branching ratio (dashed line) and in the
hypothetical case where the measured branching ratio at Belle-II has a three
times reduced uncertainty (dotted line).

The second way in which we set constraints is again using Eq. (3.51), but
now taking the general case where both couplings are non-vanishing. In this
case we obtain the ellipse shown in figure 3.9.

For the convenience of the reader we summarize our findings for the con-
straints in the following table.

∆ limits ε̂S(ε̂T = 0) ε̂T (ε̂S = 0) ε̂S ε̂T
Current bounds [−0.57, 0.27] [−0.059, 0.052] ∪ [0.60, 0.72] [−0.89, 0.58] [−0.07, 0.72]
Future bounds [−0.52, 0.22] [−0.047, 0.036] ∪ [0.62, 0.71] [−0.87, 0.56] [−0.06, 0.71]

Table 3.1: Constraints on the scalar and tensor couplings obtained through
the limits on the current branching ratio at three standard deviations us-
ing the current theory and experimental errors and assuming the latter be
reduced to a third (’Future bounds’). This last case should be taken only
as illustrative of the improvement that can be achieved thanks to higher-
statistics measurements, even in absence of any progress on the theory side.
It is clear that the knowledge of ε̂S,T using τ− → KSπ

−ντ decays data is
limited by theory uncertainties.
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Figure 3.9: Constraints on the scalar and tensor couplings obtained from
∆(τ− → KSπ

−ντ ) using theory and the measured value reported in the PDG,
with their corresponding uncertainties at three standard deviations (solid
line). The dashed line ellipse corresponds to the case where the measurements
error was reduced to a third of the current uncertainty.

Next we will consider fits to the branching ratio and decay spectrum 15

of the τ− → KSπ
−ντ decays as measured by Belle [103]. We will pay special

attention to the possible explanation of the conflicting data points (bins 5, 6
and 7) by the non-standard interactions. Therefore, we will consider fits with
and without these data points. In all our fits, as explained e. g. in Ref. [121],
we will not consider the first data point (as it lies below the threshold for
physical KS and π− masses) and will disregard the data from the last 10
bins, as suggested by the Belle collaboration.
The χ2 function minimized in our fits is

∑
i

(Niexp −N th
i

σNi

)2

+

(
BRexp −BRth

σexpBR

)2

, (3.52)

where the sum over the i bins may or may not include the i = 5, 6, 7 bins. We
will consider the measurement of BRexp reported in the Belle paper [103] (and
not the PDG [6] or the HFLAV [153] values), as discussed in Ref. [121]. Along
our fits we float the meson form factors within their estimated uncertainty

15We thank Denis Epifanov for providing us with these data.
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bands and our quoted results take these errors into account. We present our
results in table 3.2

Best fit values ε̂S ε̂T χ2 χ2 in the SM
Excluding i = 5, 6, 7 bins (1.3± 0.9)× 10−2 (0.7± 1.0)× 10−2 [72, 73] [74, 77]
Including i = 5, 6, 7 bins (0.9± 1.0)× 10−2 (1.7± 1.7)× 10−2 [83, 86] [91, 95]

Table 3.2: Best fit values to the Belle spectrum and branching ratio of the
τ− → KSπ

−ντ decays [103]. The cases where the i = 5, 6, 7 bins are ex-
cluded/included are considered. We display the reference results obtained
floating ε̂S and ε̂T simultaneously. In the last two columns the χ2 of these
fits is compared to the SM result.

3.7 CP violation

The observable ACP , measured by BaBar [102] has the right magnitude
but the wrong sign compared with the SM prediction (tiny corrections from
direct CP violation are neglected along this section). It is defined as

ACP =
Γ(τ+ → π+KS ν̄τ )− Γ(τ− → π−KSντ )

Γ(τ+ → π+KS ν̄τ ) + Γ(τ− → π−KSντ )
. (3.53)

In the SM, ACP is given by the neutral kaon mixing contribution. Thus, it
comes from the analogous asymmetry measured in semileptonic kaon decays
[101] (` = e, µ)

Γ(KL → π−`+ν`)− Γ(KL → π+`−ν̄`)

Γ(KL → π−`+ν`) + Γ(KL → π+`−ν̄`)
= 3.32(6)× 10−3 , (3.54)

up to small corrections caused by the fact that the KS is reconstructed at the
B-factories through its π+π− decay mode with a decay time of the order of the
KS lifetime. This changes the previous value to ASMCP = 3.6(1)× 10−3 [109],
that is 2.8 σ away from the BaBar measurement, ACP = −3.6(2.3)(1.1) ×
10−3.
Ref. [104] shows that beyond the SM (BSM) interactions modify ACP to

ACP =
ASMCP + ABSMCP

1 + ASMCP × ABSMCP

, (3.55)
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where [101] 16

ABSMCP =
2sinδWT |ε̂T |G2

F |Vus|2SEW
256π3M2

τ Γ(τ → KSπντ )

∫ M2
τ

sπK

ds|f+(s)||FT (s)|

sin (δ+(s)− δT (s))
λ3/2(s,m2

π,m
2
K)(M2

τ − s)2

s2
, (3.56)

where δWT corresponds to the relative weak phase between the SM (V-A)
and the tensor contributions. Ref. [101] uses SU(2)L invariance of the weak
interactions within the EFT to find stringent constraints on =m[ε̂T ], using
the D − D̄ mixing measurements and the upper limit on the electric dipole
moment of the neutron. This yields the bound 2=m[ε̂T ] < 10−5, that we will
use. To see that δWT is a small parameter, we remind the limits from the
global EFT analysis of NP in Kaon (semi)leptonic decays [134], according to
which |εT | = (0.5 ± 5.2) × 10−3. Considering this, sinδWT |ε̂T | ∼ =m[ε̂T ] and
the numerical evaluation of eq. (3.56) is straightforward with the inputs at
hand.
We have computed eq. (3.56) using |FT (s)| obtained with scut = M2

τ , 4, 9
GeV2 (shown in the left panel of fig. 1) and with δT (s) varying (smoothly)
within the band shown in fig. 2 of Ref. [101], as we agree with the estima-
tion of this uncertainty 17. The errors on |F+(s)| and δ+(s) are negligible
compared to the uncertainties on FT (s). Among these two uncertainties, the
error on δT (s) dominates: changing scut for a given δT (s) can modify ABSMCP

by a factor three, at most; while, with a fixed scut, A
BSM
CP can be vanishing

for δT (s)→ δ+(s) also in the inelastic region. In this way, we find

ABSMCP < 8 · 10−7 , (3.57)

which is slightly weaker bound than the one reported in Ref. [101]: ABSMCP <
3 ·10−7. This small difference comes mainly from our accounting for the vari-
ation in scut and also for the slightly different phase δ+(s) in both analyses.
In any case, it is clear that heavy BSM interactions can only modify ACP at
the 10−6 level at most, which is at least three orders of magnitude smaller
than the theoretical uncertainty in its prediction (which is, in turn, some
25 times smaller than the error of the BaBar measurement). Therefore, any
conclusive anomaly in ACP must be explained outside the framework consid-
ered in this paper (and in Ref. [101]); for instance, by BSM effects of very
light particles.

16We remind that cT in this reference equals 2ε̂T in our notation.
17See also Ref. [154], where NP bounds obtained from τ− → K−ντ decays are first

discussed.
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Chapter 4

Effective-field theory analysis of
the τ−→ K−(η(′),K0)ντ
decays

4.1 Summary of the chapter

In this chapter we continue with our studies of semileptonic decays of
the Tau lepton into two mesons. We have already studied in detail the
strangeness-changing decays τ− → (Kπ)−ντ in the previous chapter and we
have published those results in Ref. [138]. In chapter 3 we have also men-
tioned the analogue work for the strangeness-conserving decay τ− → π−π0ντ ,
which was studied in Ref. [127], and the work [126] where the decays
τ− → η(′)π−ντ were studied. Here we want to close the circle for these kind
of studies into two-meson decays by presenting similar analyses for the decay
channels τ− → K−(η(′), K0)ντ . For this task, we follow the logic of chapter
3, that is, we propose an effective Lagrangian constructed with dimension
six operators with the SM degrees of freedom. In particular, we examine
different interesting phenomenological observables i.e. decay spectra and
branching ratio, Dalitz plot distributions and the forward-backward asym-
metry, to explore the sensitivity of the corresponding decays to the effects
of non-standard interactions. We also put constraints on the NP effective
couplings from each of the decay modes. This has only been possible thanks
to the study of the corresponding form factors, which serve as necessary the-
oretical input for the SM. As in chapter 3, the form factors are constructed
based on chiral symmetry, dispersion relations, data and asymptotic QCD
properties. Special attention is paid to the tensor form factors. The results
of this chapter were published in Ref. [155].
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In chapter 5 we will put together all the information of the previous
and the present chapters in order to perform a global analysis of exclusive
hadronic decays of the tau lepton into two-mesons so that the information
presented here will turn out fundamental in what follows.

4.2 Introduction

From our experience with chapter 3 we have learned that tau physics is not
only a powerful tool to study QCD at low energies but also an interesting lab-
oratory to study non-standard interactions. This opens a new window that
complements other low-energy semileptonic probes considered before, such as
nuclear beta decays, semileptonic pion and kaon decays, or hyperon decays,
see for example Refs. [49, 129, 130, 131, 132, 133, 134, 135, 50, 136, 137].

We should start by saying that in general we have a good knowledge of
tau decays into a pair of pseudoscalar mesons. As we have pointed out in
chapter 1, half of the process is purely electroweak, therefore that part is
very clean and under good theoretical control. For the other part, which
involves the hadronization process, the Standard Model (SM) input is en-
coded in terms of hadronic form factors. These form factors are obtained
with the help of dispersion relations, which incorporate both theoretical cal-
culations and experimental data. For example, the analyses of the decays
π−π0 [167, 168, 169, 147] and KSπ

− [122, 115, 116, 117, 121], carried out by
exploiting the synergy between Resonance Chiral Theory [74] and dispersion
theory, are found to be in a nice agreement with the rich data provided by
the experiments. On the other hand, accord with experimental measure-
ments is also found for the K−KS [147] and K−η [144, 121] decay modes,
although higher-quality data on these processes is required to constrain the
corresponding theories or models.

In contrast to chapters 3 and 5, in this chapter we will not attempt to
extract new physics bounds from the corresponding experimental data as
competitive as those coming from other low-energy probes, like the ones
mentioned before, but rather explore the size of the deviations from the SM
predictions that one could expect in these decay channels. We will explore
these potential deviations by making use of several observables like Dalitz
plots, decay spectra, and forward-backward asymmetries. Having said that,
we hope that our paper strengths the case for a (re)analysis, with a larger
data sample, of the K−K0, K−KS and K−η decay spectra and encourage
experimental groups to measure the K−η′ decay mode. All this should be
well within the reach of Belle-II [18], and of other future Z, tau-charm and
B-factories where new measurements should be possible.
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This chapter is organized in the following way: we first discuss the theo-
retical framework in section 4.3 where we introduce the effective Lagrangian
and discuss the different effective weak currents contributing to the decays.
The hadronic matrix elements and form factors are also defined in this sec-
tion. The latter are the matter subject of section 4.4, where we pay special
attention to the tensor form factor. Then, in section 4.5, we discuss different
interesting phenomenological observables like Dalitz plot distributions, de-
cay spectra and forward-backward asymmetries. In this section we also find
limits for the scalar and tensor NP effective couplings (see section 4.5.5). We
will state our conclusions in chapter 6.

4.3 Effective field theory analysis and decay

amplitude of τ− → ντ ūD (D = d, s)

As always, we start with the appropriate effective Lagrangian. The
charged-current transitions τ− → ντ ūD for strangeness-conserving (D = d)
and for strangeness-changing (D = s) modes are mediated by the following
effective Lagrangian [126, 127, 138]

LCC = −GF√
2
VuD(1 + εL + εR)

[
τ̄ γµ(1− γ5)ντ

·ū
[
γµ − (1− 2ε̂R)γµγ5

]
D

+τ̄(1− γ5)ντ ū(ε̂S − ε̂Pγ5)D

+2ε̂T τ̄σµν(1− γ5)ντ ūσ
µνD

]
+ h.c. , (4.1)

where GF is the tree-level definition of the Fermi constant. In eq. (4.1) we
have again made use of the convenient definition ε̂i = εi/(1 + εL + εR) for
i = R, S, P, T (see chapter 3). In this chapter we are only interested in CP
conserving quantities so that the effective couplings εi can be taken real.

Now we proceed with the calculation of the amplitude for the process
τ− (P ) → K− (pK)K0(pK0)ντ (P ′). As was discussed before, due to the
parity of pseudoscalar mesons, only the vector, scalar and tensor currents
give a non-zero contribution to the decay amplitude:

M = MV +MS +MT

=
GFVud

√
SEW√

2
(1 + εL + εR)

×
[
LµH

µ + ε̂SLH + 2ε̂TLµνH
µν
]
, (4.2)

77



where the leptonic currents have the following form

Lµ = ū(P ′)γµ(1− γ5)u(P ) , (4.3)

L = ū(P ′)(1 + γ5)u(P ) , (4.4)

Lµν = ū(P ′)σµν(1 + γ5)u(P ) , (4.5)

and where the hadronic matrix elements are given by

H = 〈K−K0|d̄u|0〉 = FK−K0

S (s) , (4.6)

Hµ = 〈K−K0|d̄γµu|0〉 = CV
K−K0QµFK−K0

+ (s)

+ CS
K−K0

(
∆KK

s

)
qµFK−K0

0 (s) , (4.7)

Hµν = 〈K−K0|d̄σµνu|0〉 = iFK−K0

T (s)(pµK0p
ν
K − pµKpνK0) ,

(4.8)

in which we have made use of the following definitions:
qµ = (pK+pK0)µ, Qµ = (pK0−pK)µ+(∆KK/s)q

µ, s = q2 and ∆ij = m2
i−m2

j ,
and with the Clebsch-Gordan coefficients: CV

KK = −1 and CS
KK = −1.

As it has been pointed out in chapter 3, the hadron matrix elements
H, Hµ and Hµν are decomposed in terms of the allowed Lorentz structures
and also taking into account the discrete symmetries of the strong interac-
tions. These matrix elements are parametrized in terms of the form factors
FK−K0

S (s), FK−K0

+ (s), FK−K0

0 (s) and FK−K0

T (s) which we will discuss in the
next section.

Here it is also convenient to use the relation between the form factors
FS(s) and F0(s) that we have found previously in chapter 3 1

FK−K0

S (s) =
CS
KK0∆KK

md −mu

FK−K0

0 (s) . (4.9)

As in [126, 127, 138], the scalar and vector contributions in Eqs. (4.6) and
(4.7), respectively, can be treated jointly by doing the following replacement

CS
KK0

∆KK

s
→ CS

KK0

∆KK

s

(
1 +

s ε̂S
mτ (md −mu)

)
, (4.10)

in Eq. (4.7).
For the decays τ− → K−η(′)ντ , the associated amplitude is that of Eq. (4.2)

1Remember that this relation was found by taking the divergence of the vector current
Eq. (4.7).
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but replacing; pK0 → pη(′) , ∆K−K0 → ∆K−η(′) , Vud → Vus and md → ms along
the lines of the previous equations, and with the Clebsch-Gordan coefficients

CV
Kη(′)

= −
√

3
2
, CS

Kη = − 1√
6

and CS
Kη′

= 2√
3
. In this chapter we will not go

into much detail in these two strangeness-changing decay modes since I will
focus in the strangeness-conserving decay τ− → K−K0ντ , but I will present
some results for them that we have derived in [155] 2.

4.4 Hadronization of the scalar, vector and

tensor currents

In this section we comment very briefly about the vector and the scalar form
factors involved in the decay τ− → K−K0ντ and we explain in detail how
the corresponding tensor form factor is obtained. We start with the the kaon
vector form factor for which we will follow Ref. [147], where a three-times
dispersion relation was found to be optimal

FKK
+ (s) = exp

[
α̃1s+

α̃2

2
s2 +

s3

π

∫ scut

4m2
π

ds′
δKK+ (s)

(s′)3(s′ − s− i0)

]
, (4.11)

where α̃1 and α̃2, are two subtraction constants related to the slope and cur-
vature appearing in the low-energy expansion of the form factor of the kaon
and FKK

+ (0) = 1 is the third subtraction constant. To get a model for the
form factor phase, δKK+ (s) in Eq. (4.11), we adopt the so-called exponential
Omnès representation of the form factor [147]:

fKK+ (s) =
M2

ρ + s
(
γ̃eiφ̃1 + δ̃eiφ̃2

)
M2

ρ − s− iMρΓρ(s)
exp

{
Re

[
− s

96π2F 2
π

(
Aπ(s) +

1

2
AK(s)

)]}

− γ̃ s eiφ̃1

M2
ρ′ − s− iMρ′Γρ′(s)

exp

{
−

sΓρ′(M
2
ρ′)

πM3
ρ′σ

3
π(M2

ρ′)
ReAπ(s)

}

− δ̃ s eiφ̃2

M2
ρ′′ − s− iMρ′′Γρ′′(s)

exp

{
−

sΓρ′′(M
2
ρ′′)

πM3
ρ′′σ

3
π(M2

ρ′′)
ReAπ(s)

}
.

(4.12)

In Eq. (4.12), the mixing between resonances is taken with respect to the ρ
with relative strengths 1, γ̃, δ̃. These parameters are in general complex thus

2The decays τ− → K−η(′)ντ are going to be discussed in much more detail in a future
thesis presented by Alejandro Miranda.
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carrying a phase that is denoted by φ̃1 and φ̃2, respectively. Taking γ̃ and
δ̃ real would demand a perfect knowledge of the amplitudes of the ρ′ and ρ′′

contributions and, as this is not the case, we consider a more flexible scenario
and add a phase that can absorb part of the associated shortcomings. The
ρ-meson resonance width is accounted for through [170]

Γρ(s) = − Mρs

96π2F 2
π

Im

[
Aπ(s) +

1

2
AK(s)

]
=

Mρs

96πF 2
π

[
σ3
π(s)θ(s− 4m2

π) +
1

2
σ3
K(s)θ(s− 4m2

K)

]
,

(4.13)

while for the energy-dependent width of the ρ′ and ρ′′ we do not take inter-
mediate states other than ππ

Γρ′,ρ′′(s) = Γρ′,ρ′′
s

M2
ρ′,ρ′′

σ3
π(s)

σ3
π(M2

ρ′,ρ′′)
θ(s− 4m2

π) . (4.14)

From Eq. (4.12) we extract its phase through

tan δKK+ (s) =
ImfKK+ (s)

RefKK+ (s)
. (4.15)

In fact, we only use the phase thus extracted to describe the energy region
that goes from 1 GeV2 to m2

τ . From 4m2
π to 1 GeV2 we employ the P -wave

phase shift of the pion-pion scattering solution of the Roy equations [172]
that we match to the phase in Eq. (4.15) at 1 GeV2, while for the region
m2
τ ≤ s we guide smoothly the phase to π such that the correct 1/s high-

energy behavior of the form factor is ensured (see Ref. [147] for more details).
For our analysis, we employ the numerical values given under the label of Fit
i) of Table 7 of Ref. [147] for the corresponding parameters.

For the K−K0 scalar form factor, we use the results of Ref. [173, 174,
175]3. These were obtained after the unitarization, based on the method
of N/D, of the complete one-loop calculation of the strangeness conserving
scalar form factors within U(3) ChPT.

Finally, the tensor form factor is obtained exactly as in chapter 3. The
appropriate Lagrangian from ChPT with tensor sources reads [66]

L = Λ1 〈tµν+ f+µν〉 − iΛ2 〈tµν+ uµuν〉+ Λ3

〈
tµν+ t+µν

〉
+ Λ4 〈fµν+ 〉2 , (4.16)

3We thank very much Zhi-Hui Guo for providing us tables with the unitarized πη, πη′

and K0K̄0 scalar form factors. We translate the result of K0K̄0 to the K−K0 concerning
us through the relation FK

−K0

0 (s) = −FK0K̄0

0 (s)/
√

2.
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Figure 4.1: Normalized absolute value of the tensor form factor FKK
T (s) given

in Eq. (4.18) (left), for scut = 4 GeV2 (dotted line), 9 GeV2 (dashed line) and
scut →∞ GeV2 (solid line), and tensor form factor phase δKKT (s) (right).

where tµν+ = u†tµνu† + utµν†u includes the tensor source and its adjoint, and
〈· · · 〉 stands for a flavor space trace. Again, only terms proportional to Λ2

contribute to the decays we are considering. From the previous Lagrangian
we obtain

i
〈
K−K0

∣∣∣ δL
δt̄αβ

∣∣∣0〉 =
Λ2

F 2
π

(
pαK0p

β
K− − pαK−p

β
K0

)
, (4.17)

so that FK−K0

T (0) = Λ2

F 2
π

, with Λ2 = (11.1 ± 0.4) MeV as we have derived in
chapter 3.

As usual, the energy-dependence of the tensor form factor FK−K0

T (s) is
calculated with the following dispersion relation

FK−K0

T (s) = FK−K0

T (0) exp

[
s

π

∫ scut

4m2
π

ds
′ δKKT (s

′
)

s′(s′ − s− iε)

]
, (4.18)

where we take δKKT (s) = δππ+ (s) in the elastic region i.e. until 1 GeV2, with
δππ+ (s) being the P -wave ππ scattering phase (see text below Eq. (4.15)).

In Fig. 4.1, we show the tensor phase δKKT (s) (right panel) and the (nor-
malized) absolute value |FKK

T (s)| for the cases scut = 4, 9 GeV2 and scut →
∞, which is taken as the baseline hypothesis. As before, the variations due
to scut will be taken into account as a source of systematic uncertainty in
section 4.5.5.
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4.5 Decay observables

Now we proceed to the study of the decay observables. We analyze
particularly Dalitz plots, angular and decay distributions, and the forward-
backward asymmetry. As in chapter 3, we start by noting that in the rest
frame of the τ lepton, the doubly differential decay width for τ− → K−K0ντ
decay is given by

d2Γ

ds dt
=

1

32 (2π)3m3
τ

|M|2 , (4.19)

where |M|2 is the unpolarized spin-averaged squared matrix element, s is the
invariant mass of the K−K0 system, limited in the interval (mK0 +mK)2 ≤
s ≤ m2

τ , and t = (P ′ + pK0)2 = (P − pK)2 with kinematic boundaries given
by t−(s) ≤ t ≤ t+(s), with

t±(s) =
1

2s

[
2sm2

K0 + (m2
τ − s)(s+m2

K0 −m2
K)

± (m2
τ − s)

√
λ(s,m2

K0 ,m2
K)
]
, (4.20)

and where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz is the usual Kallen
function. The kinematic limits in s and t for the decay channels τ− →
K−η(′)ντ are obtained by replacing mK0 → mη(

′) above.

4.5.1 Dalitz plot

Putting all the pieces of the previous section together, we see that the
amplitude for the process τ− → K−K0ντ can be written as follows

M =
GF√

2
Vud
√
SEW (1 + εL + εR)×[

CV
KK0

(
(pK0 − pK)µ +

∆KK

s
(pK0 + pK)µ

)
LµF

KK0

+ (s)

+ CS
KK0

∆KK

s

(
1 +

sε̂s
Mτ (md −mu)

)
(pK0 + pK)µLµF

KK0

0 (s)

+ 2iε̂T (pµK0p
ν
K − pµKpνK0)LµνF

KK0

T (s)

]
,

(4.21)

which can also be conveniently written as

M =
GF√

2
Vud
√
SEW (1 + εL + εR)(M0 +M+ +MT ) , (4.22)
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where,

M+ = CV
KK0

(
(pK0 − pK)µ +

∆KK

s
(pK0 + pK)µ

)
LµF

KK0

+ (s) ,

M0 = CS
KK0

∆KK

s

(
1 +

sε̂s
Mτ (md −mu)

)
(pK0 + pK)µLµF

KK0

0 (s) ,

MT = 2iε̂T (pµK0p
ν
K − pµKpνK0)LµνF

KK0

T (s) . (4.23)

Therefore, the unpolarized spin-averaged squared amplitude yields

|M|2 =
G2
F |Vud|2SEW

s2
(1 + εL + εR)2

× [M00 +M++ +M0+ +MT+ +MT0 +MTT ] , (4.24)

where M00, M++ and MTT are, respectively, the scalar, vector and tensor am-
plitudes, whereas M0+, MT+ and MT0 are their corresponding interferences.
The explicit form for each of these terms reads

M0+ = −2CS
KK0CV

KK0m2
τRe[FKK0

+ (s)(FKK0

0 (s))∗]

×∆KK

(
1 + s ε̂S

mτ (md−mu)

)
(s(m2

τ − s− 2t+ ΣKK0)−m2
τ∆KK0) ,

MT+ = −4CV
KK0 ε̂Tm

3
τsRe[FKK0

T (s)(FKK0

+ (s))∗]
(

1− s
m2
τ

)
λ(s,m2

K0 ,m2
K) ,

MT0 = 4CS
KK0 ε̂T∆KKmτsRe[FKK0

T (s)(FKK0

0 (s))∗]

×
(

1 + s ε̂S
mτ (md−mu)

)
(s(m2

τ − s− 2t+ ΣKK0)−m2
τ∆KK0) ,

M00 = (CS
KK0)2∆2

KKm
4
τ

(
1− s

m2
τ

)
|FKK0

0 (s)|2
(

1 + s ε̂S
mτ (md−mu)

)2

,

M++ = (CV
KK0)2|FKK0

+ (s)|2
{
m4
τ (s−∆KK0)2 + 4m2

ks
2(m2

K0 − t) + 4s2t(s+ t−m2
K0)

−m2
τs
(
s (s+ 4t)− 2∆KK0(s+ 2t− 2m2

K0) + ∆2
KK0

)}
,

MTT = 4ε̂2T |FKK0

T (s)|2s2
{
m4
K(m2

τ − s)−m4
K0(3m2

τ + s)− s ((s+ 2t)2 −m2
τ (s+ 4t))

+2m2
K0 ((s+ 2t)(s+m2

τ )− 2m4
τ )− 2m2

K(m2
τ − s)(s+ 2t−m2

K0)
}
,

(4.25)
where as usual, we have used the notation ∆PQ = m2

P − m2
Q and ΣPQ =

m2
P +m2

Q.
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The analogue expressions for τ− → K−η(′)ντ are obtained by replacing
Vud → Vus in Eq. (4.24), and mK0 → mη(

′) , md → ms and CS,V
KK → CS,V

Kη(′)
in

Eq. (4.25).
As we have pointed out in chapter 3, it is convenient to define the following

observable in our studies of Dalitz plots

∆̃ (ε̂S, ε̂T ) =

∣∣∣|M (ε̂S, ε̂T )|2 − |M (0, 0)|2
∣∣∣

|M (0, 0)|2
, (4.26)

where M(0, 0) corresponds to the SM case.
In the left panel of figure 4.2 we show the Dalitz plot for the SM case in

the (s, t) variables.

4.5.2 Angular distribution

Now we turn to the study of the angular dependence of the decay distribution.
For this task we work in the rest frame of the hadronic system, that is, a
frame in which we have ~pK +~pK0 = ~pτ −~pν = ~0. In this frame, the tau lepton
and the charged kaon energies are given by Eτ = (s + m2

τ )/2
√
s and EK =

(s+m2
K−m2

K0)/2
√
s, and the angle θ between these two particles can be found

from the invariant t variable through t = m2
τ +m2

K−2EτEK +2|~pK ||~pτ | cos θ,
where |~pK | =

√
E2
K −m2

K and |~pτ | =
√
E2
τ −m2

τ .
The form of the decay distribution in the (s, θ) variables has the form

d2Γ

d
√
sd cos θ

=
G2
F |Vud|2SEW
128π3mτ

(1 + εL + εR)2

(
m2
τ

s
− 1

)2

|~pK |
{

(CS
KK0)2(∆KK)2|FKK0

0 (s)|2

×
(

1 +
sε̂S

mτ (md −mu)

)2

+ 16|~pK |2s2

∣∣∣∣∣CV
KK0

2mτ

FKK0

+ (s)− ε̂TFKK0

T (s)

∣∣∣∣∣
2

+ 4|~pK |2s
(

1− s

m2
τ

)
cos2 θ

[
(CV

KK0)2|FKK0

+ (s)|2 − 4sε̂2T |FKK0

T (s)|2
]

+ 4CS
KK0∆KK |~pK |

√
s cos θ

(
1 +

sε̂S
mτ (md −mu)

)
×

[
CV
KK0Re[FKK0

0 (s)F ∗KK
0

+ (s)]− 2sε̂T
mτ

Re[FKK0

T (s)F ∗KK
0

0 (s)]

]}
, (4.27)

Again, the corresponding expressions for the decays τ− → K−η(′)ντ are
obtained by replacing Vud → Vus, mK0 → mη(

′) , md → ms and CS,V
KK → CS,V

Kη(′)

in Eq. (4.27).
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Figure 4.2: Dalitz plot distribution in the SM, |M (0, 0)|2 in Eq. (4.24), for
τ− → K−K0ντ in the (s, t) variables (left). The figure shown on the right
corresponds to the differential decay distribution in the (s, cos θ) variables,
Eq. (4.27). The s and t variables are normalized to m2

τ .

The Dalitz plots for the (s, θ) variables are shown in the right panel of
figure 4.2 and in the lower row of figure 4.3.

4.5.3 Decay rate

We find the decay rate for the process τ− → K−K0ντ by integrating
Eq. (4.19) in the t variable so that the K−K0 invariant mass distribution
yields

dΓ

d
√
s

=
G2
F |Vud|2m3

τSEW
192π3

√
s

(1 + εL + εR)2

(
1− s

m2
τ

)2

λ1/2(s,m2
K0 ,m2

K)

×
[
XV A + ε̂SXS + ε̂TXT + ε̂2SXS2 + ε̂2TXT 2

]
, (4.28)
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Figure 4.3: Dalitz plot distribution of ∆̃ (ε̂S, ε̂T ) in Eq. (4.26) for τ− →
K−K0ντ with (ε̂S = 0.10, ε̂T = 0) (left panels) and (ε̂S = 0, ε̂T = 0.9)
(right panels). The lower row show the differential decay distribution in the
(s, cos θ) variables, Eq. (4.27). The s and t variables are normalized to m2

τ .
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where each of the terms is given by

XV A =
(CV

KK0)2

2s2

[
3|FKK0

0 (s)|2∆2
KK0

+ |FKK0

+ (s)|2
(

1 +
2s

m2
τ

)
λ(s,m2

K0 ,m2
K)
]
, (4.29)

XS =
3

smτ

(CV
KK0)2|FKK0

0 (s)|2 ∆2
KK0

md −mu

, (4.30)

XT = − 6

smτ

CV
KK0Re[FKK0

T (s)F ∗KK
0

+ (s)]λ(s,m2
K0 ,m2

K) , (4.31)

XS2 =
3

2m2
τ

(CV
KK0)2|FKK0

0 (s)|2 ∆2
KK0

(md −mu)
2 , (4.32)

XT 2 =
4

s
|FKK0

T (s)|2
(

1 +
s

2m2
τ

)
λ(s,m2

K0 ,m2
K) . (4.33)

In figure 4.4, we plot the invariant mass distribution of the K−K0 system
for the τ− → K−K0ντ decays. There, we show three different scenarios: first
the SM case (solid line), and then the representative values {ε̂S = 0.1, ε̂T = 0}
(dashed line) and {ε̂S = 0, ε̂T = 0.9} (dotted line). As we have mentioned on
previous sections these values are used just for illustration. We will discuss
more about their magnitudes in section 4.4.5 where we set bounds on these
effective couplings.

From figure 4.4 we see that while the (small) effects of non-SM scalar
interactions are mostly seen in the first half of the decay spectrum, and in
the interference region of the ρ(1450) and ρ(1700) resonances to some extent,
the departure from the SM due to tensor interactions is seen on the second
half of the spectrum.

4.5.4 Forward-backward asymmetry

As we saw in chapter 3, the forward-backward asymmetry is defined as
[126, 127, 138]

AKη(′)(s) =

∫ 1

0
d cos θ d2Γ

ds d cos θ
−
∫ 0

−1
d cos θ d2Γ

ds d cos θ∫ 1

0
d cos θ d2Γ

ds d cos θ
+
∫ 0

−1
d cos θ d2Γ

ds d cos θ

. (4.34)
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Figure 4.4: Invariant mass distribution for the decay τ− → K−K0ντ in the
SM (solid line), and for ε̂S = 0.1, ε̂T = 0 (dashed line) and ε̂S = 0, ε̂T = 0.9
(dotted line). The decay distribution is normalized to the tau decay width.

88



The analytical expression for this observable is obtained substituting
Eq. (4.27) into Eq. (4.34). After integrating upon the cos θ variable we find

AKK(s) =
3CS

KK0∆KK

√
λ(s,m2

K0 ,m2
K)

2s2[XV A + ε̂SXS + ε̂TXT + ε̂2SXS2 + ε̂2TXT 2 ]

×
(

1 +
sε̂S

mτ (md −mu)

){
CV
KK0Re[FKK0

0 (s)F ∗KK
0

+ (s)]

− 2s ε̂T
mτ

Re[FKK0

T (s)F ∗KK
0

0 (s)]
}
. (4.35)

By making εR = εL = ε̂S = ε̂T = 0 we get the SM forward-backward
asymmetry, which is plotted in figure 4.5 (solid line). For the more general
case where we include NP interactions we also have figure 4.5, there, we plot
the cases {ε̂S = 0.1, ε̂T = 0} (dashed line) and {ε̂S = 0, ε̂T = 0.9} (dotted
line).

The important thing to note for the K−K0 decay channel is that the SM
AKK is in general small with a signature right before 1 GeV and a small
bump at around 1.55 GeV. On the other hand, when we turn on the effective
couplings we see that clear non-zero values for the NP coupling of the scalar
contributions will unambiguously dominate over the tensor ones. Therefore,
the AKK would be a good observable for searching non-standard scalar inter-
actions: despite its numerator in Eq. (4.35) is suppressed by the small value
of ∆K−K0 ; its denominator is further suppressed by the dependence of the
XS2 on ∆K−K0 .

4.5.5 Limits on ε̂S and ε̂T

Our purpose in this section is to set bounds on the effective couplings ε̂S and
ε̂T . We achieve this by comparing the total width Γ (which depends explicitly
on the NP couplings ε̂S and ε̂T ) with the SM width Γ0 (obtained by neglecting
NP interactions which we get by setting ε̂S = ε̂T = 0). This comparison is
conveniently implemented with the introduction of the observable ∆ which
we define as follows

∆ ≡ Γ− Γ0

Γ0
= αε̂S + βε̂T + γε̂2S + δε̂2T . (4.36)

After integrating the invariant mass distribution Eq. (4.28) upon the s
variable we find Γ and Γ0, and with them we find ∆. The numerical values
of the coefficients α, β, γ and δ are found to be:
α = 0.24± 0.01, β = −3.66+0.16

−1.74, γ = 34.4+1.3
−1.4 and δ = 9.2+1.0

−5.2 for the K−K0
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Figure 4.5: Forward-backward asymmetry for the decay τ− → K−K0ντ in
the SM (solid line), and for ε̂S = 0.1, ε̂T = 0 (dashed line), and ε̂T = 0.9, ε̂S =
0 (dotted line).
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Figure 4.6: ∆ as a function of ε̂S for ε̂T = 0 (left plot) and ε̂T for ε̂S = 0 (right
plot) for the decay τ− → K−K0ντ . Horizontal lines represent the values of ∆
according to the current measurement and theory errors (at three standard
deviations) of the branching ratio (dashed line).

transition. The errors carried by the previous coefficients come from the
uncertainty associated to the corresponding form factors (see section 4.4).

With the help of the ∆ observable we obtain our limits for ε̂S and ε̂T
couplings in two different ways. First, we set one of the couplings to zero
and obtain bounds for the other, and vice versa. This process gives us the
two parabolas shown in figure 4.6. We can summarize that information as
follows:

ε̂S = [−0.12,−0.08] ∪ [0.08, 0.12] , ε̂T = 0 , (4.37)

ε̂S = 0 , ε̂T = [−0.12,−0.06] ∪ [0.92, 0.99] , (4.38)

from τ− → K−K0ντ (BRexp = 1.486(34)×10−3 [6]). Had we used the BaBar
measurement of τ− → K−KSντ (BRexp = 0.739(11)(20) × 10−3 [156]), we
would have obtained instead

ε̂S = [−0.12,−0.09] ∪ [0.08, 0.11] , ε̂T = 0 , (4.39)

ε̂S = 0 , ε̂T = [−0.12,−0.06] ∪ [0.93, 0.99] . (4.40)

The second way in which we set constraints is again using Eq. (4.36), but
now taking the general case where both couplings are non-vanishing. In this
case we obtain the ellipse shown in figure 4.7.

For the convenience of the reader we summarize all our findings for our
constraints into two-meson decay modes in table 4.1. The first three rows of
this table show the constraints we have obtained for the channels we have
mentioned in this chapter (τ− → K−(η(′), K0)ντ ) and the last four rows
show our contraints from previous works for the other two-meson modes
[127, 138, 126].
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Figure 4.7: Constraints on the scalar and tensor couplings obtained from
∆(τ− → K−K0ντ ) using the measured branching ratio (at three standard
deviations).

Decay channel ε̂S (ε̂T = 0) ε̂T (ε̂S = 0) ε̂S ε̂T
τ− → K−ηντ [−0.38, 0.16] [−1.4,−0.7] ∪ [−4.7, 8.5] · 10−2 [−0.7, 0.5] [−1.5, 0.1]
τ− → K−η′ντ [−0.20, 0.05] [−7.6, 14.9] [−0.21, 0.05] [−10.4, 17.7]
τ− → K−K0ντ [−0.12,−0.08] ∪ [0.08, 0.12] [−0.12,−0.06] ∪ [0.92, 0.99] [−0.2, 0.2] [−0.12, 0.98]
τ− → π−π0ντ [127] [−1.33, 1.31] [−0.79,−0.57] ∪ [−1.4, 1.3] · 10−2 [−5.2, 5.2] [−0.79, 0.013]
τ− → (Kπ)−ντ [138] [−0.57, 0.27] [−0.059, 0.052] ∪ [0.60, 0.72] [−0.89, 0.58] [−0.07, 0.72]
τ− → π−ηντ [126] [−8.3, 3.9] · 10−3 [−0.43, 0.39] [−0.83, 0.37] · 10−2 [−0.55, 0.50]
τ− → π−η′ντ [126] [−1.13, 0.68] · 10−2 |ε̂T | < 11.4 [−1.13, 0.67] · 10−2 [−11.9, 11.9]

Table 4.1: Constraints on the scalar and tensor couplings obtained (at three
standard deviations) through the limits on the current branching ratio mea-
surements. Theory errors are included.
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Chapter 5

Global analysis of exclusive
hadronic tau decays

5.1 Introduction

In chapters 3 and 4, we have studied separately several hadronic decays
of the tau lepton into two mesons. We can divide these decays into two
categories: strangeness-changing decays and strangeness-conserving decays.
The decays τ− → (Kπ)−ντ that we studied extensively in chapter 3 and
the decays τ− → K−η(′)ντ that we mentioned briefly in chapter 4 belong to
the first category, and the decays τ− → K−K0ντ that we studied in detail
in chapter 4 belong to the second category. Each of these studies was very
important on its own way since we have learned different things from all of
them by treating them individually.

Our purpose in this chapter, based in [205], is a little bit different, we
want to learn in this case what can we gain by studying all these channels
(and others that we will add) 1 in a global way. For this task we will take
advantage from many of the results of our previous chapters, for example,
form factors, amplitudes, spectra, etc.

We organize this chapter as follows: we discuss the theoretical framework
in section 5.2, where we present the effective Lagrangian that we use and cal-
culate the analytical expressions for several interesting observables, namely,
the decay rates for the one-meson processes τ− → P−ντ with P = π,K, and
the partial decay widths for the two-meson decays τ− → (PP ′)−ντ . Next, in
sections 5.3 and 5.4, we study the bounds on the New Physics effective cou-

1To the two-meson decay modes of the tau lepton that we have mentioned, we will add
the one-meson decay modes τ− → P−ντ , where P = π,K.
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plings for the strangeness-conserving (∆S = 0) and the strangeness-changing
(|∆S| = 1) transitions, respectively. Then, a global fit to both sectors i.e.
(∆S = 0 and |∆S| = 1), is studied in section 5.5. We will state our conclu-
sions in chapter 6.

We will not discuss the relevant form factors in this chapter since we
have already done it in chapters 3 and 4, and in appendix C. So, every time
we need that input, we will refer the reader to previous chapters or to the
relevant appendix.

5.2 SMEFT Lagrangian and decay rate

As usual, we start by writing the proper effective Lagrangian for our prob-
lem. We will describe semileptonic charged-current decays of the form τ− →
ντ ūD, where D = d for strangeness-conserving and D = s for strangeness-
changing transitions. The low-energy limit of the Standard Model Effective
Field Theory Lagrangian including dimension six operators with left-handed
neutrinos has the form [49, 129].

LCC = −GFVuD√
2

[
(1 + ετL)τ̄ γµ(1− γ5)ντ · ūγµ(1− γ5)D

+ετRτ̄ γµ(1− γ5)ντ · ūγµ(1 + γ5)D

+τ̄(1− γ5)ντ · ū(ετS − ετPγ5)D

+ετT τ̄σµν(1− γ5)ντ ūσ
µν(1− γ5)D

]
+ h.c. , (5.1)

where σµν = i[γµ, γν ]/2, GF is the tree-level definition of the Fermi constant
and εi (i = L,R, S, P, T ) are effective couplings encoding NP. It is important
to note at this point that the product GFVuD in Eq. (5.1) will carry a depen-
dence on εeL and εeR since it is determined from superallowed nuclear Fermi β
decays, this dependence is given by [134]

GF Ṽ
e
uD = GF (1 + εeL + εeR)VuD , (5.2)

if we set the coefficients εi = 0 in eqs. (5.1) and (5.2), we recover the SM
Lagrangian.

We start our analysis with the one-meson decay modes τ− → P−ντ (P =
π,K) since these are the simplest semileptonic decays that can be calculated
with the low-energy effective Lagrangian of Eq. (5.1). This simplicity arises
from the fact that these are two-body decays so that the kinematics is fixed
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and the form factors become decay constants. The expression for the decay
rate for the process τ− → π−ντ takes the form

Γ(τ− → π−ντ ) =
G2
F |Ṽ e

ud|2f 2
πm

3
τSEW

16π

(
1− m2

π

m2
τ

)2

× (1 + δτπem + 2∆τπ +O(ετi )
2 +O(δτπemε

τ
i )) ,

(5.3)

where fπ is the pion decay constant 2, SEW resums the short-distance elec-
troweak corrections, the quantity δτπem accounts for the electromagnetic ra-
diative corrections and the term ∆τπ contains the tree-level NP corrections
that arise from the Lagrangian in Eq. (5.1)3 that are not absorbed in Ṽ e

ud.
For the channel τ− → K−ντ , the decay rate is that of Eq. (5.3) but replacing
Ṽ e
ud → Ṽ e

us, fπ → fK , mπ → mK , and δτπem and ∆τπ by δτKem and ∆τK , respec-
tively.

As we will see, the inclusion of the one-meson decay modes in the analysis
will be very useful since it helps constraining some combinations of Wilson
coefficients involving the couplings εL and εR.

Now we continue our discussion with the two-meson decay modes τ− →
(PP ′)−ντ . The resulting partial decay width for these decays is given by (the
variable s is the invariant mass of the corresponding two-meson system):

dΓ

ds
=

G2
F |Ṽ e

uD|2m3
τSEW

384π3s

(
1− s

m2
τ

)2

λ1/2(s,m2
P ,m

2
P ′)

×
[

(1 + 2(ετL − εeL + ετR − εeR))XV A

+ετSXS + ετTXT + (ετS)2XS2 + (ετT )2XT 2

]
, (5.4)

2We use here, for convenience, the ’electroweak’ decays constant, ∼ 130 MeV, which is√
2 times larger than its chiral counterpart ∼ 92 MeV.

3In Eq. (5.3) we have expanded up to linear order on the effective couplings ετi .
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with

XV A =
1

2s2

{
3
(
CS
PP ′

)2 |F PP ′

0 (s)|2∆2
PP ′

+
(
CV
PP ′

)2 |F PP ′

+ (s)|2
(

1 +
2s

m2
τ

)
λ(s,m2

P ,m
2
P ′)

}
,

XS =
3

smτ

(
CS
PP ′

)2 |F PP ′

0 (s)|2 ∆2
PP ′

md −mu

,

XT =
6

smτ

CV
PP ′ Re

[
F PP ′

T (s)
(
F PP ′

+ (s)
)∗]
λ(s,m2

P ,m
2
P ′) ,

XS2 =
3

2m2
τ

(
CS
PP ′

)2 |F PP ′

0 (s)|2 ∆2
PP ′

(md −mu)
2 ,

XT 2 =
4

s
|F PP ′

T (s)|2
(

1 +
s

2m2
τ

)
λ(s,m2

P ,m
2
P ′) , (5.5)

where CV
PP ′ and CS

PP ′ are the corresponding Clebsch-Gordan coefficients that
we mentioned in chapter 1, λ(x, y, z) = x2 + y2 + z2− 2xy− 2xz− 2yz is the
usual Kallen function, and ∆PP ′ = m2

P −m2
P ′ .

5.3 New Physics bounds from ∆S = 0 decays

Before discussing the global analysis for ∆S = 0 decays, which is the main
goal for this section, we will see first what we can learn from the individual
decay mode τ− → π−ντ . From the decay rate given in Eq. (5.3) and using
as input 4 fπ = 130.2(8) MeV from the lattice5 [15] together with δτπem =
1.92(24)% [160, 161, 162] and the PDG reported values [6] for: |Ṽ e

ud| =
0.97420(21) from nuclear β decays, the measured branching ratio BR(τ− →
π−ντ ) = 10.82(5)%, mπ = 0.13957061(24) GeV, mτ = 1.77686(12) GeV,
Γτ = 2.265× 10−12 GeV and GF = 1.16637(1)× 10−5 GeV−2, we obtain the
constraint:

ετL − εeL − ετR − εeR −
m2
π

mτ (mu +md)
ετP = (−0.12± 0.68)× 10−2 , (5.6)

4These radiative corrections have recently been updated in [157], using the results
for the real photon emission in [158]. Employing also the updated Vud value [159]

(|Vud| = 0.97373± 0.00031), this results in the limit ετL − εeL − ετR − εeR −
m2
π

mτ (mu+md)ε
τ
P =

−(0.15± 0.72)× 10−2.
5The pion decay constant determined from data cannot be employed as it may be

contaminated of NP effects.
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where the uncertainty is dominated by fπ, followed by the error of branching
ratio and the radiative corrections uncertainty.

Now we turn to the global analysis for ∆S = 0 decays. For this task
we perform a simultaneous fit to one and two meson strangeness-conserving
exclusive hadronic decays of the tau lepton taking into account the following
observables:

• the high-statistics τ− → π−π0ντ experimental data reported by the
Belle collaboration [163], including both the normalized unfolded spec-
trum and the branching ratio.

• the branching ratio for the decay τ− → K−K0ντ .

• the branching ratio for τ− → π−ντ .

The χ2 function that is minimized in our fits is

χ2 =
∑
k

(
N̄ th
k − N̄ exp

k

σN̄exp
k

)2

+

(
BRth

ππ −BRexp
ππ

σBRexp
ππ

)2

+

(
BRth

KK −BRexp
KK

σBRexp
KK

)2

+

(
BRth

τπ −BRexp
τπ

σBRexp
τπ

)2

,

(5.7)

where N̄ th
k relates the decay rate of Eq. (5.4) for τ− → π−π0ντ to the nor-

malized distribution of the measured number of events through

1

Nevents

dNevents

ds
=

1

Γ(ετi , ε
e
j)

dΓ(s, ετi , ε
e
j)

ds
∆bin , (5.8)

where Nevents is the total number of measured events and ∆bin is the bin
width. Additionally, N̄ exp

k and σN̄exp
k

in Eq. (5.7) are, respectively, the experi-
mental number of events and the corresponding uncertainties in the k-th bin.

The bounds for the effective couplings characterizing the NP that result
from our global fit are found to be (in the MS at a scale µ = 2GeV)

ετL − εeL + ετR − εeR
ετR + m2

π

2mτ (mu+md)
ετP

ετS

ετT

 =


0.5± 0.6+2.3

−1.8
+0.2
−0.1 ± 0.4

0.3± 0.5+1.1
−0.9

+0.1
−0.0 ± 0.2

9.7+0.5
−0.6 ± 21.5 +0.0

−0.1 ± 0.2

−0.1± 0.2+1.1
−1.4

+0.0
−0.1 ± 0.2

× 10−2, (5.9)
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where the first error is the statistical fit uncertainty, the second error –which
is the dominant one– comes from the theoretical uncertainty associated to
the pion vector form factor, while the third and fourth ones are systematic
uncertainties coming, respectively, from the error of the quark masses and
from the uncertainty associated to the corresponding tensor form factors.

The correlation matrix (ρij) associated to the results of Eq. (5.9) is

ρij =


1 0.684 −0.493 −0.545

1 −0.337 −0.372
1 0.463

1

 , (5.10)

with χ2/d.o.f.∼ 0.6.

5.4 New Physics bounds from |∆S| = 1 decays

In this section we will perform a global analysis for |∆S| = 1 decays, but
before we do so, following the ideas of the previous section, we will first dis-
cuss what we can learn from the individual decay mode τ− → K−ντ . As we
have pointed out before, this strangeness-changing decay rate has the same
form that the one in Eq. (5.3), thus, using that formula with the appropriate
replacements and using the lattice calculation of fK = 155.7(7) MeV [15], the
radiative corrections δτKem = 1.98(31)% [160, 161, 162] and |Ṽ e

us| = 0.2231(7),
BR(τ− → K−ντ ) = 6.96(10) × 10−3 and mK = 0.493677(16) GeV from the
PDG [6] as numerical inputs, we obtain the constraint:

ετL − εeL − ετR − εeR −
m2
K

mτ (mu +ms)
ετP = (−0.41± 0.93)× 10−2 . (5.11)

where the error is dominated by fK and |Vus| followed by the branching ratio
and the radiative corrections uncertainty 6.

Now for the global analysis for |∆S| = 1 decays, we proceed exactly
as we did for the ∆S = 0 case, that is, we perform a simultaneous fit to one
and two meson strangeness-changing exclusive hadronic decays of the tau
lepton taking into account the following observables:

• the τ− → KSπ
−ντ Belle spectrum [103] together with the measured

branching ratio, BRexp
Kπ = 0.404(2)(13)%.

6These radiative corrections have recently been updated in [157], using the results

for the real photon emission in [158], yielding ετL − εeL − ετR − εeR −
m2
K

mτ (mu+ms)
ετP =

−(0.36± 1.18)× 10−2.
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• the branching ratio of the decay τ− → K−ηντ (BRexp
Kη = 1.55(8)×10−4)

[6] 7 8.

• the branching ratio of the decay τ− → K−ντ (BRexp
τK = 6.96(10)×10−3)

[6].

In this case the χ2 function that is minimized in our fits is given by

χ2 =
∑
k

(
N̄ th
k − N̄ exp

k

σN̄exp
k

)2

+

(
BRth

Kπ −BRexp
Kπ

σBRexp
Kπ

)2

+

(
BRth

Kη −BRexp
Kη

σBRexp
Kη

)2

+

(
BRth

τK −BRexp
τK

σBRexp
τK

)2

,

(5.12)

where now N̄ th
k refers to the KSπ

− decay mode and its expression is given by

dNevents

d
√
s

=
Nevents

Γ(ετi , ε
e
j)

dΓ(
√
s, ετi , ε

e
j)

d
√
s

∆bin . (5.13)

The bounds coming from the global fit to the |∆S| = 1 decays are given
by 9


ετL − εeL + ετR − εeR
ετR +

m2
K

2mτ (mu+ms)
ετP

ετS

ετT

 =


0.5± 1.5± 0.3

0.4± 0.9± 0.2

0.8+0.8
−0.9 ± 0.3

0.9± 0.7± 0.4

 × 10−2, (5.14)

where the first error is the statistical fit uncertainty while the second one is
the systematic uncertainty coming from the tensor form factor. In contrast
with the ∆S = 0 case which is given in Eq. (5.14), the uncertainty associated

7While the τ− → K−ηντ decay spectrum has been measured by Belle [164], unfolding
detector effects has not been performed and we therefore have decided to include only the
branching ratio in our study.

8The decay τ− → K−η′ντ has not been detected yet, there is only an upper limit at the
90% confidence level placed by BaBar [165] and we therefore have decided to not include
it in our analysis.

9The bounds are obtained in the MS at a scale µ = 2GeV just as was done for the
∆S = 0 case.
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to the kaon vector form factor and to the quark masses is negligible.
The correlation matrix associated to the results of Eq. (5.14) is

ρij =


1 0.854 −0.147 0.437

1 −0.125 0.373
1 −0.055

1

 , (5.15)

with χ2/d.o.f.∼ 0.9.
There are two important points to note from Eqs. (5.14) and (5.15), one

is that the element ρ12 in Eq. (5.15) is large (it was also the largest element in
Eq. (5.10)). This is a result of the strong correlation between the couplings
ετR and ετP . The other point is that the ετS coupling is more competitive by an
order of magnitude than the corresponding one for the ∆S = 0 sector shown
in Eq. (5.9). However the ετT coupling has now increased by about one order
of magnitude and has changed sign which makes it a little less restrictive
than in the ∆S = 0 case. In the next section we will see that if we combine
both (∆S = 0 and |∆S| = 1) kind of decays we take the advantages of each
sector.

5.5 New Physics bounds from a global fit to

both ∆S = 0 and |∆S| = 1 sectors

In this section we take advantage of the previous two and perform a global
fit to both ∆S = 0 and |∆S| = 1 sectors simultaneously. This can only be
done under the assumption of d ↔ s universality (apart from the CKM
mixing), which is quite reasonable as a realization of the celebrated Minimal
Flavor Violation hypothesis [166]. The reason to do this is that, on the one
hand, we will be able to disentangle the ετR and the ετP couplings, and on the
other hand, we will benefit in our bounds for ετT and ετS from the strangeness-
conserving sector and the strangeness-changing sector, respectively.

Since the correlation of parameters is important, we will take the |Vud|
and |Vus| elements of the CKM matrix to be used in this case correlated
according to [15]

|Vus|
|Vud|

= 0.2313(5) . (5.16)

For our analysis, we take |Vus| = 0.2231(7) [6] and extract |Vud| through
Eq. (5.16).
For our global fit the χ2 function to be minimized includes all the quantities
that we used for the separate analyses in Eqs. (5.7) and (5.12). In this case
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the NP effective couplings are found to be (again in the MS scheme at scale
µ = 2 GeV)

ετL − εeL + ετR − εeR
ετR
ετP
ετS
ετT

 =



2.9 ±0.6 +1.0
−0.9 ±0.6 ±0.0 ±0.4 +0.2

−0.3

7.1 ±4.9 +0.5
−0.4

+1.3
−1.5

+1.2
−1.3 ±0.2 +40.9

−14.1

−7.6 ±6.3 ±0.0 +1.9
−1.6

+1.7
−1.6 ±0.0 +19.0

−53.6

5.0 +0.7
−0.8

+0.8
−1.3

+0.2
−0.1 ±0.0 ±0.2 +1.1

−0.6

−0.5 ±0.2 +0.8
−1.0 ±0.0 ±0.0 ±0.6 ±0.1

× 10−2 ,

(5.17)

where the first error is the statistical error resulting from the fit, the second
one comes from the uncertainty on the pion vector form factor, the third error
corresponds to the CKM elements |Vud| and |Vus|, the fourth one is due to
the radiative corrections δτπem and δτKem , the fifth estimates the (uncontrolled)
systematic uncertainty associated to the tensor form factor, while the last,
is due to the errors of the quark masses.

The correlation matrix associated with Eq. (5.17) is given by

A =


1 0.055 0.000 −0.279 −0.394

1 −0.997 −0.015 −0.022
1 0.000 0.000

1 0.243
1

 , (5.18)

with χ2/d.o.f.∼ 1.38.
As we see from Eq. (5.18) the price that we pay for disentangling the

effective couplings ετR and ετP is that they are strongly correlated, but other-
wise we gain in our capacity to constrain at the same time ετT and ετS.

As we have pointed out in chapters 3 and 4, the limits on the NP effective
couplings can be translated into bounds for the corresponding NP scale in
the following way

Λ ∼ v (VuDεi)
−1/2 , (5.19)

where v = (
√

2GF )−1/2 ∼ 246 GeV. In this chapter we repeat this process
for our present results which are shown in Eq. (5.17) and we find that our
bounds can probe scales of O(5) TeV, which are quite restricted compared to
the energy scale probed in semileptonic kaon decays i.e. O(500) TeV [134].
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Chapter 6

Summary and conclusions

We have finally arrived at the conclusions of this thesis work. We divide our
conclusions in three parts, which correspond to each of the central chapters
of this work, namely: chapters 3, 4 and 5. There are of course some general-
ities that repeat for these three chapters, but we have decided to divide the
conclusions in three because each chapter is important in its own way and
also because some of our conclusions refer to very specific topics belonging
to a very particular chapter.

6.1 Conclusions for chapter 3

In this chapter we focused on the τ− → (Kπ)−ντ decays. Here we have
studied the effect of NP in several interesting observables like Dalitz plots,
decay spectrum and forward-backward asymmetry. The effect of this NP
was encoded in the effective couplings ε̂S and ε̂T for which we have also set
constraints. All these observables were calculated in the SM case as well,
in order to be able to compare the way in which NP could manifest. Apart
from that, we have three main conclusions for this chapter:

• In agreement with Ref. [101], we confirm that it is not possible to
understand within the low-energy limit of the SMEFT framework the
BaBar measurement [102] of the CP asymmetry, which disagrees at
2.8σ with the SM prediction [109]. As a consequence of our dedicated
treatment of the uncertainties on the tensor form factor, we find an
slightly weaker bound than in Ref. [101], ABSMCP ≤ 8 · 10−7, which is
anyway some three (five) orders of magnitude smaller than the theoret-
ical uncertainty in its prediction (the error of the BaBar measurement).
If the BaBar anomaly is confirmed, its explanation must be due to light
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NP. A determination of this quantity with Belle-I data, together with
the future measurement at Belle-II [18], will shed light on this puzzle.

• The bins number 5, 6 and 7 of the Belle measurement [103] of the KSπ
−

mass spectrum in τ− → KSπ
−ντ decays could not find an explanation

using a scalar form factor obtained from the corresponding partial-wave
of a meson-meson scattering coupled channels analysis [125, 115] 1. We
have shown here, for the first time, that non-standard scalar or tensor
interactions produced by heavy NP are not capable of explaining these
data points either. Again a caveat remains with respect to light NP
effects, which are beyond the scope of this work.

• Current branching ratio and spectrum measurements of the τ− →
KSπ

−ντ decays restrict the NP effective couplings, ε̂S and ε̂T , as we
have studied in this work for the first time. Our results are consistent
with naive expectations: while the considered decays set bounds simi-
lar to those coming from hyperon semileptonic decays (which are at the
level of a few TeV NP energy scale under reasonable assumptions), they
are not competitive with (semi)leptonic Kaon decays, that could probe
NP at a scale of order O(500) TeV for the case of scalar interactions.
However, we must say that tensor interactions in τ− → (Kπ)−ντ decays
are probed with similar NP energy reach than in (semi)leptonic Kaon
and hyperon decays. Therefore, the corresponding comparisons for ε̂T
are meaningful tests of lepton universality and under this assumption
tau decays can complement Kaon and hyperon physics in restricting
tensor interactions.

6.2 Conclusions for chapter 4

In chapter 4 we have focused on the decay channel τ− → K−K0ντ , but
we have also mentioned very briefly some results about the decay channels
τ− → K−η(′)ντ

2. Similar to what we did in chapter 3, in chapter 4 we have
studied the effect of NP in several interesting observables like Dalitz plots,
decay spectrum and forward-backward asymmetry. We calculated the SM
result for all those observables as well. This was in order to have a compari-
son that could shed some light disentangling the potential effects introduced

1The effect of the otherwise dominant vector form factor is kinematically suppressed
in this region and can never give such a strong enhancement as observed in these data
points.

2As we have pointed out in chapter 4 the decays τ− → K−η(′)ντ are going to be
discussed in much more detail in a future thesis presented by Alejandro Miranda.
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by non-standard interactions (NSI).
We have focused our analysis on setting bounds on the corresponding

New Physics couplings from the current experimental measurements of these
decays. This has been possible due to the satisfactory knowledge we have
on the necessary Standard Model hadronic input, the form factors. For the
description of the participating vector and scalar form factors, we have em-
ployed previous results based on constraints from Chiral Perturbation Theory
supplemented by dispersion relations and experimental data. On the con-
trary, there are no experimental data to help us constructing the required
tensor form factor and, therefore, it has been described under theoretical
arguments solely.

Our main results for this chapter can be found in table 4.1, where we
show limits for the NP effective couplings ε̂S and ε̂T coming from different
decays of the tau lepton into two mesons.

Despite our bounds on the NP couplings coming only from the BR con-
straints are not as precise as those placed, for example, from semileptonic
kaon decays [134], we see that when we introduce fits including spectra we
gain a lot in our constraining power. This has been possible in chapter 3 and
5, where we have high-quality data for some of the decay channels, however
it has not been possible in chapter 4, where more data is required. In this
respect we hope our works can serve as a motivation for the experimental
tau physics groups at Belle-II to measure the different observables we have
discussed.

6.3 Conclusions for chapter 5

In this chapter we took advantage from many of the previous results of chap-
ters 3 and 4 in which we have discussed extensively tau decays into two
mesons. Here we have changed directions and instead of performing particu-
lar analyses for each of the decay modes as we did before, we have performed
a global analysis for all of them at the same time, we have also included tau
decays into one meson in this analysis.

Our work divides naturally in three sections: an analysis for strangeness-
conserving decays (∆S = 0), an analysis for strangeness-changing decays
(|∆S| = 1) and finally a global analysis for both sectors simultaneously.

Our main results here are found in Eqs. (5.9), (5.14) and (5.17), which
represent our bounds for the NP effective couplings for the strangeness-
conserving sector, the strangeness-changing sector, and the global case, re-
spectively. In general, our bounds on the NP couplings, are competitive.
This is specially the case for the combination of couplings ετL− εeL + ετR − εeR,
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which is found to be in accord with the constraints placed from a combina-
tion of inclusive and exclusive (strangeness-conserving) tau decays [128], and
for ετT , that can even compete with the constraints set by the theoretically
cleaner K`3 decays (for the comparison, lepton flavor universality is assumed
as mentioned in chapter 5). Our separate fits to both ∆S = 0 and |∆S| = 1
decays reflect that we are not sensitive to the coefficients ετP and ετR individ-
ually but rather to a combination of them. It is still possible to fit them
separately performing a global fit to both ∆S = 0 and |∆S| = 1 sectors
simultaneously (relying on the well-motivated and experimentally supported
hypothesis of minimal flavor violation). However, they carry large error bars
whose origin stems from the very strong correlation between them. As for
ετS, it is impossible to compete with the limits coming from K`3 decays. Our
limit, however, is found to be much weaker than previous constraints from
tau decays. This is due to the fact that, for lack of experimental data, the
decay τ− → π−ηντ has not been taken into account in our analysis. This
different bounds on ετS obtained with and without the πη mode thus increase
the interest of its measurement and demands refined theoretical descriptions
accordingly.
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Appendix A

The CCWZ Formalism

In this appendix we present in some detail the CCWZ formalism which
has been used in chapter 2 for the construction of ChPT and which is used
more generally in the construction of effective Lagrangians with SSB.

This general formalism was worked out by Callan, Coleman, Wess and
Zumino (CCWZ) [64, 65]. As we will see in what follows the most important
part in the construction of an effective Lagrangian is the spontaneous sym-
metry breaking pattern, that is, given a group of symmetries G for a theory
and a subgroup H of those symmetries respected by the vacuum, a general
effective Lagrangian can be constructed following some simple arguments.

For convenience and to illustrate some points, take the global symmetry
group G = O(N) and the subgroup H = O(N−1). Let us consider Ξ(x) ∈ G.
We can parametrize any vector φ in terms of the Ξ matrix as is shown in the
following equation

φ(x) = Ξ(x)



0
0
.
.
.
0
v


, (A.1)

the matrix Ξ is not unique since Ξh, where h ∈ H gives the same field
configuration due to the invariance of the vacuum under H transformations.
This means that φ(x) can also be described by Ξ(x)h(x), where h(x) has the
form:

h(x) =

(
h′(x) 0

0 1

)
, (A.2)
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with h′(x) an arbitrary O(N − 1) matrix. You can see this explicitly in the
following equation

(
h′(x) 0

0 1

)


0
0
.
.
.
0
v


=



0
0
.
.
.
0
v


. (A.3)

The CCWZ prescription consists in choosing a set of broken generators
X and taking

Ξ(x) = eiX·π(x) . (A.4)

For the case N = 3, our symmetry group is G = O(3) and the subgroup
that leaves the vacuum invariant is O(2). In this simple case the generators
of G are J1, J2 and J3. If we choose J3 as the unbroken generator, then Ξ(x)
takes the following form

Ξ(x) = ei[J1π1(x)+J2π2(x)] . (A.5)

Under a global symmetry transformation g, the matrix Ξ(x) is trans-
formed to gΞ(x). This new matrix gΞ(x) is no longer in standard form (see
eq. (A.4)), but can be written as

gΞ = Ξ′h , (A.6)

where we have used the fact that two matrices gΞ and Ξ′ differ only by an
H transformation.

We can rewrite eq. (A.6) in the following way

Ξ(x)→ gΞ(x)h−1(g,Ξ(x)) . (A.7)

Eqs. (A.4) and (A.7) give the CCWZ choice for the Goldstone boson
fields, and its transformation law. These two formulas are the basic ingredi-
ents that we used in chapter 2 when we discussed ChPT.

A.1 Application of the formalism to the QCD

Chiral Lagrangian

As we have pointed out, the important thing in the formulation is the
symmetry breaking pattern. In this case we have

G ≡ SU(3)L × SU(3)R → H ≡ SU(3)V . (A.8)
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The generators of G are T aL and T aR and those of H are T a = T aL + T aR.
There are two important basis that we want to discuss: the ξ-basis and

the Σ-basis.

1. ξ-basis:
In this case the broken generators are chosen as Xa = T aL − T aR. The
SU(3)L × SU(3)R transformation can be represented as

g =

(
L 0
0 R

)
, (A.9)

where L and R are SU(3)L and SU(3)R transformations, respectively.
For the case of the unbroken symmetry transformations we have the same
form that in eq. (A.9), except that in this case L = R = U ,

h =

(
U 0
0 U

)
. (A.10)

Then, with our choice of broken generators, the CCWZ prescription which
is shown in eq. (A.4) takes the form

Ξ(x) = eiX·π(x) = exp i

(
T · π 0

0 −T · π

)
=

(
ξ(x) 0

0 ξ†(x)

)
, (A.11)

where ξ = eiT ·π. Similarly, the transformation rule shown in eq. (A.7),
for this case takes the form(

ξ(x) 0
0 ξ†(x)

)
→
(
L 0
0 R

)(
ξ(x) 0

0 ξ†(x)

)(
U−1 0

0 U−1

)
, (A.12)

therefore, ξ transforms in the following way

ξ(x)→ Lξ(x)U−1 = U(x)ξ(x)R† . (A.13)

2. Σ-basis:
In this case we choose Xa = T aL as the broken generators, then the CCWZ
prescription takes the form

Ξ(x) = eiX·π(x) = exp i

(
T · π 0

0 0

)
=

(
Σ(x) 0

0 1

)
, (A.14)

where Σ = eiT ·π. Now the transformation law in eq. (A.7) takes the form(
Σ(x) 0

0 1

)
→
(
L 0
0 R

)(
Σ(x) 0

0 1

)(
U−1 0

0 U−1

)
, (A.15)
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thus, U = R, and
Σ(x)→ LΣ(x)R† . (A.16)

From eq. (A.13) and eq. (A.16), we see that ξ and Σ are related by

Σ(x) = ξ2(x) . (A.17)

In chapter 2, when we discussed ChPT, we used the notation U(X) and
u(x) instead of Σ(x) and ξ(x), respectively. Our conclusion there was that
we can parametrize the Goldstone boson fields in the following way

U(Φ) = u(Φ)2 = exp

(
i

√
2Φ

f

)
, (A.18)

where

Φ(x) ≡
√

2T aφq(x) =
λaφa√

2
=


1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8

 .

(A.19)
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Appendix B

Spin and parity of hadronic
currents

Since we have discussed a lot about the structure of hadronic currents
along this thesis work, specially in chapters 4, 5 and 6, it might be worthwhile
to have a general discussion of hadronic matrix elements in this appendix.
The form of the hadronic matrix elements, or more importantly, their van-
ishing, depends only on their symmetry properties under parity (P ). So, let
us first remember the transformation of Dirac bilinears under parity:

F 1 γ0 γi σ0i σij γ0γ5 γ5

FP 1 γ0 −γi −σ0i σij −γ0γ5 −γ5

Table B.1: Transformation of Dirac bilinears under P

where F stands for the different choices of Dirac bilinears and FP stands for
their corresponding transformations under parity. Recall that the mesons
like pions, kaons and the etas are pseudoscalar particles so that they have
quantum numbers JP = 0−, recall also that the vacuum has quantum num-
bers JP = 0+. This is basically all we need to determine the general form
of the hadronic matrix elements. Let us start with the elements with only
one pseudoscalar meson as an initial or as final state, that is, matrix ele-
ments of the form 〈0|Vµ(0)|M(p)〉 and 〈0|Aµ(0)|M(p)〉, where M represents
any meson in the 0− octet and Vµ and Aµ represent vector and axial vector
currents, respectively (the tensor structure is not needed in this simple case).
These structures are fundamental in the study of π`2, K`2 and τ− → P−ντ
(P = π,K) decays.

The spin and parity properties of vector and axial vector currents are
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summarized in the following equation:

JP (V0) = 0+, JP (V) = 1− ,

JP (A0) = 0−, Jp(A) = 1+ , (B.1)

therefore, the time component of the matrix element 〈0|Vµ|M(p)〉 should
have JP = 0− and the spatial component should have JP = 1+. On the
other hand, this matrix element can depend only on the four-momentum pµ,
but pµ has spin and parity quantum numbers JP = (0+, 1−). The conclusion
of this analysis is that one cannot construct any quantity that depends only
on one four-vector and transforms like JP = (0−, 1+). Hence this matrix
element must be zero.

For the axial-vector current a similar analysis shows that 〈0|Aµ|M(p)〉
should have spin and parity quantum numbers JP = (0+, 1−), but these are
precisely the spin-parity quantum numbers of pµ. Then, this matrix element
is proportional to the four-momentum pµ.

We summarize the previous two results in the following equation,

〈0|Vµ(0)|M(p)〉 = 0 ,

〈0|Aµ(0)|M(p)〉 =
√

2ifMp
µ , (B.2)

where fM is the decay constant of the meson M. Note that the proportionality
with respect to pµ could just have been obtained by Lorentz invariance, in
this case this is trivial, but when we have more mesons things complicate a
little bit, as we will see next.

When we have two pseudoscalar mesons in the initial (final) state and the
vacuum in the final (initial) state, or equivalently, one meson in the initial
state and one meson in the final state, the structures that we obtain for the
hadronic matrix elements become richer. These structures are fundamental
in the understanding of π`3, K`3 and τ → (PP ′)−ντ decays. An argument
analogue to the one in the previous paragraph shows that for the spin-parity
quantum numbers of the matrix element 〈Mb(k)|Vµ|Ma(p)〉 we have JP =
(0+, 1−), which is the way four-momentum vectors transform. Thus, we
can write these elements as the more general combination of all the four-
momentum available, as we show in the following equation:

〈Mb(k)|Vµ(0)|Ma(p)〉 = f1p
µ + f2k

µ , (B.3)

where f1 and f2 are form factors. There are of course different parametriza-
tions for the previous expression, one that it is used frequently is the follow-
ing,

〈Mb(k)|Vµ(0)|Ma(p)〉 = f+(p+ k)µ + f−(p− k)µ . (B.4)
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There is an important difference between the objects f1 and f2 (or f+ and f−)
that appear in the two-meson case and the object fM that we have defined
in the one meson case. All these objects must be Lorentz scalars. For the
case of fM the only scalar that can be constructed from the parameters of
the problem is p2, which is equal to the mass of the meson mM , that is,
a constant. As a consequence fM is also a constant. On the other hand,
for the matrix element involving two mesons, we can define three Lorentz
invariants, i.e., p2, k2 and k · p. The first two are constants, related to the
masses of the two mesons. The third one, which comes from q2 = (p − k)2,
is a dynamical variable. So, the form factors f1 and f2 will depend on the
momentum transfer q2 between the two mesons.

On the other hand, the matrix element 〈Mb(k)|Aµ|Ma(p)〉 has spin-parity
quantum numbers JP = (0−, 1+) so that there is no way to construct this
quantum numbers with the four-momentum vectors pµ and kµ. Therefore,
we have:

〈Mb(k)|Aµ(0)|Ma(p)〉 = 0 . (B.5)

Finally, let us discuss the tensor structure. As we mentioned previ-
ously, this structure does not appear in the one meson case, but it be-
comes important when we have two or more mesons. It has the general
form 〈Mb(k)|T µν |Ma(p)〉, where T µν is a tensor current that is proportional
to σµν = i[γµ, γν ]/2. Note that σµν is antisymmetric, thus, the matrix el-
ement must be proportional to an antisymmetric combination of the two
four-momentum vectors involved. This leads naturally to the following ex-
pression

〈Mb(k)|T µν(0)|Ma(p)〉 = ifT (pµkν − pνkµ) , (B.6)

where fT is the tensor form factor, which, again, is a function of q2 just like
f1 and f2 (or f+ and f−).
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Appendix C

Form Factors

In this appendix, for the convenience of the reader, we discuss in more
depth the form factors presented along this work. Here we pay special atten-
tion to the scalar and vector form factors since the tensor form factors for
the different decay channels have been discussed in great detail in the text.

As we have explained before, all form factors are calculated using chiral
perturbation theory and dispersion relations 1.

We start our discussion with the vector form factor for the decay into a
pair of pions since it was the first one to be studied following this formalism.

The vector form factor for the ππ case was first analyzed using ChPT
with resonances in [167] and has later been revisited, within a dispersive
framework, in refs. [168, 169, 147]. It is defined as

〈π0π−|d̄γµu|0〉 =
√

2F+(s)(pπ− − pπ0)µ , (C.1)

where s ≡ q2 ≡ (pπ− + pπ0)2. At s > 0, F+(s) is experimentally known from
the decay τ− → π−π0ντ and (through an isospin rotation) from e+e− →
π+π−, while the elastic e−π+ scattering provides information at s < 0.

Near threshold, the vector form factor F ππ
+ (s) is well described by ChPT.

At one loop, it is given by [63]

F ππ
+ (s) = 1+

2Lr9(µ)

f 2
π

s− s

96π2f 2
π

[
A

(
m2
π

s
,
m2
π

µ2

)
+

1

2
A

(
m2
K

s
,
m2
K

µ2

)]
, (C.2)

where

A

(
m2
P

s
,
m2
P

µ2

)
= ln

(
m2
P

µ2

)
+

8m2
P

s
− 5

3
+ σ3

P ln

(
σP + 1

σP − 1

)
(C.3)

1In three-meson tau decays, dispersive formulations have been followed for the KKπ
mode in ref. [114] but the results obtained in Resonance Chiral Theory are not dispersive
[88, 89, 90, 92].
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contain the loop contributions. The phase-space factor σP is given by

σP =

√
1− 4m2

P

s
, (C.4)

and the Lr9(µ) term is an O(p4) chiral counterterm renormalized at the scale
µ, which is of the order of the ρ(770) meson mass.

The previous result for F ππ
+ (s) is of course valid for very low energies

(near threshold), where ChPT is good enough. For higher energies, we need
to incorporate the new (heavier) degrees of freedom in the calculation. These
are the different resonances that emerge in the energies under consideration
and the formalism to incorporate them explicitly is Resonance Chiral The-
ory, RChT [74, 75].

For the ππ channel, the ρ(770) resonance dominates the vector form fac-
tor. At leading order in powers of 1/NC , which is O(p4) in the chiral expan-
sion, we have:

F ππ
+ (s) = 1 +

FVGV

f 2
π

s

M2
ρ − s

, (C.5)

where the couplings FV and GV measure the strength of the ργ and ρππ
couplings, respectively. Assuming that the form factor vanishes when s→∞
we obtain the following condition

FVGV = f 2
π , (C.6)

that implies the Vector Meson Dominance (VMD) result in the vanishing
width approximation:

F ππ
+ (s) =

M2
ρ

M2
ρ − s

. (C.7)

Taylor-expanding the previous equation allows to estimate the next-to-
leading order chiral coupling Lr9

Lr9(Mρ) =
FVGV

2M2
ρ

=
f 2
π

2M2
ρ

∼ 7.2 · 10−3 , (C.8)

in good agreement with its phenomenological determination. This accord
shows neatly the the dominant physical effect in the pion vector form factor
is given by the ρ(770) meson exchange.

The combination of the ChPT and VMD results yields an improved de-
scription of this form factor

fππ+ (s) =
M2

ρ

M2
ρ − s

− s

96π2f 2
π

[
Aπ(s, µ2) +

1

2
AK(s, µ2)

]
. (C.9)
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The VMD result dominates in the large number of colours limit and re-
sums an infinite tower of local interactions in ChPT to all orders. The second
term includes loop contributions, which are subleading in that expansion.

The ππ and KK final-state interactions can be resummed to all orders
using unitarity and analyticity, leading to the famous Omnès exponentiation
of the loop functions

fππ+ (s) =
M2

ρ

M2
ρ − s

exp

{
− s

96π2f 2
π

[
Aπ(s, µ2) +

1

2
AK(s, µ2)

]}
. (C.10)

Still, another subleading effect in 1/NC is fundamental to understand
phenomenology, and that is the finite ρ meson width. This energy-dependent
function is given in terms of the imaginary part of the AP loop functions [170]

Γρ(s) = − Mρs

96π2f 2
π

Im

[
Aπ(s,M2

ρ ) +
1

2
AK(s,M2

ρ )

]
=

Mρs

96πf 2
π

[
σ3
π(s)θ(s− 4m2

π) +
1

2
σ3
K(s)θ(s− 4m2

K)

]
. (C.11)

Then, the Omnès-resummed form factor will be

fππ+ (s) =
M2

ρ

M2
ρ − s− iMρΓρ(s)

exp

{
− s

96π2f 2
π

Re

[
Aπ(s, µ2) +

1

2
AK(s, µ2)

]}
,

(C.12)
where only the real part of the loop function was exponentiated in order to
avoid double counting its imaginary part (already present in the width) 2.

The previous form factor can be extended to include ρ excitations in a
straightforward way (see [147] and references therein).

In the more refined dispersive description, the previous form factor would
act as seed, giving the input phase. This dispersive representation will be
introduced in the following.

The key observation is Watson’s final-state interactions theorem [143],
stating that the form factor phase, in the elastic region, equals that of the
ππ scattering. Thus, the form factor can be solved analytically in terms of
the corresponding phase shift. Explicitly, the Omnès equation [171] does the
job

fππ+ (s) = Ω(s) = exp

(
s

π

∫ ∞
4m2

π

ds′
δ1

1(s′)

s′(s′ − s)

)
, (C.13)

2It is certainly possible to resum in the propagator also the real part of the loop function
(as strict unitarity and analyticity demand). The difference between both approaches is
numerically negligible.

116



where δ1
1(s) is the isovector spin-one ππ scattering phaseshift, which encap-

sulates the ρ meson physics.

This phase can be written tanδ1
1(s) =

Imfππ+ (s)

Refππ+ (s)
, and the resonances’ pa-

rameters determining fππ+ (s) (and δ1
1(s), subsequently) can be fitted to data.

Noteworthy, the dispersion relation determines the form factor at a given
energy provided its phase is known everywhere. While the known asymptotic
behaviour of the form factor is required in the UV, its experimental knowledge
beyond ∼ 2 GeV is not sufficient to support an Omnés solution. Being
this the case (always), it is extremely convenient to subtract the dispersion
relation. This enhances the weight of the middle- and low-energy regions
(with both good experimental and theoretical knowledge) and reduces the
impact of the multi-GeV realm. Specifically, a thrice-subtracted form factor
is ideal (nothing is gained with an extra subtraction and two of them are not
accurate enough)

fππ+ (s) = exp

[
α1s+

α2

2
s2 +

s3

π

∫ ∞
4m2

π

ds′
δ1

1(s′)

(s′)3(s′ − s− i0)

]
, (C.14)

where α1,2 are subtraction constants (determining low-energy observables:
the pion radius and slope parameters) and the first subtraction ensures
fππ+ (0) = 1, corresponding to the conservation of the vector current.

Fig. C.1 shows the modulus and phase of the dispersive ππ vector form
factor [169], compared to the Guerrero-Pich parametrization [167].
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Figure C.1: Modulus and phase of the pion vector form factor, fππ+ (s). The
solid line corresponds to the dispersive representation used in ref. [169] while
the dashed line corresponds to the Guerrero-Pich parametrization [167].

The corresponding form factor for the Kπ case was shown in Fig. 3.1.
The vector form factors for the ππ and Kπ channels are the basis to build
the corresponding ones for the ηπ, KK̄ and η′π systems [145, 147], and the
Kη and Kη′ channels [144], respectively.
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In the case of the scalar form factors, coupled-channel effects cannot
be neglected, which makes these studies much more complicated. For the
strangeness-changing case these form factors (Kπ,Kη,Kη′) were obtained
in [124], as application of the corresponding results for the S-wave meson-
meson scattering amplitudes [125]. For the strangeness-conserving cases
(ππ, ηπ, η′π,KK̄) we have used the results in refs. [174, 176], obtained by
an analogous procedure 3. The form factors discussed in this appendix have
also been used in another type of new physics searches in tau lepton decays,
in those violating lepton flavor [177, 178, 179].

3As we recalled previously, the tensor form factors were treated in detail along the main
text and we will know dwell further into them here.
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Appendix D

Polarization effects in the decay
τ−→ π−`+`−ντ

This appendix is based on work started during my master thesis [180].
The purpose of such work was to study the effects of the polarization of the
initial Tau lepton in the decay τ− → π−`+`−ντ . The unpolarized case has
been studied in Ref. [181].

The calculation of the branching ratio for the τ− → π−`+`−ντ decay and
its measurement are important for the following reasons:

• Clean enviroment for the study of low energy hadronic interactions.

• Important for the study of τ → πγν, which is notable background for
τ → µγ (due to mis-ID of π → µ). τ → πγν is also important in the
search of τ → πην because the η can be detected in its desintegration to
two photons, so that one can confuse the photon in τ → πγν together
with another photon with the signal of a η particle. I must say that
there are mexican physicist working in the search of τ → πην, so the
work done here is an important background for them.

• τ → `+`−πντ is also background for τ → `−`−`+ (again due to mis-ID
of π → µ).

• Search for long lived Sterile neutrino [182, 183].

The conclusion of the previous comments is that it is important to study
this decay because it is background for several processes in the search for
new physics (lepton flavor violation, sterile neutrinos and genuine second
class currents, for example). Adding polarization effects just enriches the
process and complements previous studies.

There are five Feynmann diagrams contributing to the amplitude in this
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Figure D.1: Possible sterile neutrino interaction.

process as can be seen in figure D.2: the first three are model independent,
and together they contribute to the so called inner bremsstralhung (IB) am-
plitude, the other two diagrams depend on the model we use for describing
the vertex γ∗Wπ−, and for this reason the amplitude corresponding to those
is called model dependent (also called structure dependent, because it corre-
sponds to the non point-like part of the interaction) amplitude.

Figure D.2: Feynman diagrams for the τ− → π−`+`−ντ decay

The amplitude for diagram (a) in figure D.2 is,

MIBτ = −iGFV
∗
ude

2Fπpµ
`ν
k2
u(q)γµ(1−γ5)

( /ptau− /k +Mτ

(pτ − k)2 −M2
τ

)
γνu(pτ ) . (D.1)

The amplitude for diagrams (b) and (c) in figure D.2 is,

MIBπ = −iGFV
∗
ude

2Fπ
`ν

k2

( 2pν(/p+ /k)

(p+ k)2 −m2
π

−gµν
)
u(q)(1+γ5)γµu(pτ ) . (D.2)
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We can check gauge invariance in the case of the real photon by substituting
`ν

k2
→ εν in the total inner bremsstrahlung amplitude, this must vanish when

ε→ k,
lim
ε→k

(MIBτ +MIBπ) = 0 . (D.3)

The model dependent amplitudes are given by the following equations,

MV = −GFV
∗
ud

e2

k2
FV (p · k, k2)εµνρσk

ρpσ`ντµ , (D.4)

MA =iGFV
∗
ud

2e2

k2
`ν

(
FA(p · k, k2)

[
(k2 + p · k)gµν − kµpν

]
+B(k2)k2

[
gµν − (p+ k)µpν

k2 + 2p · k

])
τµ ,

(D.5)

where we have used `µ := ū(p−)γµv(p+) and τµ := ū(q)γµ(1 − γ5)u(pτ ) as
short for the electromagnetic and weak spinor currents.

The total amplitude for the process is the sum of the amplitudes corre-
sponding to the inner bremmstrahlung and the structure dependent contri-
butions, including the vector and axial vector form factors, which is shown
in the next equation:

M =MIB +MV +MA , (D.6)

where each of the contributions is given by the following equations:

MIB = −iGFV
∗
ud

e2

k2
FπMτ`µū(q)(1 + γ5)

[
2pµ

2p · k + k2
+

2pµτ − /kγµ
k2 − 2pτ · k

]
u(pτ ) ,

(D.7)

MV = −GFV
∗
ud

e2

k2
FV (p · k, k2)εµνρσk

ρpσ`ντµ , (D.8)

MA =iGFV
∗
ud

2e2

k2
`ν

(
FA(p · k, k2)

[
(k2 + p · k)gµν − kµpν

]
+B(k2)k2

[
gµν − (p+ k)µpν

k2 + 2p · k

])
τµ .

(D.9)
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Therefore, the square of the amplitude in equation (D.6) is given by

|M|2 =|MIB|2 + |MV |2 + |MA|2 + 2<e(MIBM†
V ) + 2<e(MIBM†

A)

+ 2<e(MVM†
A) .

(D.10)

The explicit form for each of the previous terms reads (for more details
of the derivation of these formulas see [180])

|MIB|2 = 16GF
2Vud

2 e
4

k4
Fπ

2Mτ
2`µν

[
− τµνk2

(k2 − 2pτ · k)2
+

4pµqν(pτ · k)

(k2 − 2pτ · k)(k2 + 2p · k)

+
4pµτ q

ν(pτ · k)

(k2 − 2pτ · k)2
− 2gµν(pτ · k)(k · q)

(k2 − 2pτ · k)2
− 4pµpντ (k · q)

(k2 + 2p · k)(k2 − 2pτ · k)

− 4pµτ p
ν
τ (k · q)

(k2 − 2pτ · k)2
+

8pµpντ (pτ · q)
(k2 + 2p · k)(k2 − 2pτ · k)

+
4pµpν(pτ · q)
(k2 + 2p · k)2

+
4pµτ p

ν
τ (pτ · q)

(k2 − 2pτ · k)2

+Mτ

(
− Ωµνk2

(k2 − 2pτ · k)2
+

4pµqν(k · s)
(k2 − 2pτ · k)(k2 + 2p · k)

+
4pµτ q

ν(k · s)
(k2 − 2pτ · k)2

− 2gµν(k · s)(k · q)
(k2 − 2pτ · k)2

− 4pµsν(k · q)
(k2 + 2p · k)(k2 − 2pτ · k)

− 4pµτ s
ν(k · q)

(k2 − 2pτ · k)2
+

8pµpντ (s · q)
(k2 + 2p · k)(k2 − 2pτ · k)

+
4pµpν(s · q)

(k2 + 2p · k)2
+

4pµτ p
ν
τ (s · q)

(k2 − 2pτ · k)2

)]
,

(D.11)

where
`µν = [p+µp−ν + p+νp−µ − gµν(m`

2 + p− · p+)] . (D.12)

τµν = pµτ q
ν + pντq

µ − gµνpτ · q . (D.13)

Ωµν = sµqν + sνqµ − gµνs · q . (D.14)

∑
sν ,s`+ ,s`−

|MV |
2

=16GF
2|Vud|2

e4

k4
|FV (p · k, k2)|2εµ′ν′ρ′σ′εµνρσkρpσkρ

′
pσ
′
`νν
′×

[τµµ
′ −MτΩ

µµ′ ] .

(D.15)
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∑
sν ,s`+ ,s`−

|MA|
2

= 64GF
2|Vud|2

e4

k4
`νν′×

(τµµ′ + ipaτq
bεµµ′ab −MτΩµµ′ − iMτs

aqbεµµ′ab)AµνAµ
′ν′∗ ,

(D.16)

where:

Aµν = FA(p · k, k2)
[
(k2 + p · k)gµν − kµpν

]
+B(k2)k2

[
gµν − (p+ k)µpν

k2 + 2p · k

]
.

(D.17)∑
sν ,s`+ ,s`−

2<e(MIBMV
†) =− 32GF

2|Vud2| e
4

k4
FπMτ×

=m
[
FV
∗(p · k, k2)`µν′ε

µ′ν′ρ′σ′kρ′pσ′Vµµ′
]
,

(D.18)

where:

Vµµ′ =
1

ab

[
(q · s)

(
pτ
µ′ (2bpµ − akµ) + agµµ

′
(k · pτ )− apτ µ

(
kµ
′ − 2pτ

µ′
)
− iaεµµ′kpτ

)
+ iεµ

′pτ qs (akµ − 2 (apµτ + bpµ))− aMgµµ
′
(k · q)− agµµ′ (k · s) (pτ · q)

+ agµµ
′
(k · q) (pτ · s) + aMkµ

′
qµ − aMkµqµ

′
+ iaMεµµ

′kq − aqµ′sµ (k · pτ )
− aqµsµ′ (k · pτ )− apµ

′

τ s
µ (k · q) + apµτ s

µ′ (k · q) + apµ
′

τ q
µ (k · s) + apµτ q

µ′ (k · s)
+ akµ

′
sµ (pτ · q) + akµsµ

′
(pτ · q)− akµ

′
qµ (pτ · s) + akµqµ

′
(pτ · s) + iapµτ ε

µ′kqs

+ iaqµ
′
εµkpτ s + iasµ

′
εµkpτ q + ia (k · pτ ) εµµ

′qs + 2aMpµτ q
µ′ − 2apµτ s

µ′ (pτ · q)

− 2apτ
µqµ

′
(pτ · s) + 2bMpµqµ

′ − 2bpµsµ
′
(pτ · q)− 2bpµqµ

′
(pτ · s)

]
.

(D.19)

In the previous equation, we introduced the following short-hand notation:

a = k2 + 2p · k , (D.20)

b = k2 − 2pτ · k . (D.21)

∑
sν ,s`+ ,s`−

2<e(MIBMA
†) = −64GF

2|Vud2| e
4

k4
FπMτ`µ

ν′<e[A∗µ′ν′Vµµ
′
] ,

(D.22)

123



⇒
∑

sν ,s`+ ,s`−

2<e(MVMA
†) =− 64G2

F |Vud|2
e4

k4
`νν′=m

[
FV (p · k, k2)εµνρσk

ρpσ

[τµµ
′
+ ipτ aqbε

µµ′ab −Mτ (Ω
µµ′ + isaqbε

µµ′ab)]Aν′µ′
∗]
.

(D.23)

The important point to note from the previous formulas is the symmetry
between the part that depends on polarization and the part that is indepen-
dent of the polarization. They have the same structures.

As usual the form factors are the hard part in the calculation. The effec-
tive lagrangian is [181, 184, 185],

LRχT = LWZW + LVKin +
F 2
π

4
〈uµuµ + χ+〉+

FV

2
√

2
〈Vµνfµν+ 〉+

FA

2
√

2
〈Aµνfµν− 〉

+ i
GV√

2
〈Vµνuµuν〉+

7∑
i=1

ci
MV

OiV JP +
4∑
i=1

diOiV V P +
5∑
i=1

λiOiV AP ,

(D.24)

where fµν± = uF µν
L u† ± u†F µν

R u and F µν
R,L are the field strenght tensors asso-

ciated with the external right and left handed auxiliary fields. All coupling
constants are real, and MV is the mass of the lightest vector meson resonance
nonet.

The parameters introduced in the previous equation are defined as fol-
lows,

uµ = i
[
u†(∂µ − irµ)u− u(∂µ − i`µ)u†

]
, (D.25)

χ± = u†χu† ± uχ†u , (D.26)

χ = 2B0(s+ ip) , (D.27)

Φ(x) =


1√
2
π0 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K
0 − 2√

6
η8

 (D.28)

u(φ) = exp

[
i√
2Fπ

Φ(x)

]
(D.29)

where rµ, `µ, s, and p are external fields that promote the global SU(3)L ×
SU(3)R symmetry to a local one.
The explicit forms of the O operators is shown in the following equations,

O1
V JP = εµνρσ〈{V µν , fρα+ }∇αu

σ〉 , (D.30)
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O2
V JP = εµνρσ〈{V µα, fρσ+ }∇αu

ν〉 , (D.31)

O3
V JP = iεµνρσ〈{V µν , fρσ+ }χ−〉 , (D.32)

O4
V JP = iεµνρσ〈V µν [fρσ− , χ+]〉 , (D.33)

O5
V JP = εµνρσ〈{∇αV

µν , fρα+ }uσ〉 , (D.34)

O6
V JP = εµνρσ〈{∇αV

µα, fρσ+ }uν〉 , (D.35)

O7
V JP = εµνρσ〈{∇σV µν , fρα+ }uα〉 . (D.36)

O1
V AP = 〈[V µν , Aµν ]χ−〉 , (D.37)

O2
V AP = i〈[V µν , Aνα]hαµ〉 , (D.38)

O3
V AP = i〈[∇µVµν , A

να]uα〉 , (D.39)

O4
V AP = i〈[∇αVµν , A

ν
α]uµ〉 , (D.40)

O5
V AP = i〈[∇αVµν , A

νν ]uα〉 , (D.41)

where hµν = ∇µuν +∇νuµ.

O1
V V P = εµνρσ〈{V µν , V ρα}∇αu

σ〉 , (D.42)

O2
V V P = iεµνρσ〈{V µν , V ρσ}χ−〉 , (D.43)

O3
V V P = εµνρσ〈{∇αV

µν , V ρα}uσ〉 (D.44)

O4
V V P = εµνρσ〈{∇σV µν , V ρα}uα〉 (D.45)

The structure-dependent form factors that appear in the amplitudes in equa-
tions (D.8) and (D.9) can be obtained from the Feynman diagrams shown in
figure D.3 and figure D.4.

Figure D.3: Vector current contributions to the W−∗ → π−γ∗ vertex.
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Figure D.4: Axial-Vector current contributions to the W−∗ → π−γ∗

The vector form factor FV (t, k2) is given by the following equation,

FV (t, k2) = − Nc

24π2Fπ
+

2
√

2FV
3FπMV

[
(c2 − c1 − c5)t+ (c5 − c1 − c2 − 8c3)m2

π + 2(c6 − c5)k2
]

[ cos2θ

M2
φ − k2 − iMφΓφ

(1−
√

2tgθ) +
sin2θ

M2
ω − k2 − iMωΓω

(1 +
√

2cotgθ)
]

+
2
√

2FV
3FπMV

Dρ(t)
[
(c1 − c2 − c5 + 2c6)t+ (c5 − c1 − c2 − 8c3)m2

π + (c2 − c1 − c5)k2
]

+
4F 2

V

3Fπ
Dρ(t)

[
d3(t+ 4k2) + (d1 + 8d2 − d3)m2

π

]
[ cos2θ

M2
φ − k2 − iMφΓφ

(1−
√

2tgθ) +
sin2θ

M2
ω − k2 − iMωΓω

(1−
√

2cotgθ)
]
,

(D.46)

where,

Dρ(t) =
1

M2
ρ − t− iMρΓρ(t)

, (D.47)

and

Γρ(s) =
sMρ

96πF 2
π

[
σ3
π(s)(s− 4m2

π) +
1

2
σ3
k(s)θ(s− 4m2

k)

]
, (D.48)

is the decay width of the ρ(770) resonance with σp(s) =

√
1− 4m2

p

s
(ref.

[170]).
We will assume the ideal mixing case for the vector resonances ω and φ in
any numerical application:

ω1 = cosθω − sinθφ ∼
√

2

3
ω −

√
1

3
φ (D.49)

ω8 = sinθω + cosθφ ∼
√

2

3
φ+

√
1

3
ω (D.50)

126



Similarly, the axial-vector form factor FA(t, k2) is given by,

FA(t, k2) =
F 2
V

Fπ

(
1− 2

GV

FV

)
Dρ(k

2)− F 2
A

Fπ
Da1(t)

+
FAFV√

2Fπ
Dρ(k

2)Da1(t)(−λ′′t+ λ0m
2
π) ,

(D.51)

where, √
2λ0 = −4λ1 − λ2 −

λ4

2
− λ5 , (D.52)

and √
2λ′′ = λ2 −

λ4

2
− λ5 . (D.53)

Finally for the B(k2) form factor we have [169],

B(k2) =
FπF

π+π−
V |ρ(k2)− 1

k2
, (D.54)

where F π+π−
V |ρ is the I = 1 part of the π+π− vector form factor, and has the

following form

〈π+(p+)π−(p−)|uγµu+ dγµd|0〉 = (p+ − p−)µF π+π−

V (k2) . (D.55)

The arguments in the form factors are t := (p+ k)2 and k2 = (p+ + p−)2.
Finally, we discuss the kinematics. The decay we are analyzing is an

example of a one to four body decay. In these kind of decays it can be shown
[186] that the square of the amplitude |M|2 can be written as a function of
five independent variables. The choice of these variables is not unique, so we
are free to choose a convenient way we find. We follow the convention used
in [184, 186], which states the following:

• s12 = p2
12 = (p+ q)2, The invariant mass of the pion-neutrino system

• s34 = p2
34 = (p− + p+)2 = k2, The invariant mass of the lepton pair

`+`−.

• θ1, the angle between the neutrino trajectory and the 3-momentum

vector ~k′ = ~p+ ~q.

• θ3, the angle between the trajectory of the `+ lepton and the 3-momentum
vector ~k in the rest frame of the center of mass of the lepton pair.

• φ, The angle between the planes of the pion-neutrino and the lepton
pair systems.
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The kinematic limits for these variables were calculated in [186] and are given
by the following expressions:

(2m`)
2 ≤ s34 ≤ (Mτ −mπ)2 (D.56)

(mπ)2 ≤ s12 ≤ (Mτ −
√
s34)2 (D.57)

−1 ≤ cosθ1,3 ≤ 1 (D.58)

0 ≤ φ ≤ 2π (D.59)

Finally the branching ratio can be written in terms of the five variables
defined before as is shown in the following equation [184, 186]:

dΓ =
Xβ12β34

4(4π)6M3
τ

|M|2ds12ds34sin(θ1)dθ1sin(θ3)dθ3dφ , (D.60)

where:

β12 =

√
s2

12 +m4
π − 2s12m2

π

s12

, (D.61)

β34 =

√
s2

34 − 4s34m2
`

s34

, (D.62)

X =

√
s2

12 + s2
34 +M4

τ − 2s12s34 − 2s12M2
τ − 2s34M2

τ

2
. (D.63)

From conservation of energy and momentum we have that

pτ = p+ p+ + p− + q . (4.59)

When the decaying particle has a definite polarization (as is our case
with the tau lepton) |M|2 depends on the polarization four vector (s) of the
decaying particle, in addition to be a function of the invariants formed with
all the four independent momenta available (among pτ , p, p+, p− and q in our
case). Then |M|2 will also be a function of products like: p · s, p+ · s, p− · s,
and q ·s, this can be seen in all the expressions that we found for the different
contributions to |M|2 previously.

With the purpose of calculating p · s, p+ · s, p− · s, and q · s, it will be
convenient to construct a specific reference frame in which I will find definite
expressions for the four momenta pτ , p, p+, p−, and q, I will follow the
technique used in [187].

To simplify things I will do the following substitutions:
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pτ → P , p− → p1, p+ → p2, p→ p3, and q → p4, Mτ →M .
First, I will choose the reference frame as the rest frame of the decaying
particle, then I will choose the z-axis along the direction of ~p1 (the three
momentum of the particle with p1), and finally I will choose the x-axis in
such a way that ~p2 lies on the x-z plane. The four momentum p3, and p4 will
be found using the previous ones.
With the conventions stated before we get the following expressions for the
four momentum,

P = (M, 0, 0, 0) , (D.64)

p1 = (E1, ~p1) = (E1, 0, 0, |~p1|) , (D.65)

p2 = (E2, ~p2) = (E2, |~p2|sinθ, 0, |~p2|cosθ) , (D.66)

p3 = (E3, ~p3) = (E3, a3, b3, c3) , (D.67)

p4 = (E4, ~p4) = (E4, a4, b4, c4) , (D.68)

s = (0, a5, b5, c5) , (D.69)

where M is the mass of the decaying particle, θ is the angle between the
z-axis and the ~p2 direction. The components ai, bi, and ci, i = 3, 4 will be
calculated using the energy and momentum conservation.
s is a polarization vector, so we have the following constraint (s2 = −1 ⇒
|~s| = 1),

(a5)2 + (b5)2 + (c5)2 = 1 . (D.70)

The energies Ek, k = 1, 2, 3, 4 can be calculated as follows,

Ek =
P · pk
M

, k = 1, 2, 3 . (D.71)

And E4 = M − E1 − E2 − E3. For |~p1|, |~p1|, cosθ, and sinθ we have,

|~p1| =
[

(P · p1)2

M2
−m2

1

] 1
2

, (D.72)

|~p2| =
[

(P · p2)2

M2
−m2

2

] 1
2

, (D.73)

cosθ =
E1E2 − p1 · p2

|~p1||~p2|
=

(P · p1)(P · p2)−M2p1 · p2[(
(P · p1)2 −M2m2

1

)(
(P · p2)2 −M2m2

2

)] 1
2

,

(D.74)

sinθ = [1− cos2θ]
1
2 . (D.75)
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For c3 and c4 we have,

c3 =
E1E3 − p1 · p3

|~p1|
, (D.76)

c4 =
E1E4 − p1 · p4

|~p1|
=
E1(M − E1 − E2 − E3)− P · p1 +m2

1 + p1 · p2 + p1 · p3

|~p1|
.

(D.77)
For a3 and a4 we have,

a3 =
E2E3 − p2 · p3 − c3|~p2|cosθ

|~p2|sinθ
, (D.78)

a4 =
E2E4 − p2 · p4 − c4|~p2|cosθ

|~p2|sinθ

=
E2(M − E1 − E2 − E3)− p2 · P + p1 · p2 +m2

2 + p2 · p3 − c4|~p2|cosθ

|~p2|sinθ
.

(D.79)

Finally for b3, and b4 we have the following expressions,

b3 = [E2
3 − a2

3 − c2
3 −m2

3]
1
2 , (D.80)

b4 = [E2
4 − a2

4− c2
4−m2

4]
1
2 = [(M −E1−E2−E3)2− a2

4− c2
4−m2

4]
1
2 . (D.81)

Now we have everything we need, the four momenta P , p1, p2, p3, and p4

can be written in terms of the Lorentz invariant quantities that we found
previosly, as it is shown in the following equations,

P = (M, 0, 0, 0) , (D.82)

p1 =

P · p1

M
, 0, 0,

−
[
M2 P · p1

P · p1 m2
1

]
M2


1
2

 , (D.83)

p2 =


P · p2

M
,

−
 M2 P · p1 P · p2

P · p1 m2
1 p1 · p2

P · p2 p1 · p2 m2
2


[
M2 P · p1

P · p1 m2
1

]


1
2

, 0,−

[
M2 P · p2

P · p1 p1 · p2

]
(
−m2

1

[
M2 P · p1

P · p1 m2
1

]) 1
2


,

(D.84)
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p3 =

(
P · p3

M
,a3, b3, c3

)
, (D.85)

where a3, b3, and c3 can be written in the compact form,

a3 =

∣∣∣∣∣∣
M2 P · p1 P · p3

P · p1 m2
1 p1 · p3

P · p2 p1 · p2 p2 · p3

∣∣∣∣∣∣− ∣∣∣∣ M2 P · p1

P · p1 m2
1

∣∣∣∣
∣∣∣∣∣∣
M2 P · p1 P · p2

P · p1 m2
1 p1 · p2

P · p2 p1 · p2 m2
2

∣∣∣∣∣∣
 1

2

, (D.86)

b3 =


−

∣∣∣∣∣∣∣∣
M2 P · p1 P · p2 P · p3

P · p1 m2
1 p1 · p2 p1 · p3

P · p2 p1 · p2 m2
2 p2 · p3

P · p3 p1 · p3 p2 · p3 m2
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
M2 P · p1 P · p2

P · p1 m2
1 p1 · p2

P · p2 p1 · p2 m2
2

∣∣∣∣∣∣



1
2

, (D.87)

c3 = −

∣∣∣∣ M2 P · p3

P · p1 p1 · p3

∣∣∣∣(
−m2

1

∣∣∣∣ M2 P · p1

P · p1 m2
1

∣∣∣∣) 1
2

. (D.88)

The term p4 has the same form as p3, we just need to replace 3→ 4.
The previous expressions can be further simplified noticing that m1 =

m2 = m`, and m2
4 = 0.

I have to calculate polarization effects, these will be given in terms of p · s,
p−·s, p+·s, and q·s, these terms can be easily calculated using the expressions
obtained previously, once I define a direction for the polarization vector. I
will simplify things by choosing this polarization vector orthogonal to ~p−,
and ~p+, so that p− · s = 0, and p+ · s = 0, then the explicit form of the vector
s is, s = (0, 0, 1, 0), given this form, the products p · s, and q · s are given by
the following equations:

p · s = b3 . (D.89)

Equation (4.59) fixes the value of q · s according to,

q · s = −p · s = −b3 . (D.90)

At this point we have succeeded in finding all the products between the po-
larization four vector and the available momenta in terms of invariants. Now
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it is time to write those invariants as fuctions of the variables we chose at
the beginning of this section, that is s12, s34, θ1, θ3, and φ. Here I will follow
the conventions used in [186]:

p2
12 := s12 , (D.91)

p2
34 := s34 , (D.92)

q2
12 = 2(m2

1 +m2
2)− s12 , (D.93)

q2
34 = 2(m2

3 +m2
4)− s34 , (D.94)

p12 · q12 = m2
2 −m2

1 , (D.95)

p34 · q34 = m2
4 −m2

3 , (D.96)

p12 · p34 =
1

2
(M2 − s12 − s34) , (D.97)

p12 · q34 = −Xβ34cosθ3 +
m2

4 −m2
3

s34

p12 · p34 , (D.98)

p34 · q12 = Xβ12cosθ1 +
m2

2 −m2
1

s12

p12 · p34 , (D.99)

q12 · q34 =
m2

1 −m2
2

s12

m2
3 −m2

4

s34

+
m2

1 −m2
2

s12

Xβ34cosθ3

+ β12β34[p12p34cosθ1cosθ3 −
√
s12s34sinθ1sinθ3cosφ]

m2
3 −m2

4

s34

Xβ12cosθ1 ,

(D.100)

εαβγδp
α
12p

β
34q

γ
12q

δ
34 = −√s12s34β12β34sinθ1sinθ3sinφ , (D.101)

where,
p12 = p1 + p2 , (D.102)

p34 = p3 + p4 , (D.103)

q12 = p1 − p2 , (D.104)

q34 = p3 − p4 . (D.105)

At this point we have calculated the square of the amplitude, we have
taken advantage of the calculation of the relevant form factors and we have
defined and calculated the kinematics, so that we have all the necessary tools.
To complete this work that I started in my masters thesis we need to define
several appropriate asymmetry observables (see [180] for a discussion.)
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Appendix E

Global constraints on
neutral-current generalized
neutrino interactions

This appendix is based on a collaboration that I did with Dr. Omar Mi-
randa, Dr. Luis Flores and Dr. Francisco Escrihuela. Together we produced
the paper [188]. In this work we have studied generalized neutrino interac-
tions (GNI) by making a global analysis for different neutrino processes. We
have included neutrinos from electron-positron collisions, neutrino-electron
scattering, and neutrino deep inelastic scattering. We have found constrains
for scalar, pseudoscalar, and tensor new physics effective couplings, based on
the standard model effective field theory at low energies.

Here I will mention very briefly the most importat results that we found
and some details about the formalism. For more information, we will refer
the reader to [188].

As usual we start with an effective Lagrangian. We will follow the stan-
dard model effective field theory (SMEFT) [48, 51] at low energies. The
explicit form for our Lagrangian reads

LNCeff = −GF√
2

∑
j

εf,jαβ(ν̄αOjνβ)(f̄O′jf) , (E.1)

where GF is the Fermi coupling constant, f represents a fermion with a given
flavor, and να a neutrino with flavor α. The operators Oj and O′j characterize
the generalized interactions and they are explicitly shown in table E.1. These
operators have an effective strength given by the couplings εf,jαβ .

We have found our constraints using the following processes:

• Cross-section for e+e− → νν̄γ.
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ε Oj O′j
εf,L γµ(1− γ5) γµ(1− γ5)
εf,R γµ(1− γ5) γµ(1 + γ5)
εf,S (1− γ5) 1
−εf,P (1− γ5) γ5

εf,T σµν(1− γ5) σµν(1− γ5)

Table E.1: Effective operators and effective couplings in eq. (E.1) studied in
this work.

• Differential cross-section for the process να + e− → νβ + e−.

• Neutrino-quark scattering.

With the help of these processes we derived limits for the scalar, pseudoscalar,
and tensor couplings following two different approaches. First, we considered
each of the experiments shown in the tables below separately. These results
are presented in Tables E.2 and E.3; next, we performed a global fit consid-
ering several of those experiments simultaneously to constrain the relevant
parameters. The results for this global analysis are shown in Table E.4. For
this second analysis we also show in Figure E.1 the χ2 profile for the different
scalar and tensor GNI parameters for the case of neutrino-electron interac-
tions. We do the same for neutrino-quark interactions in Figure E.2, where
we have decided to present the results with and without NuTeV due to its
discrepancy with the SM prediction [204].

Experiment Observable Parameters Limit

ALEPH [189, 190, 191]

|εe,Xall | |εe,Xee |, |εe,Xµµ |, |εe,Xττ |, |εe,Xeµ |, |εe,Xeτ |, |εe,Xµτ |
< 0.535

DELPHI [192] < 0.830
L3 [193, 194, 195] < 0.745

OPAL [196, 197, 198] < 0.637
CHARM-II [199] |εe,Xµ | |εe,Xeµ |, |εe,Xµµ |, |εe,Xµτ | < 0.401

TEXONO [200] |εe,Xe | |εe,Xee |, |εe,Xeµ |, |εe,Xeτ | |εe,Se | < 0.56, |εe,Pe | < 0.64

CHARM [201] (νe beam) |εq,Xe | |εq,Xee |, |εq,Xeµ |, |εq,Xeτ | < 1.9

CHARM [202] (νµ beam)
|εq,Xµ | |εq,Xeµ |, |εq,Xµµ |, |εq,Xµτ |

< 0.205
CDHS [203] < 0.198
NuTeV [204] < 0.11

Table E.2: Exclusion 90% C.L. limits on the observable scalar and pseudoscalar neu-
trino interaction parameter for different experiments, with X = S, P . Both scalar and
pseudoscalar limits are the same for all experiments except for TEXONO.
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Experiment Observable Parameters Limit

ALEPH [189, 190, 191]

|εe,Tall | |εe,Tee |, |εe,Tµµ |, |εe,Tττ |, |εe,Teµ |, |εe,Teτ |, |εe,Tµτ |
< 0.163

DELPHI [192] < 0.254
L3 [193, 194, 195] < 0.228

OPAL [196, 197, 198] < 0.194
CHARM-II [199] |εe,Tµ | |εe,Teµ |, |εe,Tµµ |, |εe,Tµτ | < 0.036

TEXONO [200] |εe,Te | |εe,Tee |, |εe,Teµ |, |εe,Teτ | < 0.073

CHARM [201] (νe beam) |εq,Te | |εq,Tee |, |εq,Teµ |, |εq,Teτ | < 0.127

CHARM [202] (νµ beam)
|εq,Tµ | |εq,Teµ |, |εq,Tµµ |, |εq,Tµτ |

< 0.0137
CDHS [203] < 0.0130
NuTeV [204] < 0.00754

Table E.3: Exclusion 90% C.L. limits on the observable tensor neutrino interaction
parameter for different experiments.

Experiments Scalar Pseudoscalar Tensor

e−e+ + TEXONO |εe,See | < 0.38 |εe,Pee | < 0.40 |εe,Tee | < 0.07
e−e+ + CHARM-II |εe,Xµµ | < 0.31 |εe,Tµµ | < 0.03

e−e+ |εe,Xττ | < 0.40 |εe,Tττ | < 0.12
e−e+ + TEXONO + CHARM-II |εe,Seµ | < 0.25 |εe,Peµ | < 0.25 |εe,Teµ | < 0.03

e−e+ + TEXONO |εe,Seτ | < 0.28 |εe,Peτ | < 0.29 |εe,Teτ | < 0.07
e−e+ + CHARM-II |εe,Xµτ | < 0.25 |εe,Tµτ | < 0.03

CHARM−e |εq,Xee | < 1.9 |εq,Tee | < 0.13
CHARM + CDHS (+ NuTeV) |εq,Xµµ | < 0.15 (0.1) |εq,Tµµ | < 0.01 (0.006)

CHARM−e + CHARM + CDHS (+ NuTeV) |εq,Xeµ | < 0.15 (0.1) |εq,Teµ | < 0.01 (0.006)
CHARM−e |εq,Xeτ | < 1.9 |εq,Teτ | < 0.13

CHARM + CDHS (+ NuTeV) |εq,Xµτ | < 0.15 (0.1) |εq,Tµτ | < 0.01 (0.006)

Table E.4: Combined 90% C.L. limits on the different scalar, pseudoscalar, and tensor
neutrino interaction parameters, with X = S, P . For each suitable parameter, we also
show in brackets the corresponding limits including the NuTeV measurements.

There are several points that we must highlight in this work. First, some
of these constraints are new, such as those coming from the electron-positron
collision to a neutrino-antineutrino pair plus photon signal, the CDHS ex-
periment, and the TEXONO experiment. Secondly, we have also re-analyzed
the NuTeV anomaly considering the recent results on the systematic uncer-
tainties and provided new restrictive constraints for the GNI parameters.
Moreover, from our results we can see that the bounds coming from muon-
neutrino experiments are more restrictive than those from electron-neutrino,
given their higher statistics, and finally, we see that in general, the interac-
tions with quarks are more constrained than the ones with electrons.
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Figure E.1: Global constraints on the neutrino-electron interaction parame-
ters from different experiments. The upper (lower) panels correspond to the
scalar (tensor) parameters. In the left (right) panels we present limits for the
flavor-diagonal (changing) parameters.
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Figure E.2: Global constraints on the neutrino-quark interaction parame-
ters from different experiments. The upper (lower) panels correspond to the
scalar (tensor) parameters. In the right panels we present the resulting lim-
its without the NuTeV measurement (solid green line) and including it (solid
gray line).
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