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The Big Data Paradox in vaccine uptake
We focus on the Delphi–Facebook and Census Household Pulse surveys 
because their large sample sizes (each greater than 10,000 respond-
ents20) present an opportunity to examine the Big Data Paradox1 in sur-
veys. The Census Household Pulse is an experimental product designed 
to rapidly measure pandemic-related behaviour. Delphi–Facebook has 
stated that the intent of their survey is to make comparisons over space, 
time and subgroups, and that point estimates should be interpreted 
with caution3. However, despite these intentions, Delphi–Facebook has 
reported point estimates of vaccine uptake in its own publications11,21.

Delphi–Facebook and Census Household Pulse surveys persistently 
overestimate vaccine uptake relative to the CDC’s benchmark (Fig. 1a) 
even taking into account Benchmark Imprecision (Fig. 1b) as explained 
in ‘Decomposing Error in COVID Surveys’. Despite being the smallest 
survey by an order of magnitude, the estimates of Axios–Ipsos track 
well with the CDC rates (Fig. 1a), and their 95% confidence intervals 
contain the benchmark estimate from the CDC in 10 out of 11 surveys 
(an empirical coverage probability of 91%).

One might hope that estimates of changes in first-dose vaccine 
uptake are correct, even if each snapshot is biased. However, errors have 
increased over time, from just a few percentage points in January 2021 
to Axios-Ipsos’ 4.2 percentage points [1–7 percentage points with 5% 
benchmark imprecision (BI)], Census Household Pulse’s 14 percentage 

points [5% BI: 11–17] and Delphi-Facebook’s 17 percentage points  
[5% BI: 14–20] by mid-May 2021 (Fig. 1b). For context, for a state that  
is near the herd immunity threshold (70–80% based on recent  
estimates22), a discrepancy of 10 percentage points in vaccination rates 
could be the difference between containment and uncontrolled expo-
nential growth in new SARS-CoV-2 infections.

Conventional statistical formulas for uncertainty further mislead 
when applied to biased big surveys because as sample size increases, 
bias (rather than variance) dominates estimator error. Figure 1a shows 
95% confidence intervals for vaccine uptake based on the reported 
sampling standard errors and weighting design effects of each survey23. 
Axios–Ipsos has the widest confidence intervals, but also the smallest 
design effects (1.1–1.2), suggesting that its accuracy is driven more by 
minimizing bias in data collection rather than post-survey adjustment. 
The 95% confidence intervals of Census Household Pulse are widened 
by large design effects (4.4–4.8) but they are still too narrow to include 
the true rate of vaccine uptake in almost all survey waves. The confi-
dence intervals for Delphi–Facebook are extremely small, driven by 
large sample size and moderate design effects (1.4–1.5), and give us a 
negligible chance of being close to the truth.

One benefit of such large surveys might be to compare estimates of 
spatial and demographic subgroups24–26. However, relative to the CDC’s 
contemporaneously reported state-level estimates, which did not include 
retroactive corrections, Delphi–Facebook and Census Household Pulse 

Table 1 | Comparison of survey designs

Axios-Ipsos Census Household Pulse Delphi-Facebook

Recruitment mode Address-based mail sample to Ipsos 
KnowledgePanel

SMS and email Facebook Newsfeed

Interview mode Online Online Online

Average size 1,000/wave 75,000/wave 250,000/week

Sampling frame Ipsos KnowledgePanel; internet/
tablets provided to ∼5% of panelists 
who lack home internet

Census Bureau’s Master Address 
File (individuals for whom email /  
phone contact information is 
available)

Facebook active users

Vaccine uptake question “Do you personally know anyone who 
has already received the COVID-19 
vaccine?”

“Have you received a COVID-19 
vaccine?”

“Have you had a COVID-19 vaccination?”

Vaccine uptake definition “Yes, I have received the vaccine” “Yes” “Yes”

Other vaccine uptake 
response options

“Yes, a member of my immediate 
family”, “Yes, someone else”, “No”

“No” “No”, “I don’t know”

Weighting variables Gender by age, race, education, 
Census region, metropolitan status, 
household income, partisanship.

Education by age by sex by state, 
race/ethnicity by age by sex by 
state, household size

Stage 1: age, gender “other attributes which we have 
found in the past to correlate with survey outcomes” 
to FAUB; Stage 2: state by age by gender

Comparison of key design choices across the Axios–Ipsos, Census Household Pulse and Delphi–Facebook studies. All surveys target the US adult population. See Extended Data Table 1 for 
additional comparisons and Methods for additional implementation details.
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Fig 1 | Errors in estimates of vaccine uptake.  
a, Estimates of vaccine uptake for US adults in 2021 
compared to CDC benchmark data, plotted by the 
end date of each survey wave. Points indicate each 
study’s weighted estimate of first-dose vaccine 
uptake, and intervals are 95% confidence intervals 
using reported standard errors and design effects. 
Delphi–Facebook has n = 4,525,633 across 19 
waves, Census Household Pulse has n = 606,615 
across 8 waves and Axios–Ipsos has n = 11,421 
across 11 waves. Delphi–Facebook’s confidence 
intervals are too small to be visible. b, Total error 
Y Y−n N. c, Data defect correlation ρ̂Y R, . d, Data 
scarcity N n n( − )/ . e, Inherent problem difficulty 
σY. Shaded bands represent scenarios of ±5% 
(darker) and ±10% (lighter) imprecision in the CDC 
benchmark relative to reported values (points).  
b–e comprise the decomposition in equation (1).

Precision and accuracy in PDF global analyses are possible thanks to a wealth of data, 
computer power and the correct statistical methods.

Multivariate problem that involves a high-dimensional space.

Within some hypotheses, data 
uncertainty decreases as the number of 
data/events increases. 


That’s the law of large numbers.



A. Courtoy—IFUNAM________________Fantômas4QCD: the pion PDF____________________Morelia 23

PDF phenomenology — a large population analysis

696 | Nature | Vol 600 | 23/30 December 2021

Article

The Big Data Paradox in vaccine uptake
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by large design effects (4.4–4.8) but they are still too narrow to include 
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Fig 1 | Errors in estimates of vaccine uptake.  
a, Estimates of vaccine uptake for US adults in 2021 
compared to CDC benchmark data, plotted by the 
end date of each survey wave. Points indicate each 
study’s weighted estimate of first-dose vaccine 
uptake, and intervals are 95% confidence intervals 
using reported standard errors and design effects. 
Delphi–Facebook has n = 4,525,633 across 19 
waves, Census Household Pulse has n = 606,615 
across 8 waves and Axios–Ipsos has n = 11,421 
across 11 waves. Delphi–Facebook’s confidence 
intervals are too small to be visible. b, Total error 
Y Y−n N. c, Data defect correlation ρ̂Y R, . d, Data 
scarcity N n n( − )/ . e, Inherent problem difficulty 
σY. Shaded bands represent scenarios of ±5% 
(darker) and ±10% (lighter) imprecision in the CDC 
benchmark relative to reported values (points).  
b–e comprise the decomposition in equation (1).

Precision and accuracy in PDF global analyses are possible thanks to a wealth of data, 
computer power and the correct statistical methods.

Multivariate problem that involves a high-dimensional space.

Within some hypotheses, data 
uncertainty decreases as the number of 
data/events increases. 


That’s the law of large numbers.

Smaller sample collected through specific 
methods display larger uncertainties but 
are closer to the benchmark.


There are other factors that determine the 
distance to the truth: big-data paradox.
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Sampling bias and big-data paradox

̂μμ

The law of large numbers disregards the quality of the sampling,                              .

What uncertainties keep us from including the truth, ?μ

Xiao-Li Meng

 The Annals of Applied Statistics


Vol. 12 (2018), p. 685

Pavlos Msaouel (2022) 

Cancer Investigation, 40:7, 567-576
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Physics phenomenology and accuracy
f(xi, Qi)

Suppose we know the true parton distribution function at 
given . 


We want our determination from global analysis to 
encompass it. 

(xi, Qi)
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Physics phenomenology and accuracy
f(xi, Qi)

Suppose we know the true parton distribution function at 
given . 


We want our determination from global analysis to 
encompass it. 

(xi, Qi)

 μ − ̂μ = (data+sampling defect) × (measure discrepancy) × (inherent problem difficulty)

depends on the sampling algorithm

 statistical model, quality of data,…≡
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Physics phenomenology and accuracy
f(xi, Qi)

Suppose we know the true parton distribution function at 
given . 


We want our determination from global analysis to 
encompass it. 

(xi, Qi)

 μ − ̂μ = (data+sampling defect) × (measure discrepancy) × (inherent problem difficulty)

depends on the sampling algorithm

 statistical model, quality of data,…≡

can tend to  for random sampling( n)
−1
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Only by comparing with data may QCD phenomena be revealed

0

Disclaimer: 

I purposedly adapted to vaccination plot for 
illustration. It’s not a true PDF.
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survey by an order of magnitude, the estimates of Axios–Ipsos track 
well with the CDC rates (Fig. 1a), and their 95% confidence intervals 
contain the benchmark estimate from the CDC in 10 out of 11 surveys 
(an empirical coverage probability of 91%).

One might hope that estimates of changes in first-dose vaccine 
uptake are correct, even if each snapshot is biased. However, errors have 
increased over time, from just a few percentage points in January 2021 
to Axios-Ipsos’ 4.2 percentage points [1–7 percentage points with 5% 
benchmark imprecision (BI)], Census Household Pulse’s 14 percentage 

points [5% BI: 11–17] and Delphi-Facebook’s 17 percentage points  
[5% BI: 14–20] by mid-May 2021 (Fig. 1b). For context, for a state that  
is near the herd immunity threshold (70–80% based on recent  
estimates22), a discrepancy of 10 percentage points in vaccination rates 
could be the difference between containment and uncontrolled expo-
nential growth in new SARS-CoV-2 infections.

Conventional statistical formulas for uncertainty further mislead 
when applied to biased big surveys because as sample size increases, 
bias (rather than variance) dominates estimator error. Figure 1a shows 
95% confidence intervals for vaccine uptake based on the reported 
sampling standard errors and weighting design effects of each survey23. 
Axios–Ipsos has the widest confidence intervals, but also the smallest 
design effects (1.1–1.2), suggesting that its accuracy is driven more by 
minimizing bias in data collection rather than post-survey adjustment. 
The 95% confidence intervals of Census Household Pulse are widened 
by large design effects (4.4–4.8) but they are still too narrow to include 
the true rate of vaccine uptake in almost all survey waves. The confi-
dence intervals for Delphi–Facebook are extremely small, driven by 
large sample size and moderate design effects (1.4–1.5), and give us a 
negligible chance of being close to the truth.

One benefit of such large surveys might be to compare estimates of 
spatial and demographic subgroups24–26. However, relative to the CDC’s 
contemporaneously reported state-level estimates, which did not include 
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KnowledgePanel
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Sampling frame Ipsos KnowledgePanel; internet/
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Census Bureau’s Master Address 
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available)

Facebook active users
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“Have you received a COVID-19 
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“No” “No”, “I don’t know”

Weighting variables Gender by age, race, education, 
Census region, metropolitan status, 
household income, partisanship.

Education by age by sex by state, 
race/ethnicity by age by sex by 
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Fig 1 | Errors in estimates of vaccine uptake.  
a, Estimates of vaccine uptake for US adults in 2021 
compared to CDC benchmark data, plotted by the 
end date of each survey wave. Points indicate each 
study’s weighted estimate of first-dose vaccine 
uptake, and intervals are 95% confidence intervals 
using reported standard errors and design effects. 
Delphi–Facebook has n = 4,525,633 across 19 
waves, Census Household Pulse has n = 606,615 
across 8 waves and Axios–Ipsos has n = 11,421 
across 11 waves. Delphi–Facebook’s confidence 
intervals are too small to be visible. b, Total error 
Y Y−n N. c, Data defect correlation ρ̂Y R, . d, Data 
scarcity N n n( − )/ . e, Inherent problem difficulty 
σY. Shaded bands represent scenarios of ±5% 
(darker) and ±10% (lighter) imprecision in the CDC 
benchmark relative to reported values (points).  
b–e comprise the decomposition in equation (1).
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If the light-gray curve is the truth, hence its shape would reveal 
information on the underlying non-perturbative mechanisms.

very fanciful!!
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well with the CDC rates (Fig. 1a), and their 95% confidence intervals 
contain the benchmark estimate from the CDC in 10 out of 11 surveys 
(an empirical coverage probability of 91%).

One might hope that estimates of changes in first-dose vaccine 
uptake are correct, even if each snapshot is biased. However, errors have 
increased over time, from just a few percentage points in January 2021 
to Axios-Ipsos’ 4.2 percentage points [1–7 percentage points with 5% 
benchmark imprecision (BI)], Census Household Pulse’s 14 percentage 

points [5% BI: 11–17] and Delphi-Facebook’s 17 percentage points  
[5% BI: 14–20] by mid-May 2021 (Fig. 1b). For context, for a state that  
is near the herd immunity threshold (70–80% based on recent  
estimates22), a discrepancy of 10 percentage points in vaccination rates 
could be the difference between containment and uncontrolled expo-
nential growth in new SARS-CoV-2 infections.

Conventional statistical formulas for uncertainty further mislead 
when applied to biased big surveys because as sample size increases, 
bias (rather than variance) dominates estimator error. Figure 1a shows 
95% confidence intervals for vaccine uptake based on the reported 
sampling standard errors and weighting design effects of each survey23. 
Axios–Ipsos has the widest confidence intervals, but also the smallest 
design effects (1.1–1.2), suggesting that its accuracy is driven more by 
minimizing bias in data collection rather than post-survey adjustment. 
The 95% confidence intervals of Census Household Pulse are widened 
by large design effects (4.4–4.8) but they are still too narrow to include 
the true rate of vaccine uptake in almost all survey waves. The confi-
dence intervals for Delphi–Facebook are extremely small, driven by 
large sample size and moderate design effects (1.4–1.5), and give us a 
negligible chance of being close to the truth.

One benefit of such large surveys might be to compare estimates of 
spatial and demographic subgroups24–26. However, relative to the CDC’s 
contemporaneously reported state-level estimates, which did not include 
retroactive corrections, Delphi–Facebook and Census Household Pulse 

Table 1 | Comparison of survey designs

Axios-Ipsos Census Household Pulse Delphi-Facebook

Recruitment mode Address-based mail sample to Ipsos 
KnowledgePanel

SMS and email Facebook Newsfeed

Interview mode Online Online Online

Average size 1,000/wave 75,000/wave 250,000/week

Sampling frame Ipsos KnowledgePanel; internet/
tablets provided to ∼5% of panelists 
who lack home internet

Census Bureau’s Master Address 
File (individuals for whom email /  
phone contact information is 
available)

Facebook active users

Vaccine uptake question “Do you personally know anyone who 
has already received the COVID-19 
vaccine?”

“Have you received a COVID-19 
vaccine?”

“Have you had a COVID-19 vaccination?”

Vaccine uptake definition “Yes, I have received the vaccine” “Yes” “Yes”

Other vaccine uptake 
response options

“Yes, a member of my immediate 
family”, “Yes, someone else”, “No”

“No” “No”, “I don’t know”

Weighting variables Gender by age, race, education, 
Census region, metropolitan status, 
household income, partisanship.

Education by age by sex by state, 
race/ethnicity by age by sex by 
state, household size

Stage 1: age, gender “other attributes which we have 
found in the past to correlate with survey outcomes” 
to FAUB; Stage 2: state by age by gender

Comparison of key design choices across the Axios–Ipsos, Census Household Pulse and Delphi–Facebook studies. All surveys target the US adult population. See Extended Data Table 1 for 
additional comparisons and Methods for additional implementation details.
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Fig 1 | Errors in estimates of vaccine uptake.  
a, Estimates of vaccine uptake for US adults in 2021 
compared to CDC benchmark data, plotted by the 
end date of each survey wave. Points indicate each 
study’s weighted estimate of first-dose vaccine 
uptake, and intervals are 95% confidence intervals 
using reported standard errors and design effects. 
Delphi–Facebook has n = 4,525,633 across 19 
waves, Census Household Pulse has n = 606,615 
across 8 waves and Axios–Ipsos has n = 11,421 
across 11 waves. Delphi–Facebook’s confidence 
intervals are too small to be visible. b, Total error 
Y Y−n N. c, Data defect correlation ρ̂Y R, . d, Data 
scarcity N n n( − )/ . e, Inherent problem difficulty 
σY. Shaded bands represent scenarios of ±5% 
(darker) and ±10% (lighter) imprecision in the CDC 
benchmark relative to reported values (points).  
b–e comprise the decomposition in equation (1).
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If the light-gray curve is the truth, hence its shape would reveal 
information on the underlying non-perturbative mechanisms.

very fanciful!!

e.g., in our fairy-tale example, that the sea 
quarks freeze about  at  GeV or 
the slope at which it falls down at .

x = 0.1 Q = 2
x → 1

If sampling only focuses on the quantity of the 
data/replicas/parameters/…, we risk to reproduce 
the blue curve and its tiny uncertainty [that misses 
the truth].

and wrongly deduce that there are, e.g., 
more sea quarks at small  than there is.x
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Only by comparing with data may QCD phenomena be revealed
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Disclaimer: 

I purposedly adapted to vaccination plot for 
illustration. It’s not a true PDF.
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The Big Data Paradox in vaccine uptake
We focus on the Delphi–Facebook and Census Household Pulse surveys 
because their large sample sizes (each greater than 10,000 respond-
ents20) present an opportunity to examine the Big Data Paradox1 in sur-
veys. The Census Household Pulse is an experimental product designed 
to rapidly measure pandemic-related behaviour. Delphi–Facebook has 
stated that the intent of their survey is to make comparisons over space, 
time and subgroups, and that point estimates should be interpreted 
with caution3. However, despite these intentions, Delphi–Facebook has 
reported point estimates of vaccine uptake in its own publications11,21.

Delphi–Facebook and Census Household Pulse surveys persistently 
overestimate vaccine uptake relative to the CDC’s benchmark (Fig. 1a) 
even taking into account Benchmark Imprecision (Fig. 1b) as explained 
in ‘Decomposing Error in COVID Surveys’. Despite being the smallest 
survey by an order of magnitude, the estimates of Axios–Ipsos track 
well with the CDC rates (Fig. 1a), and their 95% confidence intervals 
contain the benchmark estimate from the CDC in 10 out of 11 surveys 
(an empirical coverage probability of 91%).

One might hope that estimates of changes in first-dose vaccine 
uptake are correct, even if each snapshot is biased. However, errors have 
increased over time, from just a few percentage points in January 2021 
to Axios-Ipsos’ 4.2 percentage points [1–7 percentage points with 5% 
benchmark imprecision (BI)], Census Household Pulse’s 14 percentage 

points [5% BI: 11–17] and Delphi-Facebook’s 17 percentage points  
[5% BI: 14–20] by mid-May 2021 (Fig. 1b). For context, for a state that  
is near the herd immunity threshold (70–80% based on recent  
estimates22), a discrepancy of 10 percentage points in vaccination rates 
could be the difference between containment and uncontrolled expo-
nential growth in new SARS-CoV-2 infections.

Conventional statistical formulas for uncertainty further mislead 
when applied to biased big surveys because as sample size increases, 
bias (rather than variance) dominates estimator error. Figure 1a shows 
95% confidence intervals for vaccine uptake based on the reported 
sampling standard errors and weighting design effects of each survey23. 
Axios–Ipsos has the widest confidence intervals, but also the smallest 
design effects (1.1–1.2), suggesting that its accuracy is driven more by 
minimizing bias in data collection rather than post-survey adjustment. 
The 95% confidence intervals of Census Household Pulse are widened 
by large design effects (4.4–4.8) but they are still too narrow to include 
the true rate of vaccine uptake in almost all survey waves. The confi-
dence intervals for Delphi–Facebook are extremely small, driven by 
large sample size and moderate design effects (1.4–1.5), and give us a 
negligible chance of being close to the truth.

One benefit of such large surveys might be to compare estimates of 
spatial and demographic subgroups24–26. However, relative to the CDC’s 
contemporaneously reported state-level estimates, which did not include 
retroactive corrections, Delphi–Facebook and Census Household Pulse 

Table 1 | Comparison of survey designs

Axios-Ipsos Census Household Pulse Delphi-Facebook

Recruitment mode Address-based mail sample to Ipsos 
KnowledgePanel

SMS and email Facebook Newsfeed

Interview mode Online Online Online

Average size 1,000/wave 75,000/wave 250,000/week

Sampling frame Ipsos KnowledgePanel; internet/
tablets provided to ∼5% of panelists 
who lack home internet

Census Bureau’s Master Address 
File (individuals for whom email /  
phone contact information is 
available)

Facebook active users

Vaccine uptake question “Do you personally know anyone who 
has already received the COVID-19 
vaccine?”

“Have you received a COVID-19 
vaccine?”

“Have you had a COVID-19 vaccination?”

Vaccine uptake definition “Yes, I have received the vaccine” “Yes” “Yes”

Other vaccine uptake 
response options

“Yes, a member of my immediate 
family”, “Yes, someone else”, “No”

“No” “No”, “I don’t know”

Weighting variables Gender by age, race, education, 
Census region, metropolitan status, 
household income, partisanship.

Education by age by sex by state, 
race/ethnicity by age by sex by 
state, household size

Stage 1: age, gender “other attributes which we have 
found in the past to correlate with survey outcomes” 
to FAUB; Stage 2: state by age by gender

Comparison of key design choices across the Axios–Ipsos, Census Household Pulse and Delphi–Facebook studies. All surveys target the US adult population. See Extended Data Table 1 for 
additional comparisons and Methods for additional implementation details.
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Fig 1 | Errors in estimates of vaccine uptake.  
a, Estimates of vaccine uptake for US adults in 2021 
compared to CDC benchmark data, plotted by the 
end date of each survey wave. Points indicate each 
study’s weighted estimate of first-dose vaccine 
uptake, and intervals are 95% confidence intervals 
using reported standard errors and design effects. 
Delphi–Facebook has n = 4,525,633 across 19 
waves, Census Household Pulse has n = 606,615 
across 8 waves and Axios–Ipsos has n = 11,421 
across 11 waves. Delphi–Facebook’s confidence 
intervals are too small to be visible. b, Total error 
Y Y−n N. c, Data defect correlation ρ̂Y R, . d, Data 
scarcity N n n( − )/ . e, Inherent problem difficulty 
σY. Shaded bands represent scenarios of ±5% 
(darker) and ±10% (lighter) imprecision in the CDC 
benchmark relative to reported values (points).  
b–e comprise the decomposition in equation (1).
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If the light-gray curve is the truth, hence its shape would reveal 
information on the underlying non-perturbative mechanisms.

very fanciful!!

e.g., in our fairy-tale example, that the sea 
quarks freeze about  at  GeV or 
the slope at which it falls down at .

x = 0.1 Q = 2
x → 1

If sampling only focuses on the quantity of the 
data/replicas/parameters/…, we risk to reproduce 
the blue curve and its tiny uncertainty [that misses 
the truth].

and wrongly deduce that there are, e.g., 
more sea quarks at small  than there is.x

If sampling is inclusive of various factors 
[optimization of the space exploration], we might 
reproduce the maroon curve together with a larger 
uncertainty [and include the truth].
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PDFs in QCD phenomenology

The two regimes of QCD demand that non-perturbative objects are accessed through factorization 
theorems,  

i.e., theory is expressed through a convolution of hard and soft part to which corrections are added.

⇒ the data is not reproduced by the PDF only

In the realm of QCD…

µ2
0
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 is the unpolarized PDF

Illustration in the  scheme
f1(x)

MS

II. QUARK COUNTING RULES AND QCD
FACTORIZATION

A. Weakly coupled gauge theory

1. QCRs for structure functions

The QCRs for a structure function FðxB;Q2Þ in lepton-
hadron deeply inelastic scattering arise from the parton
model in gauge theories with small quark-boson coupling
constants, such as QED or asymptotically free QCD.
Consider a Feynman diagram in Fig. 1(a) in such a weakly
coupled theory with massless quarks. The diagram corre-
sponds to scattering of a virtual photon γ#ðqÞ on a highly
boosted “proton” pðPÞwhose lowest Fock state entering the
hard scattering (at momentum resolution scales somewhat
below Q2 ≡ −q2) consists of three weakly bound quarks.
(Alternatively, we could consider scattering on a “meson”
consisting of a quark and an antiquark.) ϕ is the low-energy
(long-distance) part of the hadronic wave function, describ-
ing the binding of quarks into the hadron at virtualities much
less thanQ2.H, the hard-scattering subgraph of the diagram,
can be approximated by the quark-photon bag diagram (the
squared tree-level amplitude of the γ#q scattering) if all
couplings are small. The diagram in Fig. 1(a) dominates
the cross section when the γ#p scattering energy W2 ¼
Q2ð1=xB − 1Þ þm2

p barely exceeds the mass m2
p of the

initial proton. This regime corresponds to the maximal
Bjorken variable, xB ≡Q2=ð2P · qÞ → 1. The contribution
of this diagram to the structure function at xB → 1 behaves as

F2ðxB;Q2Þ ⟶
xB→1

ð1−xBÞ2ns−1þ2jλq−λAj ·fconstþOð1−xBÞg;

ð1Þ

with ns being the number of spectator partons (two for a
baryon and one for ameson) and λA and λq denoting helicities
of the parent hadron and active (struck) quark. For spin-
averaged proton and pion structure functions, we obtain the
limits

lim
xB→1

Fp
2 ðxB;Q2Þ∝ ð1−xBÞ3; lim

xB→1
Fπ
2ðxB;Q2Þ∝ ð1−xBÞ2:

ð2Þ

The ð1 − xBÞ power law for F2ðxB;Q2Þ thus arises when
the ðns þ 1Þ-quark Fock state dominates in the xB → 1
limit. In this picture, the (1 − x) falloff is driven primarily
by semihard gluon propagators binding the ðns þ 1Þ quarks
before the hard scattering, on the top of long-distance
binding effects included in the nonperturbative wave
function ϕ. The QCRs were initially demonstrated based
on the examination of leading perturbative diagrams
[22,29,30] as well as analyticity of partial-wave amplitudes
[31] and including helicity dependence as in Eq. (1) [22].
They are also expected to apply in various nonperturbative
approaches; see examples in Sec. II B. Adding even more
gluon propagators to the graph in Fig. 1(a) suppresses the
rate both by additional powers of ð1 − xBÞ and by addi-
tional factors of the coupling constant. The term of order

(a) (b) (c)

(d)

ϕ ϕ* ϕ ϕ* ϕ ϕ*

ϕ ϕ*

FIG. 1. Leading radiative contributions giving rise to the counting rules for (a) valence quarks, (b) gluons, and (c) sea quarks. We
assume x → 1 and a very small coupling constant. (d) A “resolved photon” diagram that is non-negligible for small virtualities of the
photon.

TESTING MOMENTUM DEPENDENCE OF THE … PHYS. REV. D 103, 054029 (2021)

054029-3

(a) (b) (c)

ϕ ϕ*

(a) (b) (c)

ϕ ϕ*
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The Big Data Paradox in vaccine uptake
We focus on the Delphi–Facebook and Census Household Pulse surveys 
because their large sample sizes (each greater than 10,000 respond-
ents20) present an opportunity to examine the Big Data Paradox1 in sur-
veys. The Census Household Pulse is an experimental product designed 
to rapidly measure pandemic-related behaviour. Delphi–Facebook has 
stated that the intent of their survey is to make comparisons over space, 
time and subgroups, and that point estimates should be interpreted 
with caution3. However, despite these intentions, Delphi–Facebook has 
reported point estimates of vaccine uptake in its own publications11,21.

Delphi–Facebook and Census Household Pulse surveys persistently 
overestimate vaccine uptake relative to the CDC’s benchmark (Fig. 1a) 
even taking into account Benchmark Imprecision (Fig. 1b) as explained 
in ‘Decomposing Error in COVID Surveys’. Despite being the smallest 
survey by an order of magnitude, the estimates of Axios–Ipsos track 
well with the CDC rates (Fig. 1a), and their 95% confidence intervals 
contain the benchmark estimate from the CDC in 10 out of 11 surveys 
(an empirical coverage probability of 91%).

One might hope that estimates of changes in first-dose vaccine 
uptake are correct, even if each snapshot is biased. However, errors have 
increased over time, from just a few percentage points in January 2021 
to Axios-Ipsos’ 4.2 percentage points [1–7 percentage points with 5% 
benchmark imprecision (BI)], Census Household Pulse’s 14 percentage 

points [5% BI: 11–17] and Delphi-Facebook’s 17 percentage points  
[5% BI: 14–20] by mid-May 2021 (Fig. 1b). For context, for a state that  
is near the herd immunity threshold (70–80% based on recent  
estimates22), a discrepancy of 10 percentage points in vaccination rates 
could be the difference between containment and uncontrolled expo-
nential growth in new SARS-CoV-2 infections.

Conventional statistical formulas for uncertainty further mislead 
when applied to biased big surveys because as sample size increases, 
bias (rather than variance) dominates estimator error. Figure 1a shows 
95% confidence intervals for vaccine uptake based on the reported 
sampling standard errors and weighting design effects of each survey23. 
Axios–Ipsos has the widest confidence intervals, but also the smallest 
design effects (1.1–1.2), suggesting that its accuracy is driven more by 
minimizing bias in data collection rather than post-survey adjustment. 
The 95% confidence intervals of Census Household Pulse are widened 
by large design effects (4.4–4.8) but they are still too narrow to include 
the true rate of vaccine uptake in almost all survey waves. The confi-
dence intervals for Delphi–Facebook are extremely small, driven by 
large sample size and moderate design effects (1.4–1.5), and give us a 
negligible chance of being close to the truth.

One benefit of such large surveys might be to compare estimates of 
spatial and demographic subgroups24–26. However, relative to the CDC’s 
contemporaneously reported state-level estimates, which did not include 
retroactive corrections, Delphi–Facebook and Census Household Pulse 

Table 1 | Comparison of survey designs

Axios-Ipsos Census Household Pulse Delphi-Facebook

Recruitment mode Address-based mail sample to Ipsos 
KnowledgePanel

SMS and email Facebook Newsfeed

Interview mode Online Online Online

Average size 1,000/wave 75,000/wave 250,000/week

Sampling frame Ipsos KnowledgePanel; internet/
tablets provided to ∼5% of panelists 
who lack home internet

Census Bureau’s Master Address 
File (individuals for whom email /  
phone contact information is 
available)

Facebook active users

Vaccine uptake question “Do you personally know anyone who 
has already received the COVID-19 
vaccine?”

“Have you received a COVID-19 
vaccine?”

“Have you had a COVID-19 vaccination?”

Vaccine uptake definition “Yes, I have received the vaccine” “Yes” “Yes”

Other vaccine uptake 
response options

“Yes, a member of my immediate 
family”, “Yes, someone else”, “No”

“No” “No”, “I don’t know”

Weighting variables Gender by age, race, education, 
Census region, metropolitan status, 
household income, partisanship.

Education by age by sex by state, 
race/ethnicity by age by sex by 
state, household size

Stage 1: age, gender “other attributes which we have 
found in the past to correlate with survey outcomes” 
to FAUB; Stage 2: state by age by gender

Comparison of key design choices across the Axios–Ipsos, Census Household Pulse and Delphi–Facebook studies. All surveys target the US adult population. See Extended Data Table 1 for 
additional comparisons and Methods for additional implementation details.
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Fig 1 | Errors in estimates of vaccine uptake.  
a, Estimates of vaccine uptake for US adults in 2021 
compared to CDC benchmark data, plotted by the 
end date of each survey wave. Points indicate each 
study’s weighted estimate of first-dose vaccine 
uptake, and intervals are 95% confidence intervals 
using reported standard errors and design effects. 
Delphi–Facebook has n = 4,525,633 across 19 
waves, Census Household Pulse has n = 606,615 
across 8 waves and Axios–Ipsos has n = 11,421 
across 11 waves. Delphi–Facebook’s confidence 
intervals are too small to be visible. b, Total error 
Y Y−n N. c, Data defect correlation ρ̂Y R, . d, Data 
scarcity N n n( − )/ . e, Inherent problem difficulty 
σY. Shaded bands represent scenarios of ±5% 
(darker) and ±10% (lighter) imprecision in the CDC 
benchmark relative to reported values (points).  
b–e comprise the decomposition in equation (1).
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What are the conventions on “QCD phenoma”?

[first principles may need adaptation to the present 
understanding of perturbative QCD]. 


[AC & Nadolsky, PRD103]

[Candido et al, JHEP 11& 2308.00025]


[Collins et al, PRD105]


E.g., what is the smoking-gun sign for role of chiral 
symmetry in the emergence of hadronic mass? On 
how many and which parameters does that smoking 
gun depend?

https://arxiv.org/abs/2308.00025
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Only by comparing with data may QCD phenomena be revealed
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The Big Data Paradox in vaccine uptake
We focus on the Delphi–Facebook and Census Household Pulse surveys 
because their large sample sizes (each greater than 10,000 respond-
ents20) present an opportunity to examine the Big Data Paradox1 in sur-
veys. The Census Household Pulse is an experimental product designed 
to rapidly measure pandemic-related behaviour. Delphi–Facebook has 
stated that the intent of their survey is to make comparisons over space, 
time and subgroups, and that point estimates should be interpreted 
with caution3. However, despite these intentions, Delphi–Facebook has 
reported point estimates of vaccine uptake in its own publications11,21.

Delphi–Facebook and Census Household Pulse surveys persistently 
overestimate vaccine uptake relative to the CDC’s benchmark (Fig. 1a) 
even taking into account Benchmark Imprecision (Fig. 1b) as explained 
in ‘Decomposing Error in COVID Surveys’. Despite being the smallest 
survey by an order of magnitude, the estimates of Axios–Ipsos track 
well with the CDC rates (Fig. 1a), and their 95% confidence intervals 
contain the benchmark estimate from the CDC in 10 out of 11 surveys 
(an empirical coverage probability of 91%).

One might hope that estimates of changes in first-dose vaccine 
uptake are correct, even if each snapshot is biased. However, errors have 
increased over time, from just a few percentage points in January 2021 
to Axios-Ipsos’ 4.2 percentage points [1–7 percentage points with 5% 
benchmark imprecision (BI)], Census Household Pulse’s 14 percentage 

points [5% BI: 11–17] and Delphi-Facebook’s 17 percentage points  
[5% BI: 14–20] by mid-May 2021 (Fig. 1b). For context, for a state that  
is near the herd immunity threshold (70–80% based on recent  
estimates22), a discrepancy of 10 percentage points in vaccination rates 
could be the difference between containment and uncontrolled expo-
nential growth in new SARS-CoV-2 infections.

Conventional statistical formulas for uncertainty further mislead 
when applied to biased big surveys because as sample size increases, 
bias (rather than variance) dominates estimator error. Figure 1a shows 
95% confidence intervals for vaccine uptake based on the reported 
sampling standard errors and weighting design effects of each survey23. 
Axios–Ipsos has the widest confidence intervals, but also the smallest 
design effects (1.1–1.2), suggesting that its accuracy is driven more by 
minimizing bias in data collection rather than post-survey adjustment. 
The 95% confidence intervals of Census Household Pulse are widened 
by large design effects (4.4–4.8) but they are still too narrow to include 
the true rate of vaccine uptake in almost all survey waves. The confi-
dence intervals for Delphi–Facebook are extremely small, driven by 
large sample size and moderate design effects (1.4–1.5), and give us a 
negligible chance of being close to the truth.

One benefit of such large surveys might be to compare estimates of 
spatial and demographic subgroups24–26. However, relative to the CDC’s 
contemporaneously reported state-level estimates, which did not include 
retroactive corrections, Delphi–Facebook and Census Household Pulse 

Table 1 | Comparison of survey designs

Axios-Ipsos Census Household Pulse Delphi-Facebook

Recruitment mode Address-based mail sample to Ipsos 
KnowledgePanel

SMS and email Facebook Newsfeed

Interview mode Online Online Online

Average size 1,000/wave 75,000/wave 250,000/week

Sampling frame Ipsos KnowledgePanel; internet/
tablets provided to ∼5% of panelists 
who lack home internet

Census Bureau’s Master Address 
File (individuals for whom email /  
phone contact information is 
available)

Facebook active users

Vaccine uptake question “Do you personally know anyone who 
has already received the COVID-19 
vaccine?”

“Have you received a COVID-19 
vaccine?”

“Have you had a COVID-19 vaccination?”

Vaccine uptake definition “Yes, I have received the vaccine” “Yes” “Yes”

Other vaccine uptake 
response options

“Yes, a member of my immediate 
family”, “Yes, someone else”, “No”

“No” “No”, “I don’t know”

Weighting variables Gender by age, race, education, 
Census region, metropolitan status, 
household income, partisanship.

Education by age by sex by state, 
race/ethnicity by age by sex by 
state, household size

Stage 1: age, gender “other attributes which we have 
found in the past to correlate with survey outcomes” 
to FAUB; Stage 2: state by age by gender

Comparison of key design choices across the Axios–Ipsos, Census Household Pulse and Delphi–Facebook studies. All surveys target the US adult population. See Extended Data Table 1 for 
additional comparisons and Methods for additional implementation details.
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Fig 1 | Errors in estimates of vaccine uptake.  
a, Estimates of vaccine uptake for US adults in 2021 
compared to CDC benchmark data, plotted by the 
end date of each survey wave. Points indicate each 
study’s weighted estimate of first-dose vaccine 
uptake, and intervals are 95% confidence intervals 
using reported standard errors and design effects. 
Delphi–Facebook has n = 4,525,633 across 19 
waves, Census Household Pulse has n = 606,615 
across 8 waves and Axios–Ipsos has n = 11,421 
across 11 waves. Delphi–Facebook’s confidence 
intervals are too small to be visible. b, Total error 
Y Y−n N. c, Data defect correlation ρ̂Y R, . d, Data 
scarcity N n n( − )/ . e, Inherent problem difficulty 
σY. Shaded bands represent scenarios of ±5% 
(darker) and ±10% (lighter) imprecision in the CDC 
benchmark relative to reported values (points).  
b–e comprise the decomposition in equation (1).
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What are the conventions on “QCD phenoma”?

[first principles may need adaptation to the present 
understanding of perturbative QCD]. 


[AC & Nadolsky, PRD103]

[Candido et al, JHEP 11& 2308.00025]


[Collins et al, PRD105]


E.g., what is the smoking-gun sign for role of chiral 
symmetry in the emergence of hadronic mass? On 
how many and which parameters does that smoking 
gun depend?

Poor sampling can sometimes be due to over-constrained space 
where solutions are deemed acceptables — i.e., through priors or 
penalties.


For the Hessian-methodology based global analyses, a functional 
form is required. A parametrization is a prior-like penalty. 

https://arxiv.org/abs/2308.00025
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The Big Data Paradox in vaccine uptake
We focus on the Delphi–Facebook and Census Household Pulse surveys 
because their large sample sizes (each greater than 10,000 respond-
ents20) present an opportunity to examine the Big Data Paradox1 in sur-
veys. The Census Household Pulse is an experimental product designed 
to rapidly measure pandemic-related behaviour. Delphi–Facebook has 
stated that the intent of their survey is to make comparisons over space, 
time and subgroups, and that point estimates should be interpreted 
with caution3. However, despite these intentions, Delphi–Facebook has 
reported point estimates of vaccine uptake in its own publications11,21.

Delphi–Facebook and Census Household Pulse surveys persistently 
overestimate vaccine uptake relative to the CDC’s benchmark (Fig. 1a) 
even taking into account Benchmark Imprecision (Fig. 1b) as explained 
in ‘Decomposing Error in COVID Surveys’. Despite being the smallest 
survey by an order of magnitude, the estimates of Axios–Ipsos track 
well with the CDC rates (Fig. 1a), and their 95% confidence intervals 
contain the benchmark estimate from the CDC in 10 out of 11 surveys 
(an empirical coverage probability of 91%).

One might hope that estimates of changes in first-dose vaccine 
uptake are correct, even if each snapshot is biased. However, errors have 
increased over time, from just a few percentage points in January 2021 
to Axios-Ipsos’ 4.2 percentage points [1–7 percentage points with 5% 
benchmark imprecision (BI)], Census Household Pulse’s 14 percentage 

points [5% BI: 11–17] and Delphi-Facebook’s 17 percentage points  
[5% BI: 14–20] by mid-May 2021 (Fig. 1b). For context, for a state that  
is near the herd immunity threshold (70–80% based on recent  
estimates22), a discrepancy of 10 percentage points in vaccination rates 
could be the difference between containment and uncontrolled expo-
nential growth in new SARS-CoV-2 infections.

Conventional statistical formulas for uncertainty further mislead 
when applied to biased big surveys because as sample size increases, 
bias (rather than variance) dominates estimator error. Figure 1a shows 
95% confidence intervals for vaccine uptake based on the reported 
sampling standard errors and weighting design effects of each survey23. 
Axios–Ipsos has the widest confidence intervals, but also the smallest 
design effects (1.1–1.2), suggesting that its accuracy is driven more by 
minimizing bias in data collection rather than post-survey adjustment. 
The 95% confidence intervals of Census Household Pulse are widened 
by large design effects (4.4–4.8) but they are still too narrow to include 
the true rate of vaccine uptake in almost all survey waves. The confi-
dence intervals for Delphi–Facebook are extremely small, driven by 
large sample size and moderate design effects (1.4–1.5), and give us a 
negligible chance of being close to the truth.

One benefit of such large surveys might be to compare estimates of 
spatial and demographic subgroups24–26. However, relative to the CDC’s 
contemporaneously reported state-level estimates, which did not include 
retroactive corrections, Delphi–Facebook and Census Household Pulse 

Table 1 | Comparison of survey designs

Axios-Ipsos Census Household Pulse Delphi-Facebook

Recruitment mode Address-based mail sample to Ipsos 
KnowledgePanel

SMS and email Facebook Newsfeed

Interview mode Online Online Online

Average size 1,000/wave 75,000/wave 250,000/week

Sampling frame Ipsos KnowledgePanel; internet/
tablets provided to ∼5% of panelists 
who lack home internet

Census Bureau’s Master Address 
File (individuals for whom email /  
phone contact information is 
available)

Facebook active users

Vaccine uptake question “Do you personally know anyone who 
has already received the COVID-19 
vaccine?”

“Have you received a COVID-19 
vaccine?”

“Have you had a COVID-19 vaccination?”

Vaccine uptake definition “Yes, I have received the vaccine” “Yes” “Yes”

Other vaccine uptake 
response options

“Yes, a member of my immediate 
family”, “Yes, someone else”, “No”

“No” “No”, “I don’t know”

Weighting variables Gender by age, race, education, 
Census region, metropolitan status, 
household income, partisanship.

Education by age by sex by state, 
race/ethnicity by age by sex by 
state, household size

Stage 1: age, gender “other attributes which we have 
found in the past to correlate with survey outcomes” 
to FAUB; Stage 2: state by age by gender

Comparison of key design choices across the Axios–Ipsos, Census Household Pulse and Delphi–Facebook studies. All surveys target the US adult population. See Extended Data Table 1 for 
additional comparisons and Methods for additional implementation details.
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Fig 1 | Errors in estimates of vaccine uptake.  
a, Estimates of vaccine uptake for US adults in 2021 
compared to CDC benchmark data, plotted by the 
end date of each survey wave. Points indicate each 
study’s weighted estimate of first-dose vaccine 
uptake, and intervals are 95% confidence intervals 
using reported standard errors and design effects. 
Delphi–Facebook has n = 4,525,633 across 19 
waves, Census Household Pulse has n = 606,615 
across 8 waves and Axios–Ipsos has n = 11,421 
across 11 waves. Delphi–Facebook’s confidence 
intervals are too small to be visible. b, Total error 
Y Y−n N. c, Data defect correlation ρ̂Y R, . d, Data 
scarcity N n n( − )/ . e, Inherent problem difficulty 
σY. Shaded bands represent scenarios of ±5% 
(darker) and ±10% (lighter) imprecision in the CDC 
benchmark relative to reported values (points).  
b–e comprise the decomposition in equation (1).
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What are the conventions on “QCD phenoma”?

[first principles may need adaptation to the present 
understanding of perturbative QCD]. 


[AC & Nadolsky, PRD103]

[Candido et al, JHEP 11& 2308.00025]


[Collins et al, PRD105]


E.g., what is the smoking-gun sign for role of chiral 
symmetry in the emergence of hadronic mass? On 
how many and which parameters does that smoking 
gun depend?

Poor sampling can sometimes be due to over-constrained space 
where solutions are deemed acceptables — i.e., through priors or 
penalties.


For the Hessian-methodology based global analyses, a functional 
form is required. A parametrization is a prior-like penalty. 

To purposedly rectify the sampling over parametrization, we have designed metamorph.  

https://arxiv.org/abs/2308.00025
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The shape of parton distributions

Low-energy QCD dynamics, encapsulated in PDFs, are learned from experimental data.

2020-09-25 P. Nadolsky, Seminario Sandoval Vallarta 20

Shape in  extracted from data that are sensitive to specific PDF flavors, etc.


I. hints of behavior of partons at low scales


II. predictions for other (new) processes
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The shape of parton distributions

Low-energy QCD dynamics, encapsulated in PDFs, are learned from experimental data.

2020-09-25 P. Nadolsky, Seminario Sandoval Vallarta 20

Shape in  extracted from data that are sensitive to specific PDF flavors, etc.


I. hints of behavior of partons at low scales


II. predictions for other (new) processes

x

Classes of first principle constraints for x-dependence


positivity of cross sections

support in 

end-point: 


sum rules: 


Model evaluation of x-dependence (in parallel to data learning)


use QFT description of  together with model description of hadron wave function (non trivial to define)

 ensure symmetries are fulfilled 


x ∈ [0,1]
f(x = 1) = 0

< x >n = ∫
1

0
dx xn−1 f(x)

f(x)
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The shape of parton distributions

Low-energy QCD dynamics, encapsulated in PDFs, are learned from experimental data.

Uncertainty propagates from data and methodology to the PDF determination


I. assessment of uncertainty magnitude is key 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III. evolving topic in the era of AI/ML

2020-09-25 P. Nadolsky, Seminario Sandoval Vallarta 21

Estimation of PDF 
uncertainties is a deep 
problem of multivariate 
statistics
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The shape of parton distributions

Low-energy QCD dynamics, encapsulated in PDFs, are learned from experimental data.

Uncertainty propagates from data and methodology to the PDF determination


I. assessment of uncertainty magnitude is key 

II. advanced statistical problem 

III. evolving topic in the era of AI/ML

2020-09-25 P. Nadolsky, Seminario Sandoval Vallarta 21

Estimation of PDF 
uncertainties is a deep 
problem of multivariate 
statistics

Epistemic vs. aleatory uncertainties

Statistical uncertainty 
propagated from experiments

— irreducible

Uncertainty due to lack of knowledge

—bias (may be reduced)
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Hypothesis testing and parton distributions

diagram by P. Nadolsky [DIS2023] 

Tests of PDFs

Representative sampling

Acceptable functions
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Fantômas4QCD 

CTEQ-TEA and xFitter members + students

Collaboration between Southern Methodist University (SMU) and Institute of Physics at UNAM.


Supported by CONACyT (Mexico) and IANN-QCD.


Fantômas4QCD: systematize the role of 
functional form in global analyses, alternative 
to neural networks.
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Polynomial mimicry
Testing specific -shapes: 

Polynomial mimicry=Mathematical equivalence of polynomials of different orders.

x

Bézier curves give an example of mathematical equivalence of polynomials of different orders

The interpolation through Bézier curves is unique if the polynomial degree= (# points-1), there’s a 
closed-form solution to the problem,


The Bézier curve can be expressed as a product of matrices:


•  is the vector of 
•  is the matrix of binomial coefficients


•  is the vector of  Bézier coefficient, , to be determined

T xl

M
C cl

8

III. TESTING LARGE-x PDFS IN EXPERIMENTAL MEASUREMENTS

A. Bézier curves as polynomial interpolations of discrete data

Models of the hadron structure make concrete predictions for the x dependence of the structure functions and
PDFs. One can straightforwardly check the agreement of a given model with an experimental observation within
the uncertainties. A stronger assertion, that the experiment demands the 1� x dependence of the PDFs to follow a
specific power law, is di�cult to demonstrate since the functional forms of the PDFs are not known exactly. This is
clearly not possible in the presence of local or resonant structures that disagree with the global trend. Even when the
PDF functional forms are restricted to be polynomial, the discrete experimental data can be compatible with multiple
functional forms.

To illustrate why, consider an idealized example, in which we seek a polynomial function f
(n)(x) of degree n to

interpolate k + 1 data points {x0, p0}, {x1, p1},..., {xk, pk} that have no uncertainty. Our points satisfy 0  xi  1.
From mathematics, we know that the existence and number of the interpolating solutions depend on the degree n of
the polynomial.

If n = k, the unisolvence theorem guarantees that there exists a unique interpolating polynomial going through
all points: f

(n)(xi) = pi. Two equivalent closed-form solutions for the interpolating polynomial are given by the
Lagrange polynomial,

L
(n)(x) ⌘

kX

i=0

pi

kY

m=1
m 6=i

x� xm

xi � xm
for n = k, (14)

and by a Bézier curve of degree n,

B
(n)(x) =

nX

l=0

cl Bn,l(x), (15)

constructed from Bernstein basis polynomials

Bn,l(x) ⌘

✓
l

n

◆
x
l(1� x)n�l

. (16)

Denote the vector B(n)(xi) as B. This vector can be written in a matrix form [50, 51],

B = T ·M · C, (17)

where C ⌘ kclk;

M ⌘ kmlpk with mlp =

8
><

>:
(�1)p�l

 
l

n

! 
n� p

n� l

!
, l  p

0, l > p

; (18)

and T ⌘ ktipk with tip = x
p
i . Here i runs from 0 to k, and l, p run from 0 to n.

Given the matrix P ⌘ kpik of data values, the matrix C for the Bézier curve B
(n)(x) going through all points

satisfies [51]

C = M
�1

· T
�1

· P for n = k. (19)

This equation shows that k+1 data points uniquely determine the polynomial of order n = k, assuming no experimental
errors.

If n < k, an interpolating solution that goes through all points may not exist. Rather, there is a Bézier curve that
minimizes the total squared distance to pi,

�
2(P,B) =

kX

i=0

⇣
B
(n)(xi)� pi

⌘2
= (P � T ·M · C)T · (P � T ·M · C). (20)

The matrix of the coe�cients of this Bézier curve is

C = M
�1

· (TT
T )�1

· T
T
· P for n < k. (21)
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A. Bézier curves as polynomial interpolations of discrete data

Models of the hadron structure make concrete predictions for the x dependence of the structure functions and
PDFs. One can straightforwardly check the agreement of a given model with an experimental observation within
the uncertainties. A stronger assertion, that the experiment demands the 1� x dependence of the PDFs to follow a
specific power law, is di�cult to demonstrate since the functional forms of the PDFs are not known exactly. This is
clearly not possible in the presence of local or resonant structures that disagree with the global trend. Even when the
PDF functional forms are restricted to be polynomial, the discrete experimental data can be compatible with multiple
functional forms.

To illustrate why, consider an idealized example, in which we seek a polynomial function f
(n)(x) of degree n to

interpolate k + 1 data points {x0, p0}, {x1, p1},..., {xk, pk} that have no uncertainty. Our points satisfy 0  xi  1.
From mathematics, we know that the existence and number of the interpolating solutions depend on the degree n of
the polynomial.

If n = k, the unisolvence theorem guarantees that there exists a unique interpolating polynomial going through
all points: f

(n)(xi) = pi. Two equivalent closed-form solutions for the interpolating polynomial are given by the
Lagrange polynomial,

L
(n)(x) ⌘

kX

i=0

pi

kY

m=1
m 6=i

x� xm

xi � xm
for n = k, (14)

and by a Bézier curve of degree n,

B
(n)(x) =

nX

l=0

cl Bn,l(x), (15)

constructed from Bernstein basis polynomials

Bn,l(x) ⌘

✓
l

n

◆
x
l(1� x)n�l

. (16)

Denote the vector B(n)(xi) as B. This vector can be written in a matrix form [50, 51],

B = T ·M · C, (17)

where C ⌘ kclk;

M ⌘ kmlpk with mlp =

8
><

>:
(�1)p�l

 
l

n

! 
n� p

n� l

!
, l  p

0, l > p

; (18)

and T ⌘ ktipk with tip = x
p
i . Here i runs from 0 to k, and l, p run from 0 to n.

Given the matrix P ⌘ kpik of data values, the matrix C for the Bézier curve B
(n)(x) going through all points

satisfies [51]

C = M
�1

· T
�1

· P for n = k. (19)

This equation shows that k+1 data points uniquely determine the polynomial of order n = k, assuming no experimental
errors.

If n < k, an interpolating solution that goes through all points may not exist. Rather, there is a Bézier curve that
minimizes the total squared distance to pi,

�
2(P,B) =

kX

i=0

⇣
B
(n)(xi)� pi

⌘2
= (P � T ·M · C)T · (P � T ·M · C). (20)

The matrix of the coe�cients of this Bézier curve is

C = M
�1

· (TT
T )�1

· T
T
· P for n < k. (21)
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Polynomial mimicry
We can evaluate the Bézier curve at chosen control points, to get a vector of 

•  is now a matrix of  expressed at the control points.


Such that the coefficients can be expressed in terms of known matrices

ℬ → P

T xl
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Polynomial mimicry
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FIG. 2: (a,b) Bézier and polynomial fits to 9 discrete points sampled from the functions f(x) specified in the figures.
(c,d) Same as (b), for di↵erent ranges and spacings of x covered by the sampled points.

B. E↵ective large-x exponent

The example in Fig. 2 demonstrates that mimicry of the fitted functional forms impedes determination of the lowest
powers in the monomial (1 � x) expansion even in an idealized fit to a few ”data” points without uncertainties. An
interpolation or fit by a high-degree polynomial may render terms with low powers of (1�x) that are not present in the
fitted function, and which depend on how the data are sampled. In QCD, there is no reason to expect that coe�cients
c̄l for high powers of (1� x) are suppressed in the PDFs. Statistical and systematic errors in the measurements also
get in the way of the determination of the analytic (1� x) dependence.

The remainder of the article will follow a less pretentious path. Predictions of QCR’s and various nonperturbative
models suggest that, in the x(B) ! 1 limit, the structure functions or PDFs, denoted collectively as F(x(B), Q

2),
behave as

F(x(B), Q
2) = (1� x(B))

A2 ⇥ �(1� x(B)) , (26)

To test a  behavior, we expand the interpolation through 
Bézier curves about :


The red points represent the control points, the number of which 
is related to the degree of the polynomial.

(1 − x)
x = 1

u⇡(x ! 1) =
nX

i=0

c̄i (1� x)i

<latexit sha1_base64="Wu62AiJCkQ+MJaWZzwn5V87Scfc="></latexit>

We can evaluate the Bézier curve at chosen control points, to get a vector of 

•  is now a matrix of  expressed at the control points.


Such that the coefficients can be expressed in terms of known matrices

ℬ → P

T xl
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Bézier-curve methodology for global analyses

Reconstruction of a parametrization


⇨ The lowest powers of the expansion cannot be meaningfully reconstructed.
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⇨ The reconstructed function depends on the position and number of control points.


This property can be exploited in favor of global analyses: by varying settings of the Bézier curves,

we generate a variety of curves, beyond reconstruction.
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Bézier-curve methodology for global analyses — the pion
Fantômas4QCD program 


⇨  From interpolation to minimization over parameters through 

⇨  Exploit polynomial mimicry to systematically improve and flexibilize parametrization of PDFs.


ℬ
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metamorph fit:

We parametrize the Bézier coefficients as the shifts of the position of the control points:
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Bézier-curve methodology for global analyses — the pion
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= degree of polynomial can vary
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Exploit polynomial mimicry to systematically improve and flexibilize parametrization of PDFs.

⇨  Fantômas4QCD program
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⇨ sampling of parameter space

Bézier-curve methodology for global analyses — the pion
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Bézier-curve methodology for global analyses — the pion

We use the xFitter framework, in which metamorph was implemented as an independent parametrization. 


We also extend the xFitter data:

 


pion-induced Drell-Yan                  → constraints valence PDF at large 

prompt photons                             → may constrain gluon PDF at largish 

leading neutron (Sullivan process) → only constraints on sea and gluon at  
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Drell-Yan only analysis

With a rigid parametrization, in Drell-Yan only analysis, 
the sea and gluon pion distributions are not well 
determined.


We can achieve equally good or better fits by varying the 
small  behaviour within xFitter uncertainty.
x

Need for complementary processes— 
universality and flavor separation — EIC 
and JLab22(?)
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Bézier-curve methodology for global analyses — the pion

We use the xFitter framework, in which metamorph was implemented as an independent parametrization. 


We also extend the xFitter data:

 


pion-induced Drell-Yan                  → constraints valence PDF at large 

prompt photons                             → may constrain gluon PDF at largish 

leading neutron (Sullivan process) → only constraints on sea and gluon at  


x
x

x ≲ 0.1

For a selection of sets.

Bundled uncertainty with mcgen 

[Gao & Nadolsky, JHEP07]

{Nm, CP}

[Kotz, Ponce-Chávez, AC, Nadolsky & 
Olness, soon] 
Proceedings in 2309.00152.
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Bézier-curve methodology for global analyses — the pion

At NLO (MSbar), the valence PDF is well 
determined at large 

⇨ doesn’t fall very much like  


⇨ very similar to JAM and xFitter at large 

x
(1 − x)2

x

Corrective terms might need to be taken into account [large-x resummation].

JAM did and found an exponent between 1 to ~2.5, depending on the prescription [JAM, PRL127].

Lattice studies contribute to the information on hadron structure. Mindful analysis of the 
determination of the effective exponent of the PDF fall-off on the lattice [Gao et al., 
PRD102].

⇨  inverse problem

PRELIMINARY
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The Fantômas pion PDF

Towards epistemic uncertainty: sampling over parameter space more representative 

Momentum-fraction distributions for gluon and sea are largely (anti)-correlated.


In contrast with the findings of JAM:

The inclusion of LN data does not drastically 
change the momentum fractions.
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Conclusions

⇨ Uncertainties come from various sources in global analyses. 

 Extension to sampling accuracy, here sampling occurs over parametrization forms.


⇨ Rôle of the parametrization in the sampling accuracy: we make use of Bézier-curve methodology


Fantômas4QCD framework [to appear very soon]

metamorph can be used to study many functions 

Reliable uncertainty on the PDF analysis (to NLO)

re: larger where no data constrains 

⇨ End-point behavior of pion distributions seems to follow the trend given by mass generation vs. 
quark-counting rules. 


Uncertainty quantification in non-perturbative calculations?

At what  will pQCD (constraints) take over?

qπ(x, Q2)

Q
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Back up
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Model inputs and connection to phenomenology  

⇨ for local true or false statements 


⇨ for functional behavior constraints

Hypothesis testing from phenomenological PDF: 

Behaviors in e.g. MIT bag model, light-cone constituent quark model, …
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FIG. 2. Upper panels: The CT18 parton distribution functions at Q ¼ 2 GeV and Q ¼ 100 GeV for u; ū; d; d̄; s ¼ s̄, and g. Lower
panels: the analogous curves, but obtained for CT18Z. In all instances, the gluon PDF has been scaled down as gðx;QÞ=5. The charm
distribution, cðx;QÞ, which is perturbatively generated by evolving from Q0 ¼ 1.3 and 1.4 GeV, respectively, in CT18 and CT18Z, is
also shown.
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FIG. 3. Left: the ratios of the candidate CT18 NNLO PDFs obtained with the xB-dependent and standard factorization scales in DIS
datasets. Right: the χ2=Npt values for four HERA datasets in the CT18Z fit with the xB-dependent DIS factorization scale and varied
statistical weight of the HERA Iþ II inclusive DIS dataset.

NEW CTEQ GLOBAL ANALYSIS OF QCD PHYS. REV. D 103, 014013 (2021)

014013-5

Global analysis groups: CT (illustrated), MSHT, NNPDF, JAM,…

[AC & P. Nadolsky, Phys.Rev.D 103 (2021)]

How to compare phenomenological distribution functions to nonperturbative 
manifestations or behaviors that are characteristic of models for hadron structure?

But pheno PDFs cannot validate those specifics so easily
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Model inputs and connection to phenomenology: the pion  

as shown, the exponent is “2”, reproducing Eq. (2). This
feature removes the need to use moments of arbitrarily high
order, enabling one to focus instead on the lower-order
moments which provide information on the mid-x shape.
One remark may be valuable here. This application of the

SPM requires the coefficient of the highest active denom-
inator power in Eq. (31) to be unity. Hence, when one
uses Eq. (31) for m ¼ 0, 1, 2, 3 moments, b2 ¼ 1 and
a2 ¼ 0 ¼ b3. Referring to the lower panels of Table I, this
presents an appearance of sensitivity in the coefficients to
the number of moments employed; but that is misleading.
The relevant measure is not these coefficients, but the
similarity between the curves obtained via reconstruction.
Our result, Eq. (32), is depicted in Fig. 5. The mean
absolute relative error between its first eleven moments and
those of the separate reconstructed distributions is 4(3)%.
Given the remarks in Sec. I, it is worth reiterating that

Eq. (32) exhibits the x ≃ 1 behavior predicted by the QCD
parton model, Eq. (2); and because it is a purely valence
distribution, this same behavior is also evident on x ≃ 0.
However, in contrast to the scale-free valence-quark dis-
tribution computed in Ref. [37]:

qsfðxÞ ≈ 30x2ð1 − xÞ2; ð33Þ

obtained using parton-model-like algebraic representations
of S, Γπ, the distribution computed with realistic inputs
is a much broader function. A similar effect is observed in
the pion’s leading-twist valence-quark distribution ampli-
tude [114] and those of other mesons [108,
115–118]. The cause is the same, viz. the valence-quark
distribution function is hardened owing to DCSB, which is
a realization of the mechanism responsible for the emer-
gence of mass in the Standard Model [119]. Emergent mass
is expressed in the momentum-dependence of all QCD
Schwinger functions. It is therefore manifest in the point-
wise behavior of wave functions, elastic and transition
form factors, etc.; and as we have now displayed, also in
parton distributions. (This was to be expected, given the
connection between light-front wave functions and parton
distributions.)

V. EVOLUTION OF PION DISTRIBUTION
FUNCTIONS

The pion valence-quark distribution in Eq. (32) is
computed at ζH ¼ mα, Eq. (24). On the other hand, existing
lQCD calculations of low-order moments [33–36] and
phenomenological fits to pion parton distributions are
typically quoted at ζ ≈ ζ2 ¼ 2 GeV [120–122]; and the
scale relevant to the E615 data is ζ5 ¼ 5.2 GeV [9,13].
We therefore employ the effective charge in Eq. (23) to
integrate the one-loop DGLAP equations, therewith evolv-
ing qπðx; ζH ¼ mαÞ to obtain results for qπðx; ζ2Þ and
qπðx; ζ5Þ. This procedure ensures that saturation of the
effective charge is expressed, e.g., αPIðζHÞ=ð2πÞ ¼ 0.20,
½αPIðζHÞ=ð2πÞ%2 ¼ 0.04, stabilizing our evolved results on
ζ > ζH. Notably, given that ζH ¼ mα is fixed by our
analysis, all results are predictions. We checked that with
fixed ζH, varying mα → ð1& 0.1Þmα does not measurably
affect the evolved distributions. We therefore report results
with mα fixed and an uncertainty determined by vary-
ing ζH → ð1& 0.1ÞζH.

A. ζH → ζ2
Our prediction for qπðx; ζ2Þ is depicted in Fig. 6. The

solid curve and surrounding bands are described by the
following function, a generalization of Eq. (32):

qπðxÞ ¼ nqπxαð1 − xÞβ

× ½1þ ρxα=4ð1 − xÞβ=4 þ γxα=2ð1 − xÞβ=2%; ð34Þ

where nqπ ensures Eq. (9) and the powers and coefficients
are listed in Table II. Evidently, the large-x exponent is

βðζ2Þ ¼ 2.38ð9Þ: ð35Þ

FIG. 5. Solid (black) curve: pion valence-quark distribution
function at the hadronic scale, ζH , Eq. (32). Dashed (blue) curve:
scale-free distribution, Eq. (33).

FIG. 6. Pion valence-quark momentum distribution function,
xpπðx; ζÞ, p ¼ q, evolved ζH → ζ2 ¼ 2 GeV—solid (blue) curve
embedded in shaded band; and long-dashed (black) curve—ζ2
result from Ref. [12]. Equations (39), (40): gluon momentum
distribution in pion, xgπðx; ζ2Þ—dashed (green) curve within
shaded band; and sea-quark momentum distribution,
xSπðx; ζ2Þ—dot-dashed (red) curve within shaded band. In all
cases, the shaded band indicates the effect of ζH → ζHð1& 0.1Þ.

SYMMETRY, SYMMETRY BREAKING, AND PION PARTON … PHYS. REV. D 101, 054014 (2020)

054014-9

��� ��� ��� ��� ��� ������
���
���
���
���
���
���

�

�π(�)

e.g. Nambu—Jona-Lasinio model, Schwinger-Dyson approaches, …

Pion PDFs are closely related to the dynamics of QCD in non-perturbative regime.

Trickier interpretation due to its pseudo-Goldstone nature and ansatze for exclusive-to-
inclusive relations.

Global analysis groups: xFitters, JAM,…
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FIG. 4. Valence quark (left), sea quark (middle), and gluon (right) distributions with the 1�

relative uncertainties (underneath each panel) for the NLO (top) and NLO+NLLDY (bottom)

methods. All three scenarios are displayed: Extractions from experimental data alone (Scenario A,

blue curves), from experimental and lattice data without systematic corrections (Scenario B, green

curves), and from including both experimental and lattice data with systematic corrections (Sce-

nario C, red curves). A random subset of 300 of the ⇠ 700 total Monte Carlo replicas is shown.

For the case of the NLO+NLLDY extractions, none of the scenarios are found to match

well with each other, suggesting some instability of the PDFs with the inclusion of the lattice

data. The experimental data prefer a valence quark distribution with a slightly smaller

magnitude at intermediate x. When the lattice data are included, the PDF increases by

⇠ 30% in the range 0.2 . x . 0.7. When including the systematic corrections, on the other

hand, the PDF shifts downwards, but still mostly does not overlap with the experimental-

only results. The large-x sea quark and gluon distributions are supressed with the inclusion

of the lattice data because of indirect constraints from the momentum sum rule. Despite

the di↵erences of the PDFs among the scenarios, the description of the experimental data

remains unchanged, as indicated in Table II.
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relative uncertainties (underneath each panel) for the NLO (top) and NLO+NLLDY (bottom)

methods. All three scenarios are displayed: Extractions from experimental data alone (Scenario A,

blue curves), from experimental and lattice data without systematic corrections (Scenario B, green

curves), and from including both experimental and lattice data with systematic corrections (Sce-

nario C, red curves). A random subset of 300 of the ⇠ 700 total Monte Carlo replicas is shown.

For the case of the NLO+NLLDY extractions, none of the scenarios are found to match

well with each other, suggesting some instability of the PDFs with the inclusion of the lattice

data. The experimental data prefer a valence quark distribution with a slightly smaller

magnitude at intermediate x. When the lattice data are included, the PDF increases by

⇠ 30% in the range 0.2 . x . 0.7. When including the systematic corrections, on the other

hand, the PDF shifts downwards, but still mostly does not overlap with the experimental-

only results. The large-x sea quark and gluon distributions are supressed with the inclusion

of the lattice data because of indirect constraints from the momentum sum rule. Despite

the di↵erences of the PDFs among the scenarios, the description of the experimental data

remains unchanged, as indicated in Table II.
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Can we test quark counting rules with pheno PDFs?

Early-QCD predicted behavior for structure functions when one quark carries 
almost all the momentum fraction:

(a) (b) (c)

(d)

ϕ ϕ* ϕ ϕ* ϕ ϕ*

ϕ ϕ*

fqv/P (x) ���!x!1
(1� x)3, fqv/⇡(x) ���!x!1

(1� x)2
<latexit sha1_base64="qSs/Q1R6rR3MTKqa7J/9gQqJiEU="></latexit>
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Can we test quark counting rules with pheno PDFs?

Early-QCD predicted behavior for structure functions when one quark carries 
almost all the momentum fraction:

(a) (b) (c)

(d)

ϕ ϕ* ϕ ϕ* ϕ ϕ*

ϕ ϕ*

fqv/P (x) ���!x!1
(1� x)3, fqv/⇡(x) ���!x!1

(1� x)2
<latexit sha1_base64="qSs/Q1R6rR3MTKqa7J/9gQqJiEU="></latexit>

Agreement of model with data

Uncertainties needed for a faithful conclusion.

Evidence of polynomial form

There is more than one possible solution 
to the choice of functional form.
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Can we test quark counting rules with pheno PDFs?

Structure Function follows QCRs within 
uncertainties, dominated by 
parametrization dependence.
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Effective exponent for x →1

Aeff
2 (F ) ⌘ @ ln (F (x,Q))

@ ln (1� x)
<latexit sha1_base64="FN0EoQG07aU09d08FUpHBAZFl2M="></latexit>

Early-QCD predicted behavior for structure functions when one quark carries 
almost all the momentum fraction:

(a) (b) (c)

(d)

ϕ ϕ* ϕ ϕ* ϕ ϕ*

ϕ ϕ*

fqv/P (x) ���!x!1
(1� x)3, fqv/⇡(x) ���!x!1

(1� x)2
<latexit sha1_base64="qSs/Q1R6rR3MTKqa7J/9gQqJiEU="></latexit>

Agreement of model with data

Uncertainties needed for a faithful conclusion.

Evidence of polynomial form

There is more than one possible solution 
to the choice of functional form.



A. Courtoy—IFUNAM________________Towards epistemic Pion PDF____________________LFTC workshop 23

Polynomial mimicry prevents functional behaviors from being validated as if and only if conditions. 

Mathematical equivalence of polynomials of different orders can be illustrated with Bézier curves.

QCD corrections, at low and large , also inhibit the  power to be tested.
Q2 (1 − x)β

Most global analyses find A2,eff ) ~1  [xFitter, JAM].
Corrections from threshold resummution allow for 
A2,eff ( ) from 1 to ~2.5.

(βeff

βeff

[JAM, PRL127]

Pheno and lattice PDF of the pion compatible with QCRs 
within uncertainties.

0.75 0.8 0.85 0.9

x

0.6

0.8

1

1.2

1.4

�
e�

NLO

lat only

exp only exp + lat

0.75 0.8 0.85 0.9

x

NLO+NLLDY

µ = mc

FIG. 5. E↵ective large-x exponent �e↵ for the valence quark distribution as a function of x at the

input scale µ = mc extracted from lattice data alone (yellow bands), experimental data alone (blue

bands), and both lattice and experimental data (red bands) from the NLO (left) and NLO+NLLDY

(right) methods.

The PDFs extracted from only the experimental data carry large uncertainties, especially

in the NLO+NLLDY case, and including the precise lattice data decreases the uncertainty

significantly. However, including the systematic corrections again increases the uncertainty

of the PDFs, because of the increase in the number of parameters, but nevertheless provides

a sizable impact. The behavior of the relative uncertainty in the gluon distribution across

the scenarios is opposite to that for the quark distributions, which can be attributed to the

redistribution among the parton flavors across the scenarios.

The e↵ective �v parameter describes the degree of fallo↵ at large x in the valence quark

distribution, and operationally we define [111–113]

�e↵(x, µ) =
@ log |qv(x, µ)|

@ log(1 � x)
(21)

at the scale µ. To obtain the PDF when extracting from lattice data alone, precise data

over a large range of ⌫ is needed. Joó et al. [49] found �e↵ ⇠ 1, but with a large uncertainty,

because of the limited range of ⌫. The recent analysis of experimental data in Ref. [14] found

�e↵ ⇠ 1 with NLO hard coe�cients, and �e↵ ⇠ 1.2 when using NLO+NLLDY with double

Mellin threshold resummation on the hard coe�cients in DY.

In the present analysis, we include the Rp-ITD lattice data and demonstrate in Fig. 5

that the �e↵ resulting from each method of the short distance DY coe�cients agrees, within
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The PDFs extracted from only the experimental data carry large uncertainties, especially

in the NLO+NLLDY case, and including the precise lattice data decreases the uncertainty

significantly. However, including the systematic corrections again increases the uncertainty

of the PDFs, because of the increase in the number of parameters, but nevertheless provides

a sizable impact. The behavior of the relative uncertainty in the gluon distribution across

the scenarios is opposite to that for the quark distributions, which can be attributed to the

redistribution among the parton flavors across the scenarios.

The e↵ective �v parameter describes the degree of fallo↵ at large x in the valence quark

distribution, and operationally we define [111–113]

�e↵(x, µ) =
@ log |qv(x, µ)|

@ log(1 � x)
(21)

at the scale µ. To obtain the PDF when extracting from lattice data alone, precise data

over a large range of ⌫ is needed. Joó et al. [49] found �e↵ ⇠ 1, but with a large uncertainty,

because of the limited range of ⌫. The recent analysis of experimental data in Ref. [14] found

�e↵ ⇠ 1 with NLO hard coe�cients, and �e↵ ⇠ 1.2 when using NLO+NLLDY with double

Mellin threshold resummation on the hard coe�cients in DY.

In the present analysis, we include the Rp-ITD lattice data and demonstrate in Fig. 5

that the �e↵ resulting from each method of the short distance DY coe�cients agrees, within
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double Mellin+lattice

[JAM+lattice, PRD105]

Lattice studies contribute to the information on hadron 
structure. Mindful analysis of the determination of the effective 
exponent of the PDF fall-off on the lattice [Gao et al., PRD102].

⇨  inverse problem

State-of-the-art of the pion at large x
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PDFs in nonperturbative QCD Phenomenological PDFs

 at hadronic scale   

⇨ prefactorization picture

⇨ nonperturbative dynamics

⇨ model’s degrees of freedom


    

μ2
0 < 1 GeV2  at factorization scale      


⇨ quasi-free partonic degrees of freedom

⇨ defined in the MSbar scheme

⇨ leading-power approximation to full dynamics   

μ2 > 1 GeV2
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PDFs in nonperturbative QCD Phenomenological PDFs

 at hadronic scale   

⇨ prefactorization picture

⇨ nonperturbative dynamics

⇨ model’s degrees of freedom


    

μ2
0 < 1 GeV2  at factorization scale      


⇨ quasi-free partonic degrees of freedom

⇨ defined in the MSbar scheme

⇨ leading-power approximation to full dynamics   

μ2 > 1 GeV2

How to relate the x dependence of the perturbative and nonperturbative pictures? 

24 Pion Distribution Amplitude

in the Instanton Liquid Model [14], and in lattice calculation inspired nonlocal Lagrangian mod-
els [155, 156], which confirm that the result obtained in the NJL model for the Parton Distribution
is a good approximation.

A low-energy theorem based on PCAC3 links the pion DA and the distributions of two physical
pion states.
Following the same steps as in Ref. [86], we hereafter derive this relation between the pion DA �(x)
and the pion PDF q(x)|

p
µ
⇡2!0, which leads to the particularly interesting result

��(x) = q�(x) , (2.21)

where � means m⇡ = 0 MeV for the pion under scrutiny.

pp

Figure 2.3: The pion Parton Distribution Function.
The orange blobs represent the pions.

Let us take the matrix element of a pion-pion transi-
tion with momentum transfer p1�p2; we call it fab.
Such a matrix element obeys the following isospin
decomposition [170]

fab = �ab f I=0 +
1

2
tr([⌧a, ⌧ b] ⌧ c) f I=1 .

It is related to the u� and d�quarks distributions
by fu + f d̄. We consider the isovector contribution

of such a matrix element
⌧
⇡b(p2)

����q̄(x) n̂
⌧3

2
q(0)

����⇡
a(p1)

�
. (2.22)

Using the Lehmann-Symanzik-Zimmermann reduction formula we can write

h⇡b(p2)|q̄(x) n̂
⌧3

2
q(0)|⇡a(p1)i

= i

Z
d4x e�ip2·x

�
⇤2

y +m2
⇡

�
h0|T

⇢
⇡b(y) q̄(x) n̂

⌧3

2
q(0)

�
|⇡a(p1)i ,

where ⇡j(x) is the pion interpolating field and is given by PCAC, Eq. (C.42). We now integrate twice
by parts and use the relation for the derivative of the Time-ordered product @t0T{'(x0)'†(x)} =
T{(@t0'(x0))'†(x)}+ �(t0 � t) ['(x0),'†(x)].
Taking the soft pion limit, i.e. pµ2 ! 0, the matrix element (2.22) becomes

lim
p
µ
2!0

h⇡b(p2)|q̄(x) n̂
⌧3

2
q(0)|⇡a(p1)i

=
�i

f⇡

Z
d4x


�(y0 � x0)h0|[A

0b(y), q̄(x)] n̂
⌧3

2
q(0)|⇡a(p1)i

+�(y0)h0|q̄(x) n̂
⌧3

2
[A0b(y), q(0)]|⇡a(p1)i

�
.

(2.23)

3Partial Conservation of the Axial Current; see Section C.4 in Appendix C.
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with ⌘P , ⌘T , ⌘C the respective phases. For the ⇡+, which is JPC = 0�+, are ⌘P = ⌘T = �1, ⌘C = 1.
In the light-front, the T symmetry as defined by the second expression of Eq. (B.1) changes x+

to �x� and vice versa. It is therefore useful to define the V symmetry has the combination PzT ,
what gives

V |P(~p, sz, Qi)i = ⌘V (�1)s�sz |P(~p,�sz, Qi)i , (2.15)

with ⌘V = ⌘P ⌘T .
In Appendix B are developed in details the symmetry relations for any type of distributions.

We here relate such relations for the pion DA as given by Eq. (2.1). Using the relations Eq. (B.1),
Time reversal invariance leads to

⇣
�⇡

+
(x)

⌘⇤

= �⇡
+
(x) ; (2.16)

charge conjugation to

�⇡
�

(x) = �⇡
+
(1� x) ; (2.17)

and CPT to
⇣
�⇡

�

(1� x)
⌘⇤

= �⇡
+
(x) . (2.18)

As perfectly illustrated on Fig. 2.2, the pion DA is symmetric around x = 1/2 so that �(x) =
�(1� x) as required by isospin: it is easily seen from Eq. (2.26) that it is implied by the fact that
the quarks carry the same constituent mass. By Eq. (2.17), it means that there is no di↵erence
between the DA for a ⇡+ or a ⇡�. This also corresponds to the isospin relation: the distribution
amplitude for a u-quark is related by the change x ! 1� x to the amplitude for a d-quark.

Those relations remain unchanged under evolution.

2.3 The Pion Parton Distribution Function

The nomenclature of distribution functions includes a huge variety of transitions. As overviewed
in the Introduction, the names are mostly related to the nature of the final and initial states. For
instance, the DA is a transition from a physical state to the vacuum. Also, by definition, the pion
Parton Distribution Function is the probability density to find a quark carrying a fraction x of the
parent pion’s momentum, i.e.

Z
dz�

2⇡
ei (x�

1
2 ) z

�
p
+
h⇡+(p)|q̄

⇣
�
z

2

⌘
n/

1

2
(1 + ⌧3) q

⇣z
2

⌘
|⇡+(p)i =

1

p+
q(x) , (2.19)

as illustrated on Fig. 2.3. In the NJL model we obtain

q(x) = 4Ncg
2
⇡qq


�
1

2
Ĩ2,P 0 �

1

2
Ĩ2,P (x, 0) +m2

⇡ x Ĩ
GPD

3 (x, 0, 0)

�
, (2.20)

with the 2- and 3-propagator integrals defined Eqs. (E.10, E.11, E.13). In the chiral limit, q(x) is
equal to 1. The NJL model has been applied to the study of pion Parton Distribution in di↵erent
occasions [76, 77, 179]. More elaborated studies of pion Parton Distribution have been performed

But we may spot the trace of the QCRs in some kinematic
regime, when final-state multiplicities are small, and the
impact of other corrections is minimal.
We will further argue in Sec. IV B that the conditions

supporting QCRs may be easier to achieve in pion
scattering than in nucleon scattering.
We take neutral-current DIS on a proton as an example.

In this process, two scales control the QCD radiation, the
photon-proton center-of-mass energy W2 (equal to the
invariant mass squared of the hadronic final state) and
the photon virtuality Q2. For any reasonable choice of W2

and Q2—with the Bjorken regime limited by W2 > m2
p

with W2 ¼ m2
p þ ð1 − xBÞ=xBQ2—the proton bound state

is not minimally perturbed. There is no region of W2 and
Q2 where both the QCD coupling αsðQ2Þ is small and
initial-state radiation into final states with more than three
partons can be neglected. Now, consider three relevant
kinematic regions of DIS:

(i) In the elastic limit, i.e., when W2 → m2
p ∼ 1 GeV2,

the proton mass m2
p is not negligible. The relevant

three quark degrees of freedom are not massless and
free, and some modification of the original Brodsky-
Farrar motivation is necessary.

(ii) When W2 increases up to about 4 GeV2, the proton
mass terms eventually become negligible, but the
behavior of the DIS cross section is initially complex
in this region because of the resonant contributions.
Globally, one may expect that the picture based on
scattering of quasifree partons approximates the DIS
cross section on average because of the Bloom-
Gilman parton-hadron duality [44]. However, over
small intervals of W2, the cross section can exhibit
very complex resonant behavior that does not satisfy
the QCRs [45,46].

(iii) At even higher W2, the power-suppressed terms
become small. The leading-power contribution
dominates a DIS structure function FðxB; Q2Þ and
can be factorized in terms of the PDFs fa=p and
coefficient functions Ha as

FðxB; Q2Þ ¼
X

a

Z
1

xB

dx
x
fa=pðx; μ2ÞHa

!
xB
x
;
μ2

Q2

"

þOðM=QÞ; ð10Þ

where Ha consists of a delta function for quark a at
the zeroth order of αs and of respective higher-order
radiative contributions for a ¼ q, g at higher orders.
The quark PDFs fa=p, with their dependence on the
partonic momentum fraction x and factorization
scale μ, are defined in the MS scheme as

fa=pðx; μ2Þ ¼
1

4π

Z
dy−e−ixP

þy−hPjψ̄að0; y−; 0Þ

× γþWðy−; 0Þψað0ÞjPi; ð11Þ

where

Wðy−; 0Þ ¼ P exp
!
−ig

Z
y−

0
dȳ−Âþð0þ; ȳ−; 0⃗TÞ

"

ð12Þ

is the Wilson eikonal line and we have used the
light-cone coordinates; see, e.g., Ref. [21]. At these
W2 and Q2, we can finally talk about scattering on
nearly independent initial-state partons, which
nevertheless feel some long-distance interaction
with other particles mediated by long-wavelength
gluon fields. The factorization formula captures this
interaction in two places, through the insertion of the
eikonal line Wðy−; 0Þ in fa=Aðx; μ2Þ to approximate
the interaction of the initial-state quark field with
the soft gluon field ÂðyÞ connecting to the other
particles, and through nonfactorizable terms in the
power-suppressed correction OðM=QÞ.

The inelastic cross section grows quickly in this
region ofW2, indicating that final stateswithmultiple
partons are now easily produced. This effect is
captured in the leading-power logarithmic approxi-
mation by the scale dependence of fa=Aðx; μ2Þ. These
multiparton final states violate the naive prediction of
the QCRs. One indication of this violation is signifi-
cant Q2 dependence of the effective power law.

1. Threshold resummation

The collinear factorization formula (10) is based on a
highly nontrivial proof [47,48] that separates the leading-
power convolution integral from power-suppressed terms
OðM=QÞ such as target-mass corrections. The collinear
formula is perturbatively stable when W2 is of order Q2.
When x → 1, the inclusive DIS cross section becomes
sensitive to soft interactions among various particles that
are not necessarily associated with the PDF(s). A different
factorization formula, including a soft exponential factor,
replaces the collinear factorization (10) in this limit. Soft
radiation can be reliably approximated by a resummed all-
order series of large logarithms if Q is much larger than
1 GeV. At Q of a few GeV, when the perturbative
logarithms are not large, the threshold behavior is most
sensitive to the nonperturbative part of the soft factor that
should be fitted together with the PDFs. In either case,
radiation of multiple soft partons modifies the x depend-
ence of the DIS and Drell-Yan (DY) cross sections at x → 1
as compared to the QCR-based estimates.

2. QCD factorization for other processes

To determine phenomenological functional forms for
MS PDFs of various flavors, a global QCD analysis
includes a comprehensive combination of experimental
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measurements in DIS, production of lepton pairs, jets, tt̄
pairs, and other processes. As in the case of DIS, the
connection between PDFs and inclusive cross sections
relies on factorization theorems, and those are known with
less confidence for more complex measurements. The cross
sections used in the PDF fits are usually evaluated at a fixed
order in αs and often neglecting power-suppressed terms.
The QCRs demonstrated for inclusive DIS cross sections

do not translate automatically to the other processes. For
example, while the leading-power collinear factorization
for the DY pair production cross section,

σ ¼
X

a;b

Z
dxa

Z
dxbfa=Aðxa; μ2FÞfb=Bðxb; μ2FÞHa;b;xa;xb;μ2F

þOðM=QÞ; ð13Þ

is structurally similar to that in inclusive DIS, as given in
Eq. (10), the underlying scattering processes and factoriza-
tion proofs are drastically different between two processes.
In the Drell-Yan process, the underlying hadronic activity
from multiperipheral scattering of two parent hadron rem-
nants plays a far more prominent role and creates difficulties
in proving the factorization [47]. The parent hadrons are
more perturbed by soft interactions in hadron-hadron
scattering than in DIS. Any factorization formula holds
up to power-suppressed terms which are different in the
collinear and threshold factorization formalisms and which
are different at some level in DIS and DY, or between
different hadron and heavy nuclei parent species.1

To summarize, in realistic QCD processes that determine
the PDFs, the large-x behavior is modified compared to the
predictions of the massless parton model. The scope of
modifications in the large-x power laws introduced by
higher Fock states, mass terms, resonant contributions, and
nuclear effects varies by the scattering process. It is
reasonable to expect large modifications of parton-model
predictions in events with high final-state parton multiplic-
ities. Still, there can be situations that are close to realizing
the assumptions that underlie the QCRs, such as when one
tests the internal structure of a meson or looks at a
subsample of DIS events with low final-state hadronic
multiplicities.

III. TESTING LARGE-x PDFS IN
EXPERIMENTAL MEASUREMENTS

A. Bézier curves as polynomial interpolations
of discrete data

Models of the hadron structure make concrete predic-
tions for the x dependence of the structure functions and

PDFs. One can straightforwardly check the agreement of a
given model with an experimental observation within the
uncertainties. A stronger assertion, that the experiment
demands the 1 − x dependence of the PDFs to follow a
specific power law, is difficult to demonstrate since the
functional forms of the PDFs are not known exactly. This is
clearly not possible in the presence of local or resonant
structures that disagree with the global trend. Even when
the PDF functional forms are restricted to be polynomial,
the discrete experimental data can be compatible with
multiple functional forms.
To illustrate why, consider an idealized example, in

which we seek a polynomial function fðnÞðxÞ of degree n to
interpolate kþ 1 data points fx0; p0g; fx1; p1g,..., fxk; pkg
that have no uncertainty. Our points satisfy 0 ≤ xi ≤ 1.
From mathematics, we know that the existence and number
of the interpolating solutions depend on the degree n of the
polynomial.
If n ¼ k, the unisolvence theorem guarantees that there

exists a unique interpolating polynomial going through all
points: fðnÞðxiÞ ¼ pi. Two equivalent closed-form solu-
tions for the interpolating polynomial are given by the
Lagrange polynomial,

LðnÞðxÞ≡
Xk

i¼0

pi

Yk

m¼1
m≠i

x − xm
xi − xm

for n ¼ k; ð14Þ

and by a Bézier curve of degree n,

BðnÞðxÞ ¼
Xn

l¼0

clBn;lðxÞ; ð15Þ

constructed from Bernstein basis polynomials

Bn;lðxÞ≡
!

l

n

"
xlð1 − xÞn−l: ð16Þ

Denote the vector BðnÞðxiÞ as B. This vector can be
written in a matrix form [50,51],

B ¼ T ·M · C; ð17Þ

where C≡ kclk;

M ≡ kmlpk with

mlp ¼

8
<

:
ð−1Þp−l

!
l

n

"!
n − p

n − l

"
; l ≤ p

0; l > p
; ð18Þ

and T ≡ ktipkwith tip ¼ xpi . Here, i runs from 0 to k, and l,
p run from 0 to n.
Given the matrix P≡ kpik of data values, the matrix C

for the Bézier curve BðnÞðxÞ going through all points
satisfies [51]

1A well-known example of loss of universality of factoriza-
tion is T-odd distributions in transverse momentum distribu-
tions factorization, which have opposite signs in DIS and DY
process [49].
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IV. Towards a thorough understanding of uncertainties in global analyses  
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Precision PDFs 
(Snowmass 21 WP) 
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IV. Towards a thorough understanding of uncertainties in global analyses  

PDF4LHC21: 

benchmarking and combination of the leader PDF sets, CT, MSHT & NNPDF, for the run III of the LHC.

[Ball, […], AC, et al, J.Phys.G 49 (2022)]

Recent advancements in the determination of unpolarized PDFs: 

CT18, MSHT20, NNPDF4.0, ATLASpdf21 as well as PDF4LHC21.
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IV. Towards a thorough understanding of uncertainties in global analyses  

Hessian methodology finds the global minimum 
and explores the parameter space.

Monte-Carlo methodology (neural network, 
AI/ML) replicates fluctuated data, then 
optimizes each replica (up to training).

χ2
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IV. Towards a thorough understanding of uncertainties in global analyses  

Hessian methodology finds the global minimum 
and explores the parameter space.

Monte-Carlo methodology (neural network, 
AI/ML) replicates fluctuated data, then 
optimizes each replica (up to training).

χ2

Illustration on bootstrap probability 
distribution with average value vs. the 

best replica for .
Npar ∼ 7

[AC, SciPost Phys.Proc.8 (2022)]

In multivariate analyses, sampling occurs at various levels — parameter space, bootstrap but 
also priors, … In large-dimensional problems, sampling is complex.
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Outside of HEP, there is significant interest in statistical problems that are similar to the 
PDF tolerance problem. These studies introduce a fundamental distinction between 
the fitting uncertainty and sampling uncertainty, often overlooked in the PDF fits.


The tolerance puzzle and the big-data paradox

37
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A new avenue to understand PDF tolerance

ExperimentalTheoretical

Parametrization Methodology

In all four categories of uncertainties, we can further distinguish

 PDF fitting accuracy from PDF sampling accuracy. 

[Kovarik et al, Rev.Mod.Phys. 92 (2020)]

Goodness-of-fit applies to an 
individual best fit.

Sampling accuracy applies either 
to the tolerance or the number of 
error sets in a PDF ensemble.

This talk.
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Sampling bias in PDF global analyses—I

How do we know the “data+sampling defect=confounding correlation” of our analysis?

Hessian-based analysis: 

objective function includes penalties, establishing the tolerance criteria.


Size of uncertainties reflect a series of confounding sources —selection of fitted experiments, 
treatment of correlated systematic errors, functional forms of PDFs, …

Verification that proper spanning of parameter space 
is compatible with total uncertainties (a posteriori).

>300 functional forms are tested in CT18.

Hou et al, Phys.Rev.D 103 (2021)

Dimensions of the problem given by the number 

of parameters=eigenvector (EV) directions. 
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Sampling bias in PDF global analyses—II

How do we know the “data+sampling defect=confounding correlation” of our analysis?

Monte Carlo-based analysis: 

optimization implies selection of hyperparametersAutomatic hyperparameter selection

14

• Number and with of the layers


• Activation functions and initialization


• Optimization algorithm (and associated parameters)


• Training length, stopping patience, etc.


• Strength of lagrange multipliers  (positivity, integrability)

The usage of Neural Networks had as primary goal eliminating the biases associated with the choice 
of a specific functional form.

However, there are still many choices associated with the optimization:

Collectively called “hyperparameters”, usually selected manually.

In order to remove any kind of human intervention, better to do 
them automatically.

Automatic hyperparameter selection

14

• Number and with of the layers


• Activation functions and initialization


• Optimization algorithm (and associated parameters)


• Training length, stopping patience, etc.


• Strength of lagrange multipliers  (positivity, integrability)

The usage of Neural Networks had as primary goal eliminating the biases associated with the choice 
of a specific functional form.

However, there are still many choices associated with the optimization:

Collectively called “hyperparameters”, usually selected manually.

In order to remove any kind of human intervention, better to do 
them automatically.

CERN QCD Seminar

Cruz Martínez, 11/2022
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Sampling of multidimensional spaces ( ) is exponentially inefficient and may require  
replicas to obtain a convergent expectation value. 


In general, an intractable problem.

[Hickernell, MCQMC 2016, 1702.01487]


[Sloan, Wo´zniakowski, 1997]

d ≫ 20 n > 2d

Do we understand sampling for QCD global analyses?
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Sampling of multidimensional spaces ( ) is exponentially inefficient and may require  
replicas to obtain a convergent expectation value. 


In general, an intractable problem.

[Hickernell, MCQMC 2016, 1702.01487]


[Sloan, Wo´zniakowski, 1997]

d ≫ 20 n > 2d

Do we understand sampling for QCD global analyses?

2. How is sampling achieved in Monte Carlo-based PDF fits?


Importance sampling, as defined by NNPDF

• =bootstrap/resampling of random fluctuations in data

• expectations are then unweighted averages over replica fits


Such sampling does not include sampling over 
hyperparameters and priors.

Uncertainties, from data to PDF

10

Perform thousand of fits, each to an “new” measure of 
the experimental data available.  

1. Justification for tolerance criteria for Hessian-based PDF fits
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Global analyses of unpolarized PDF — CT

The Coordinated Theoretical-Experimental project on QCD (CTEQ) is a high-energy physics collaboration 
whose efforts include fits of unpolarized PDFs. This is done in the CTEQ-Tung et al (CT) group.

Frontiers of the PDF analysis

2020-09-25 P. Nadolsky, Seminario Sandoval Vallarta 19

Theory
Precision 

PDFs, 
specialized 

PDFs

Statistics
Hessian, Monte-Carlo 

techniques, neural 
networks, reweighting, 

meta-PDFs…

Experi-
ment

New collider and 
fixed-target 

measurements

• Significant advances on all 
aspects of the proton PDF 
analysis are necessary to 
meet physics targets of the 
HL-LHC program

• Exceptional opportunities 
to learn about the 3-dim. 
structure of protons, 
nuclei, pions at new 
facilities envisioned in the 
HL-LHC era: EIC, LHeC, 
AMBER, LHCSpin…

• (N)NNLO QCD computations require 
equally accurate PDFs

Perturbative QCD (to various loop 
precision, QCD corrections, …)

First principles

QCD-based ansatze

Low-energy corrections

…

Present data sets (HERA,…)

LHC data


Future: EIC, …

Methodology 
Objective function

Sampling

Criteria for uncertainties

…

CT is a renown fitting group, whose PDF sets are widely used in colliders, … 

Leading the characterization of uncertainties in PDF analyses and on the connection to nuclear physics (relevant 
for EIC and JLab physics).
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Global analyses of unpolarized PDF — CT

The CTEQ-Tung et al (CT) group.

CTEQ-TEA members (as of 2023)


China:    S. Dulat, J. Gao, T.-J. Hou, I. Sitiwaldi, M. Yan, and collaborators

Mexico: A. Courtoy

USA:     T.J. Hobbs, M. Guzzi, J. Huston, P. Nadolsky, C. Schmidt, D. Stump, K. Xie, C.-P. Yuan

PDFLattice White Paper 2020 6

FIG. 2 The CT18 PDFs at µ2 = 10 GeV2 for the xu, xū, xd,
xd̄, xs = xs̄, and xg PDFs. Error bands correspond to the
68% confidence level. Figure from (Kovař́ık et al., 2019).

current unpolarized PDFs, are shown in Fig. 2.
The latest general-purpose PDF determination from

the MMHT collaboration is MMHT14 (Harland-
Lang et al., 2015), which was later extended to
include HERA I–II legacy measurements (Harland-Lang
et al., 2016), jet-production measurements (Harland-
Lang et al., 2018), and di↵erential measurements in top-
pair production (Bailey and Harland-Lang, 2020) from
the LHC. These intermediate updates demonstrated that
experimental correlations across systematic uncertainties
have been improperly estimated for some of the ATLAS
jet and di↵erential top data sets. The features of a new
preliminary general-purpose PDF set were presented in
Ref. (Thorne et al., 2019), which included new LHC data
sets, notably the particularly precise 7-TeV ATLAS W -
and Z-boson measurements, which increase the ratio of
strange to non-strange light sea quarks at low x, whilst
still allowing for a positive light-sea-quark asymmetry,
albeit with a maximum at slightly lower x. The MMHT
fit has also been updated with an improved and extended
parametrization based on Chebyshev polynomials.

The NNPDF collaboration released their latest
general-purpose PDF set in Ref. (Ball et al., 2017). This
was later extended to include direct photon (Campbell
et al., 2018), single-top (Nocera et al., 2019), and dijet-
production measurements (Abdul Khalek et al., 2020)
from the LHC. A reassessment of the impact of top-
pair di↵erential distributions measured by ATLAS at
8 TeV was also presented in Ref. (Amoroso et al., 2020),
which demonstrated the di↵erent impact of absolute and
normalized distributions in the fit, and the importance
of fitting charm in their description. The NNPDF
collaboration has also developed a statistical procedure
to represent theory uncertainties in PDFs (Ball and
Deshpande, 2019), and applied it to missing higher-order
corrections (MHOU) in the strong-coupling expansion of

theoretical predictions (Abdul Khalek et al., 2019b,c),
and to nuclear uncertainties in observables obtained from
scattering o↵ nuclear targets (Ball et al., 2019). The
procedure consists in supplementing the experimental
covariance matrix with a theoretical covariance matrix
estimated by way of an educated guess. In the case of
MHOU, correlated uncertainties were estimated at next-
to-leading order (NLO) by varying the factorization and
renormalization scales according to various prescriptions;
in the case of nuclear corrections, correlated uncertainties
were estimated as the di↵erence between theoretical
predictions obtained either with a free-proton or nuclear
PDF. The representation of such uncertainties in PDFs
is likely to become mandatory in the future, because
their size is comparable to that determined from
the uncertainty of the data. The inclusion of such
theoretical uncertainties was demonstrated to improve
the description of the data, while increasing PDF
uncertainties only mildly.
In Fig. 3 we compare the CT18, MMHT14 and

NNPDF3.1 PDF sets at a scale Q = µ = 2 GeV.
Specifically, we display the following PDF combinations
from top to bottom and left to right: uv + dv = u �
ū + d � d̄, u � d, ū + d̄, d̄ � ū, s + s̄, s � s̄, c + c̄
and g. Note the special scale on the x axis. While
the three global analyses produce similar total valence
distributions uv+dv for 0.05 . x . 0.5, their predictions
on other flavor combinations could di↵er by 10% or more,
as in ū � d̄, ū + d̄, s + s̄, c + c̄ and g. In particular,
the c + c̄ PDF combination is largely di↵erent between
NNPDF3.1 and the other sets, given that charm is
parametrized on the same footing as other PDFs in the
NNPDF3.1 set, while it is generated perturbatively in
the others. Finally, note that the di↵erence s � s̄ is
not displayed for CT18 because they assume s = s̄;
MMHT14 and NNPDF3.1 determine s and s̄ PDFs
independently.

Beside the three general-purpose PDF sets described
above, other unpolarized PDF determinations have been
produced or updated recently, namely ABMP, CJ, JAM
and HERAPDF. These PDF sets are based on a reduced
set of measurements and/or on peculiar theoretical
assumptions. As such, they are more limited in scope.

The ABMP16 (Alekhin et al., 2017) PDF set is
the only unpolarized PDF set determined in a schemes
with a fixed number of flavors: for 3, 4 and 5 active
flavors separately. It was recently supplemented with
an extended set of single-top and top-pair measurements
from the Tevatron and the LHC and an increasing
number of DY data, notably recent ATLAS gauge-boson–
production distributions at 5 and 7 TeV and double-
di↵erential distributions for Z-boson production from
ATLAS and CMS. More stringent kinematic cuts have
been applied, which reduce the impact of higher-twist
terms included in the analysis.

The CJ15 (Accardi et al., 2016a) analysis determined

The CTEQ-Tung et al (CT) PDF set.

CT18 is the latest released PDF set.


CT methodology is based on minimizing a  
expressed in terms of parametrizations for the 
PDFs, finding the global minimum and propagating 
the uncertainty through the Hessian formalism.

χ2

[Hou et al, Phys.Rev.D 103 (2021)]

χ2



A. Courtoy—IFUNAM________________Fantômas4QCD: the pion PDF____________________Morelia 23

Hypothesis testing: role of uncertainties
Hypothesis testing of theoretical predictions relies on 


1. available data in  range, as well as value of ,

2. sensitivity of data to the hypothesis,

3. quality of the data,

4. uncertainties found in the fits.  

x Q
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Hypothesis testing of theoretical predictions relies on 


1. available data in  range, as well as value of ,

2. sensitivity of data to the hypothesis,

3. quality of the data,

4. uncertainties found in the fits.  

x Q

from Nadolsky [DIS2023]  
& [AC, Huston, Nadolsky, Xie, Yan & Yuan, Phys.Rev.D 107] 
& more of the CT coll. in preparation.

Tests of PDFs

Representative sampling

Acceptable 
functions

CT18 PDF uncertainty:  
Accounts for the sampling over 250-350 

parametrization forms and possible choices 
of fitted experiments and fitting parameters. 
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Pion objects and the inverse problem

10

small physical scales, suggesting that the endpoint region
is not accessible in perturbation theory. So we only show
a segment of x 2 [0.23, 0.77] for the RGR matched result,
and use a gray band to shade the outside regions. The
RGR e↵ect is almost zero near x = 0.5, and starts to sup-
press the distribution when approaching the endpoints.

ϕ
�
(x)

ϕ(x) w/ LRR
ϕ(x) w/ LRR+RGR

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x

ϕ(
x,

μ=
2
G
eV

)

FIG. 6: The mid-x dependence of the lightcone DA after we
perform the inverse matching on the quasi-DA �(x). The blue
band is the quasi-DA �̃(x) before matching as a reference. We
show only x 2 [0.23, 0.77] for the result with RGR because the
strategy does not work outside the range.

Now we have the distribution determined for the mid-
x region, while the endpoint regions are still unknown
from the LaMET approach. Fortunately, in coordinate
space, the small-z region is perturbative, thus, can be
resummed safely, and contains the global information of
the x-dependent DA, such as its moments. With the
information from the mid-x region, we can complete our
picture of the extracted DA by utilizing the small-z infor-
mation to constrain the endpoint behavior, as suggested
in Ref. [31].

Near the endpoints, we can parametrize the DA as a
power of x or 1 � x as in Eq. (34). To ensure conti-
nuity, we require that the parametrized form coincide
with our mid-x results at x = x0. We convert this
parametrized DA into coordinate space, apply the short-
distance matching, and fit the result to our renormalized
matrix elements. Figure 7 shows the comparison from the
parametrized DA and our lattice data at short distances,
which suggests good consistency. Besides that, we allow
some model-dependence by adding a small correction,

�(x < x0) = Ax
m(1 + sin(b)x), (42)

where sin(b) is to guarantee that the size of this correc-
tion term is not so large as to cause a sharp turn at the
junction point, i.e., the di↵erent regions are smoothly
connected. The same modification is symmetrically ap-
plied to x ! 1�x, and a model-dependence is included as
the systematic error by calculating the di↵erence between
the modified model and the original one in Eq. (34). The
final estimation taking into account such a systematic
error is shown in Fig. 8.

FIG. 7: The fitting of parametrized DA to lattice data at
short distance. The fitted short-distance correlations agree
well with the data.

FIG. 8: Full x dependence of the DA. The red band in
x 2 [0.23, 0.77] is obtained from LaMET, and the green (blue)
band is obtained from the short-distance correlations by mod-
eling of the endpoints with statistical (statistical and system-
atic) errors.

We can estimate the moment from the full x-
dependence from Eq. (31) with Eq. (34). We get

h1i =0.996(6),
⌦
⇠
2
↵
= 0.302(23), (43)

which are in good agreement with the theoretical normal-
ization h1i = 1, and the second moment

⌦
⇠
2
↵
= 0.298(39)

obtained from the renormalization-independent OPE fit
to Eq. (33). This is strong support for our renormaliza-
tion method.
The second Mellin moment we obtained from the

renormalization independent ratio and from the final
full x-dependence, although self-consistent, are signifi-
cantly greater than the latest calculation of local twist-
2 operators h⇠

2
i = 0.234(8) [11]. Can we reconstruct

the short distance correlations based on the moment
h⇠

2
i = 0.234(8) calculated from local twist-2 operators,

while keeping the long distance correlations from our lat-
tice calculation, and apply the same procedure of analysis
to get a full x-dependent distribution? Our analysis on
the original data suggests a good self-consistency. Will
we also see the similar consistency of h⇠2i ⇠ 0.234(8) by

[Holligan et al., 2301.10372]

perturbative uncertainties to be less important compared to
the combined statistical and systematical errors.
Finally we compare our findings for the Mellin

moments with some recent lattice QCD calculations at
μ ¼ 2 GeV. The work [39] using a dynamical QCD
simulation and using the local twist-2 operator approach
obtain hx2i ¼ 0.28ð1Þð2Þ. Another series of works from
RQCD that culminated in Ref. [42] using the local
operator approach obtain hx2i ¼ 0.240ð6Þð2Þð3Þð2Þ at
the physical point and take into account various kinds
of systematical errors. Whereas, the usage of the leading-
twist expansion method using current-current correlators
[45] results in a scatter of values around hx2i ≈ 0.3. Using
the quasi-DA matrix element as used in this work, but
using LaMET x-space matching, the work [67] estimates
hx2i ¼ 0.244ð30Þð20Þ, and the most recent work [68]
using the hybrid-renormalization method [90] estimates
hx2i ¼ 0.300ð41Þ. Our result lies in the ball park value of
previous estimates, but it is about 2.4σ (including stat-
istical and systematic errors in both works naively as the
net error) larger from the estimate using the local operator
approach in Ref. [42]. In the future, we need to investigate
the remaining systematical uncertainties in our work that
we did not quantify, such as the effect of finite lattice
spacing, and see if the tension between the values of
Mellin moments obtained with two completely different
methods, reduces or persists.

D. Prior-sensitive reconstruction of the pion DA

Our determination of the lowest two Mellin moments in
a model-independent manner is the important result in this
paper. However, within the framework of fitting phenom-
enology motivated Ansätze to the lattice data, we can
reconstruct the x dependence of the DA, ϕðxÞ. For
convenience, we define the variable u via

x ¼ 2u − 1; ð44Þ

so that the DA has support from 0 to 1. In principle, once
we know all the Gegenbauer moments from fits to C-OPE,
or inferred from M-OPE, we can perform a model-
independent reconstruction using

ϕðuÞ ¼ 6uð1 − uÞ
X

n¼0

a2nC
3=2
2n ð1 − 2uÞ: ð45Þ

The caveat that all the moments a2n need to be known
makes such an approach not usable in practice; as we saw,
the real-space quantity Mðλ; z2Þ converges in the acces-
sible range of λ < 6 rapidly with respect to the number of
Gegenbauer moments an (as the main content ofM can be
summarized approximately with a value of a2), whereas the
corresponding convergence in u (or x) space is rather slow.
The problem is easy to understand by considering a
behavior ϕðuÞ ¼ N uαð1 − uÞα. In the last section, from

the value of hx2i, we expected α ≈ 0.25, which differs
significantly from the leading term with α ¼ 1 in Eq. (45).
We can improve the convergence by using a complete

basis that is orthonormal with respect to a weight function,
wðuÞ ¼ uαð1 − uÞα, rather than the weight function wðuÞ ¼
uð1 − uÞ that the Gegenbauer polynomials C3=2

n are ortho-
normal with respect to. Such an idea was pursued in [30]
using the Gegenbauer polynomial basis Cαþ1=2

n ð1 − 2uÞ,
which we follow in this paper. To impose the evenness of
ϕðuÞ around u ¼ 1=2, we restrict the functions to even n.
That is, we expand,

ϕðuÞ ¼ N uαð1 − uÞα
XNGþ1

n¼0

snC
1
2þα
2n ð1 − 2uÞ; ð46Þ

with s0 ¼ 1. The value of α describing the family of
complete functions is arbitrary, but a usage of α that is
close enough to the large/small-x exponent leads to a better
convergence with respect to the truncation order NG. In
Fig. 7, we show a specific example of the better convergence
of an example DA, ϕðuÞ ¼ 1.47u0.2ð1 − uÞ0.2, when
expanded in a nearby C0.9

n polynomial basis as compared
to an expansion in C3=2

n polynomials. We note that the
polynomials Cαþ1=2

n ð1 − 2uÞ are proportional to another
complete basis, the Jacobi polynomials, Pα;β

n ð1 − 2uÞ for
α ¼ β, that have been proposed [96] as a good choice in the
analysis of PDFs even when α ≠ β.
First, we determined the best fit values of the exponent α

of the one-parameter Ansatz,

ϕ1−paramðuÞ ¼ N uαð1 − uÞα; ð47Þ

FIG. 7. The convergence of an example DA,
ϕðxÞ ¼ 1.47x0.2ð1 − xÞ0.2, shown as the green curve, when
expanded in C3=2

2n , shown as the red curves, and in another basis
C0.9
2n , shown as the black curves. The truncation of the expansions

in n up to 2,4,6 are shown as dotted, dashed and dot-dashed
curves respectively. The expansion in C1=2þα

2n with α ¼ 0.4 which
is close to the actual exponent, 0.2, converges much faster than
with C3=2

2n .
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model dependence, we found the reconstructed DA to be
sensitive to the prior that is applied. This is not surprising
given that the essential content in our quasi-DA matrix
element in the range of λ we used is a2, and the problem
posed by such limited information in the DA reconstruction
is well known in the literature. However, the use of the
C1=2þα
n basis was useful to quantitatively and systematically

reconstruct the pion DA that depends on the extent to which
one allows the DA to deviate from the default one-
parameter model. Thus, the panels of Fig. 8 together
convey this prior dependent knowledge of DA from our
quasi-DA matrix element.
We repeated the above fits for all analysis choices, which

now includes the truncation order NG ¼ 2, 3 and 4 in
Eq. (46). In the top panel of Fig. 9, we show our estimate of
the pion DA as a function of u, after taking into account all
the analysis variations, and summarize them with the
statistical and systematic error bands. To be cautious, we
present the reconstruction using a relatively broad prior
width δ ¼ 0.2 on the expansion coefficients. Nevertheless,
the reconstruction in the case of DA is sensitive to the value
of δ, however large it is, and hence, one should interpret the
reconstruction of DA in Fig. 9 as a specific u dependence,
given a somewhat broad prior. We compare our result with
the asymptotic DA shown as the black dashed curve.
Within the precision allowed at δ ¼ 0.2, we can only
resolve an overall flat DA over a range of u ∈ ½0.2; 0.8$
with sharp fall offs, uα and ð1 − uÞα with α ≈ 0.3, to 0 on
either side. If one focuses only on the central value of the
reconstructed DA, one sees a tendency for a platykurtic DA
as noted in Refs. [97–99]. The lattice data do not have the
sensitivity to further resolve the concavity or convexity
within the flatter regions, unless one is willing to impose a
more stringent prior width δ. Apart from providing a
reconstruction of the DA, the Ansatz based analysis also
provides a way to estimate the moments of DA. The usage
of Ansatz can be thought of as a way to regulate the values
of moments at larger n for which the lattice data are less
constraining, and therefore, provide robust values for
smaller-n moments. From the Ansatz based analysis above
with δ ¼ 0.2, we estimate the Mellin moments as

hx2i ¼ 0.2845ð44Þð58Þ;
hx4i ¼ 0.1497ð50Þð38Þ: ð48Þ

By comparing the values with Eq. (42), we see that the
Ansatz based reconstruction for hx2i agrees quite well with
the completely model-independent reconstruction. The
estimates of hx4i also agree with each other, however,
the usage of Ansatz has substantially reduced the error.
Thus, from both the model-independent moments analysis
and the model-dependent reconstruction analysis, we find
the values of hx2i and hx4i to be the quantities that we could
reliably extract from our lattice data.

As another way to summarize our results with less
modeling artifacts, we present the MS light-front ITD
corresponding to the pion DA in the bottom panel of
Fig. 9 in the range of λ that we have lattice data for and
performed our analysis on. To infer the MS ITD, we used
Eq. (11). Since we need only the information on the Mellin

FIG. 9. (Top panel) The pion DA reconstructed using the
C1=2þα
n basis with the constraint δ ¼ 0.2. The inner dark band

is the statistical error band. The outer light band is the combined
statistical and systematic error band. Variations in the fitted range
of z3, reference momentum P0

z , type of lattice correction and
higher-twist corrections added were taken into account in
summarizing the result in the figure. The asymptotic limit of
DA is shown as the black curve. (Bottom panel) The plot shows
the light-front MS pion ITD corresponding to the pion DA in the
panel above, as the red band. The ITD expected from the fits to
Mellin moments is shown as the blue band. In both cases,
statistical and combined statistical-systematical error bands are
shown. For comparison, the ITDs corresponding to the asymp-
totic DA (black dot-dashed curve) and flat DA (magenta dot-
dashed curve) are also shown.
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[X. Gao et al., PRD106]

LaMET gives results at  GeV for 

End-point behavior imposed (gray areas).

Very flat DA otherwise…

Q = 2 0.23 ≲ x ≲ 0.77

Gegenbauer expansion imposed to reconstruct DA 
from 2nd moment

Wiggly and flat DA at  GeV.

Second moment at  GeV similar to NJL at  !

Q = 2
Q = 2 Q0
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Pion objects and the inverse problem: convergence at end point.

Chiral symmetry seems to control the 
pion DA well over the  spectrum. Q

[X. Gao et al., PRD106]

& Swagato Mukherjee at DIS23.

Large-  convergence of the evolved pion DA seems to be key to problem. x
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