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Motivation

The importance of two resonant states in: 

e+e−→π0π0γ cross section 

muon g-2 ISB from τ−→π−π0ντγ
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The importance of resonant states in e+e−→π0π0γ 
cross section

Although rho and omega are close in mass, 
in this case they carry different momentum. 

Rho(1450) may play a similar game with omega
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4 15. Quark Model

Z

Figure 15.1: SU(4) weight diagram showing the 16-plets for the pseudoscalar (a) and vector
mesons (b) made of the u, d, s, and c quarks as a function of isospin Iz, charm C , and hypercharge
Y = B + S ≠ C

3 . The nonets of light mesons occupy the central planes to which the cc̄ states
have been added.

Isoscalar states with the same J
P C mix, but mixing between the two light quark isoscalar

mesons, and the much heavier charmonium and bottomonium states, are generally assumed to be
negligible. In the following, we shall use the generic names a for the I = 1, K for the I = 1/2,
and f and f

Õ for the I = 0 members of the light quark nonets. Thus, the physical isoscalars are
mixtures of the SU(3) wave function Â8 and Â1:

f
Õ = Â8 cos ◊ ≠ Â1 sin ◊ , (15.4)

f = Â8 sin ◊ + Â1 cos ◊ , (15.5)

where ◊ is the nonet mixing angle and

Â8 = 1Ô
6

(uū + dd̄ ≠ 2ss̄) , (15.6)

Â1 = 1Ô
3

(uū + dd̄ + ss̄) . (15.7)

The mixing relations are often rewritten to exhibit the uū + dd̄ and ss̄ components which decouple
for the “ideal” mixing angle ◊i, such that tan ◊i = 1/

Ô
2 (or ◊i = 35.3¶). Defining – = ◊ + 54.7¶,

one obtains the physical isoscalar state in the flavor basis

11th August, 2022

Motivation

e−(k1)

e+(k2)

γ(q) ρ0, ρ′ ω

π0(p1) π0(p2)

ρ0

γ(η, p3)

e+(k2)

e−(k1)

γ(q) ρ0, ρ′ ω

π0(p2) π0(p1)

ρ0

γ(η, p3)

(a) (b)

1.2 1.5 1.8
0

0.5

1

1.5

2

1.2 1.5 1.8
0

0.5

1

1.5

2

1.2 1.5 1.8
0

0.5

1

1.5

2

1.2 1.5 1.8
0

0.5

1

1.5

2

SND16 SND00

SND13 CMD2

 σ
(e

+  e
-  ->

 2
 π

 γ
) (

nb
)

Energy [GeV]

G. Toledo, NPP23

The expected combined resonant enhancement 
takes place not at the 

CM energy close to their masses



The importance of resonant states in 
muon g-2 ISB from τ−→π−π0ντγ

Uncertainties quoted to  incorporate the 
deviation from

V. Cirigliano, G. Ecker and H. Neufeld, JHEP. 08 (2002) 002

J. A. Miranda and P. Roig, Phys. Rev. D 102, 114017 (2020) 

In VMD this model dependent  (MD) 
channel found to be the main 

responsible for the deviation from 
purely SI result
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Introducción Methodología Resultados I Resultados II Conclusion

Contribuciones dependientes de modelo

Contribuciones dependientes de modelo para el decaimiento ⌧�
! ⇡�⇡0⌫⌧�.

La contribución relevante en este caso es aquella que viene mediada a través del
mesón ! (c) PhysRevD.74.071301:

M! = e GF V?
ud ✏?µ V̂ (!)

µ⌫ `⌫ , (25)

V̂ (!)
µ⌫ contribuye al tensor V̂µ⌫ con los siguientes coeficientes:

v!
1 = �C! f! [(p0 + k)2] fo [t

0] (p0 + 2k) · p0,

v!
2 = C! f! [(p0 + k)2] fo [t

0](p0 + k) · p�,

v!
3 = C! f! [(p0 + k)2] f+[t0],

v!
4 = �C! f! [(p0 + k)2] fo [t

0],

(26)

donde se tiene que:

f!(q2) ⌘
m2
!

m2
! � q2 � im!�!

, C! =
g2
!⇢⇡

m2
!g⇢g⇢⇡⇡

, (27)

La forma más sencilla de representar al factor de
forma: fo[t 0] ⇠ f⇢[t 0]. Sin embargo, ¿Qué pasa si
agregamos a la resonancia ⇢0?

fo [t
0] =

m2
⇢

m2 � t0 � i m⇢ �⇢0
+ ei✓ G⇢0 g!⇢0⇡

G⇢ g!⇢⇡

m2
⇢0

m2
⇢0 � t0 � i m⇢0 �⇢0

,

= f⇢[t
0] + �1 f⇢0 [t

0],

(28)(IFUNAM) 10 / 27
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Fig. 3 Relative comparison between e+e− and τ spectral functions, expressed in terms of the difference between neutral and charged pion form
factors. Isospin-breaking (IB) corrections are applied to τ data with their uncertainties, although hardly visible, included in the error band

4 Update of ahad,LO
µ [ππ,τ ]

The IB corrections applied to the lowest order hadronic con-
tribution to the muon g −2 using τ data in the dominant ππ

channel can be evaluated with

#IBaLO,had
µ [ππ, τ ]

= α2m2
τ

6|Vud |2π2

Bππ0

Be

∫ m2
τ

4m2
π

ds
K(s)

s

× dNππ0

Nππ0ds

(
1 − s

m2
τ

)−2(
1 + 2s

m2
τ

)−1[RIB(s)

SEW
− 1

]
,

where K(s) is a QED kernel function [47].
The numerical values for the various corrections are

given in Table 1 for the energy range between the 2π mass
threshold and 1.8 GeV. The present estimate of the IB effect
from long-distance corrections is smaller than the previous
one [15, 36, 37], because we now use a GEM(s) correction
in which the contributions involving the ρωπ vertex are ex-
plicitly excluded (except for its interference with the QED
amplitude). Its uncertainty corresponds to the difference be-
tween the correction used in this analysis and that from
[31, 32]. The quoted 10% uncertainty on the FSR and ππγ

electromagnetic corrections is an estimate of the structure-
dependent effects (pion form factor) in virtual corrections
and of intermediate resonance contributions to real photon
emission [44, 48, 49]. The systematic uncertainty assigned
to the ρ–ω interference contribution accounts for the differ-
ence in ahad,LO

µ between two phenomenological fits, where
the mass and width of the ω resonance are either left free to
vary or fixed to their world average values.

Some of the corrections in Table 1 are parametrisation
dependent. We choose to take the final corrections from the
Gounaris–Sakurai parametrisation and assign the full differ-

Table 1 Contributions to ahad,LO
µ [ππ, τ ] (×10−10) from the isospin-

breaking corrections discussed in Sect. 3. Corrections shown in two
separate columns correspond to the Gounaris–Sakurai (GS) and Kühn–
Santamaria (KS) parametrisations, respectively

Source #ahad,LO
µ [ππ, τ ] (10−10)

GS model KS model

SEW −12.21 ± 0.15

GEM −1.92 ± 0.90

FSR +4.67 ± 0.47

ρ–ω interference +2.80 ± 0.19 +2.80 ± 0.15

mπ± − mπ0 effect on σ −7.88

mπ± − mπ0 effect on Γρ +4.09 +4.02

mρ± − mρ0
bare

+0.20+0.27
−0.19 +0.11+0.19

−0.11

ππγ , electrom. decays −5.91 ± 0.59 −6.39 ± 0.64

Total −16.07 ± 1.22 −16.70 ± 1.23

−16.07 ± 1.85

ence with respect to the KS results5 as systematic error. The
total correction for isospin breaking amounts to (−16.07 ±
1.85) × 10−10 for ahad,LO

µ [ππ, τ ], where all systematic er-
rors have been added in quadrature except for the GS and KS
difference which has been added linearly. This correction is
to be compared to the value (−13.8±2.4)×10−10 obtained
previously [12]. Since the FSR correction was previously in-
cluded, but not counted in the IB corrections, the net change
amounts to −6.9×10−10, dominated by the electromagnetic
decay correction.

The corresponding IB-corrected ahad,LO
µ [ππ, τ ] in the

dominant π+π− channel below 1.8 GeV is given in Table 2
for ALEPH, CLEO, OPAL, Belle, and for the combined
mass spectrum from these experiments. The evaluation at

5We do not confirm the significant IB correction difference of the KS
parametrisation on the ρ–ω interference with respect to the GS para-
metrisation observed in [41].
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M. Davier, et al, Eur. Phys. J. C 66, 127-136 (2010) 

Not considered in estimates using BELLE 
data (removed but its interference)

Introducción Methodología Resultados I Resultados II Conclusion

ChPT O(p4) R�T O(p4) R�T O(p6) VMD

�aHVP LO
µ |GEM (t) (⇥10�11) �10 �15.9+5.7

�16.0 �76 ± 46 �19.2 ± 0.9

-37 (!)
Estructura general del decaimiento

⌧�(P) ! ⇡�(p�)⇡0(p0)⌫⌧ (q)�(k , ✏) La estructura general
del proceso es:

M = e GF V?
ud ✏?µ

h
F⌫ ū(q) �⌫ (1 � �5) (m⌧ + /P � /k) �µ u(P)

+ (Vµ⌫ � Aµ⌫ ) ū(q) �⌫ (1 � �5) u(P)
i
,

donde F⌫ = Q̄⌫
f+(t)

2 P · k
, f+(t) el factor de forma hadrónico,

t = (p� + p0)
2, Q̄ = p0 � p� ,

Vµ⌫ = �f+[t0]
p�µ

p� · k
(Q̄ � k)⌫ � f+[t0] gµ⌫

+
f+[t0] � f+[t]

k� · k
k�µ Q̄⌫ + V̂µ⌫ ,

(16)

V̂µ⌫ ⌘ v1 p� · k Fµ⌫ [p�] + v2 p0 · k Fµ⌫ [p0]

+ v3 p0 · k p� · k Lµ(p�, p0) p�⌫

+ v4 p0 · k p� · k Lµ(p�, p0) k+⌫ .

y

Aµ⌫ = i a1 ✏µ⌫⇢� Q̄⇢ k� + i a2 k+⌫ ✏µ�⇢� k� p⇢� p�0

+ i a3 ✏µ⌫⇢� k⇢ k�
+ + i a4 (p0 + k)⌫ ✏µ�⇢� k� p⇢� p�0 ,

donde, se hace uso de las estructuras invariantes

Lµ(↵�) =
↵µ

↵ · k
�

�µ

� · k
, Fµ⌫ [p] =

⇣
gµ⌫ �

pµ
p · k

k⌫
⌘
, (17)

con k� = p� + p0 y k+ = k� + k .

JHEP 0208, 002 (2002) Phys. Rev. D 102, 114017 (2020) Phys. Rev. D 74, 071301 (2006)

(IFUNAM) 6 / 27

 VMD approach
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Phys. Rev. D 74, 071301 (2006)  
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Nucl. Phys. B Proc. Suppl. 169, 250-254 (2007) 
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Nucl. Part. Phys. Proc. 260, 70-74 (2015)  



In this work
General description of the two poles carrying different energy

Explore the e+e−→π0π0γ differential cross section, to identify the double pole 
resonant enhancement features

Perform an analysis  of the parameters involved, in base of experimental data 
available, to identify their robustness

 Perform an analysis of the τ−→π−π0ντγ  omega channel,  to exhibit the 
analogies to the  previous case

Analyse the muon g-2 ISB correction from τ−→π−π0ντγ

 Conclusions
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Two poles carrying different energy

corresponding form factors
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minimal energy for omega on-shell

conservation, ⇢ and ! do not resonate at a di↵erence energy given by the mass gap between

them but farther, to account for the energy carried out by the pion.

In this work, first we analyse the behavior of the resonances in e
+
e
� ! ⇡

0
⇡
0
� consider-

ing the di↵erential cross section for a particular angular emission of one of the pions as an

additional observable. There, we use the angle to tune the individual features of the ⇢ and

! resonances and exhibit how they combine as a function of their decay width. Then, we

incorporate the ⇢
0 using the information obtained from the e

+
e
� ! ⇡

0
⇡
0
� total scattering

process and show that, although it is a subdominant contribution, it becomes important

thanks to the same enhancement mechanism between the ⇢ and the !, since the kinematical

energy shift allows both ! and ⇢
0 to be on-shell. Once the angular distribution is char-

acterized, in terms of the parameters involved at the current precision, we consider the !

channel of the ⌧
� ! ⇡

�
⇡
0
⌫⌧� decay, and its interference with the known dominant model

independent contribution. We show how a better knowledge of the e
+
e
� ! ⇡

0
⇡
0
� can help

to properly account for such model dependent contribution. Its implication on the isospin

symmetry breaking correction to tau based estimates of the muon magnetic dipole moment

is assessed. At the end we discuss the results and present our conclusions.

II. ENERGY ROLE IN THE FORM FACTOR

We can define the individual form factors associated to the ⇢ and ! mesons as Breit-

Wigner distributions:

f⇢[s] ⌘
m

2
⇢

m2
⇢ � s+ im⇢�⇢

(1)

and

f![s2] ⌘
m

2
!

m2
! � s2 + im!�!

, (2)

where s and s2 are the kinematical variables associated to each one, and mi and �i (i = ⇢, !)

are their corresponding mass and decay width. For the ⇢, we consider the energy dependent

form of the decay width
�
�⇢(s) = �⇢(m5

⇢/s
5/2)�(s,m2

⇡,m
2
⇡)

3/2
/�(m⇢

2
,m

2
⇡,m

2
⇡)

3/2, where

�(x, y, z) is the Källen function
�
while for the ! it is taken as a constant. Let us consider

the hadronic interaction between the ⇢, ! and ⇡ as given in Fig. 1, where both ⇢ and ! are,

in general, o↵-shell. Although ⇢ and ! are close in mass, it does not necessarily imply that

both resonances show up close enough to each other at a given kinematical configuration.
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In order to illustrate this point, lets consider the energy of the pion (E⇡) in the ⇢ rest-frame,

which links s ⌘ (p1 + p2)2 and s2 ⌘ p
2
2 variables by s2 = s+m

2
⇡ � 2

p
sE⇡. This di↵erence

between s and s2 is not trivial since it depends on E⇡. If the pion carries the minimal energy

E⇡ = m⇡, at s = m
2
⇢ the energy available for the ! is

p
s2 = 0.63 GeV, far below its mass,

even considering the decay width of the !. On the other hand, the minimal energy to have

the ! on-shell is
p
s = m!+m⇡ = 0.92 GeV, this is nearly m⇢+�⇢. Thus, the appearance of

both resonances requires the ⇢ meson energy to be at least one unit of the decay width away

from the pole. Phase space e↵ects, coming from the particular process where this vertex is

involved, will produce further modifications in the observables, as we will show later.

(q)

(p  )

(p  )

1

2

FIG. 1: ⇢! ⇡ interaction.

III. RESONANT ENHANCEMENT IN e+e� ! !⇡0 ! ⇡0⇡0� CROSS SECTION

In the following, we will explore the behavior associated to the form factors defined above

within the e
+
e
� ! ⇡

0
⇡
0
� cross section. Then, we incorporate the ⇢

0 contribution, which is

not negligible, thanks to the same enhancement mechanism between the ⇢ and the !, where

both ! and ⇢
0 are allowed to be on-shell.

We follow the vector meson dominance model (VMD) to describe the coupling between

the neutral vector mesons and the electromagnetic current [27]. The interaction among

hadrons is described in an e↵ective way, consistent with general considerations in extensions

of the VMD [28–31]. The e↵ective Lagrangian including the light mesons ⇢, ⇡ and !, in
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E⇡ = m⇡, at s = m
2
⇢ the energy available for the ! is

p
s2 = 0.63 GeV, far below its mass,

even considering the decay width of the !. On the other hand, the minimal energy to have

the ! on-shell is
p
s = m!+m⇡ = 0.92 GeV, this is nearly m⇢+�⇢. Thus, the appearance of

both resonances requires the ⇢ meson energy to be at least one unit of the decay width away

from the pole. Phase space e↵ects, coming from the particular process where this vertex is

involved, will produce further modifications in the observables, as we will show later.

(q)

(p  )

(p  )

1

2

FIG. 1: ⇢! ⇡ interaction.

III. RESONANT ENHANCEMENT IN e+e� ! !⇡0 ! ⇡0⇡0� CROSS SECTION

In the following, we will explore the behavior associated to the form factors defined above

within the e
+
e
� ! ⇡

0
⇡
0
� cross section. Then, we incorporate the ⇢

0 contribution, which is

not negligible, thanks to the same enhancement mechanism between the ⇢ and the !, where

both ! and ⇢
0 are allowed to be on-shell.

We follow the vector meson dominance model (VMD) to describe the coupling between

the neutral vector mesons and the electromagnetic current [27]. The interaction among

hadrons is described in an e↵ective way, consistent with general considerations in extensions

of the VMD [28–31]. The e↵ective Lagrangian including the light mesons ⇢, ⇡ and !, in

4

At least one of them off-shell

Can we characterize when the maximum enhancement takes place, in terms of the  
resonance properties, in a particular process?
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LIGHT UNFLAVORED MESONSLIGHT UNFLAVORED MESONSLIGHT UNFLAVORED MESONSLIGHT UNFLAVORED MESONS
(S = C = B = 0)(S = C = B = 0)(S = C = B = 0)(S = C = B = 0)

For I = 1 (π, b, ρ, a): ud , (uu−dd)/
√
2, du;

for I = 0 (η, η′, h, h′, ω, φ, f , f ′): c1(uu + d d) + c2(s s)

π±π±π±π± IG (JP ) = 1−(0−)

Mass m = 139.57039 ± 0.00018 MeV (S = 1.8)
Mean life τ = (2.6033 ± 0.0005)× 10−8 s (S = 1.2)

cτ = 7.8045 m

π± → '± ν γ form factorsπ± → '± ν γ form factorsπ± → '± ν γ form factorsπ± → '± ν γ form factors [a]

FV = 0.0254 ± 0.0017
FA = 0.0119 ± 0.0001
FV slope parameter a = 0.10 ± 0.06
R = 0.059+0.009

−0.008

π− modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the section on
Searches for Axions and Other Very Light Bosons.

p

π+ DECAY MODESπ+ DECAY MODESπ+ DECAY MODESπ+ DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

µ+ νµ [b] (99.98770±0.00004) % 30

µ+ νµγ [c] ( 2.00 ±0.25 )× 10−4 30

e+ νe [b] ( 1.230 ±0.004 )× 10−4 70

e+ νe γ [c] ( 7.39 ±0.05 )× 10−7 70

e+ νe π
0 ( 1.036 ±0.006 )× 10−8 4

e+ νe e
+ e− ( 3.2 ±0.5 )× 10−9 70

µ+ νµ ν ν < 9 × 10−6 90% 30

e+ νe ν ν < 1.6 × 10−7 90% 70

Lepton Family number (LF ) or Lepton number (L) violating modesLepton Family number (LF ) or Lepton number (L) violating modesLepton Family number (LF ) or Lepton number (L) violating modesLepton Family number (LF ) or Lepton number (L) violating modes

µ+ νe L [d] < 1.5 × 10−3 90% 30

µ+ νe LF [d] < 8.0 × 10−3 90% 30

µ− e+ e+ ν LF < 1.6 × 10−6 90% 30

π0π0π0π0 IG (JPC ) = 1−(0−+)

Mass m = 134.9768 ± 0.0005 MeV (S = 1.1)
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f0(500)f0(500)f0(500)f0(500) IG (JPC ) = 0+(0 + +)

also known as σ; was f0(600)

See the review on ”Scalar Mesons below 1 GeV.”
Mass (T-Matrix Pole

√
s) = (400–550)−i(200–350) MeV

Mass (Breit-Wigner) = 400 to 800 MeV
Full width (Breit-Wigner) = 100 to 800 MeV

f0(500) DECAY MODESf0(500) DECAY MODESf0(500) DECAY MODESf0(500) DECAY MODES Fraction (Γi /Γ) p (MeV/c)

ππ seen –
γ γ seen –

ρ(770)ρ(770)ρ(770)ρ(770) IG (JPC ) = 1+(1−−)

See the review on ”Spectroscopy of Light Meson Resonances.”
T-Matrix Pole

√
s = (761–765) − i (71–74) MeV

Mass (Breit-Wigner) = 775.26 ± 0.23 MeV
Full width (Breit-Wigner) = 149.1 ± 0.8 MeV

Scale factor/ p

ρ(770) DECAY MODESρ(770) DECAY MODESρ(770) DECAY MODESρ(770) DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

ππ ∼ 100 % 363

ρ(770)± decaysρ(770)± decaysρ(770)± decaysρ(770)± decays

π±γ ( 4.5 ±0.5 )× 10−4 S=2.2 375

π±η < 6 × 10−3 CL=84% 152

π±π+π−π0 < 2.0 × 10−3 CL=84% 254

ρ(770)0 decaysρ(770)0 decaysρ(770)0 decaysρ(770)0 decays

π+π−γ ( 9.9 ±1.6 )× 10−3 362

π0γ ( 4.7 ±0.8 )× 10−4 S=1.7 376

ηγ ( 3.00±0.21 )× 10−4 194

π0π0γ ( 4.5 ±0.8 )× 10−5 363

µ+µ− [g ] ( 4.55±0.28 )× 10−5 373

e+ e− [g ] ( 4.72±0.05 )× 10−5 388

π+π−π0 ( 1.01+0.54
−0.36±0.34)× 10−4 323

π+π−π+π− ( 1.8 ±0.9 )× 10−5 251

π+π−π0π0 ( 1.6 ±0.8 )× 10−5 257

π0 e+ e− < 1.2 × 10−5 CL=90% 376
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ω(782)ω(782)ω(782)ω(782) IG (JPC ) = 0−(1−−)

Mass m = 782.66 ± 0.13 MeV (S = 2.0)
Full width Γ = 8.68 ± 0.13 MeV

Scale factor/ p

ω(782) DECAY MODESω(782) DECAY MODESω(782) DECAY MODESω(782) DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

π+π−π0 (89.2 ±0.7 ) % 327

π0γ ( 8.35±0.27) % S=2.2 380

π+π− ( 1.53+0.11
−0.13) % S=1.2 366

neutrals (excludingπ0 γ ) ( 7 +8
−4 )× 10−3 S=1.1 –

ηγ ( 4.5 ±0.4 )× 10−4 S=1.1 200

π0 e+ e− ( 7.7 ±0.6 )× 10−4 380

π0µ+µ− ( 1.34±0.18)× 10−4 S=1.5 349

e+ e− ( 7.38±0.22)× 10−5 S=1.9 391

π+π−π0π0 < 2 × 10−4 CL=90% 262

π+π−γ < 3.6 × 10−3 CL=95% 366

π+π−π+π− < 1 × 10−3 CL=90% 256

π0π0γ ( 6.7 ±1.1 )× 10−5 367

ηπ0γ < 3.3 × 10−5 CL=90% 162

µ+µ− ( 7.4 ±1.8 )× 10−5 377

3γ < 1.9 × 10−4 CL=95% 391

Charge conjugation (C ) violating modesCharge conjugation (C ) violating modesCharge conjugation (C ) violating modesCharge conjugation (C ) violating modes

ηπ0 C < 2.1 × 10−4 CL=90% 162

2π0 C < 2.2 × 10−4 CL=90% 367

3π0 C < 2.3 × 10−4 CL=90% 330

invisible < 7 × 10−5 CL=90% –

η′(958)η′(958)η′(958)η′(958) IG (JPC ) = 0+(0−+)

Mass m = 957.78 ± 0.06 MeV
Full width Γ = 0.188 ± 0.006 MeV

p

η′(958) DECAY MODESη′(958) DECAY MODESη′(958) DECAY MODESη′(958) DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

π+π−η (42.5 ±0.5 ) % 232

ρ0γ (including non-resonant
π+ π− γ)

(29.5 ±0.4 ) % 165

π0π0η (22.4 ±0.5 ) % 239

ωγ ( 2.52 ±0.07 ) % 159

ω e+ e− ( 2.0 ±0.4 )× 10−4 159

γ γ ( 2.307±0.033) % 479

3π0 ( 2.50 ±0.17 )× 10−3 430
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Description of low energy processes

Vector meson dominance approach and effective interactions

Consider hadrons as the relevant degrees of freedom at low energies.
Couplings are free parameters to be determined from experiment.

6

(WZW) [14, 15]. In a second step, we incorporate the data from the e+e� ! 3⇡ cross

section as measured by SND, CMD2, BABAR and BES III [3–6]) and then e+e� ! ⇡0⇡0�

data as measured by SND and CDM2 [7–10] to further restrict the ⇢0 parameters validity

region. As an application of the results, we compute the e+e� ! 4⇡ cross section for the

so-called omega channel, and compare with the data measured by BABAR [11] considering

the parameters found. As a by product, we keep track of the behaviour of the coupling of

the ⇢ � ! � ⇡ mesons and determine its stability upon the inclusion of the ⇢0 and contact

term in the description of the processes under consideration.

II. THEORETICAL FRAMEWORK

The vector meson dominance model (VMD) is able to account for the low energy man-

ifestation of the strong interaction by considering the hadrons as the relevant degrees of

freedom. Incorporation of symmetries such as Isospin and SU(3) flavour symmetry allow

to both classify the hadrons and relate their properties. Further considerations associated

to the vector mesons manifestation as gauge bosons and incorporation of higher symmetries

have been also considered as extensions of the VMD [16–18]. Here, since the hadrons in-

volved are the lightest ones, we restrict ourselves to the part that is common to all the VMD

based models. The VMD Lagrangian including the light mesons ⇢, ⇡ and !, and ⇢0 can be

set as:

L =
X

V=⇢, ⇢0

gV ⇡⇡ ✏abc V
a
µ ⇡b @µ ⇡c +

X

V=⇢, ⇢0

g!V ⇡ �ab ✏
µ⌫�� @µ !⌫ @� V

a
� ⇡b

+ g3⇡ ✏abc ✏
µ⌫�� !µ @⌫ ⇡

a @� ⇡
b @� ⇡

c +
X

V=⇢, ⇢0,!

em2
V

gV
Vµ A

µ. (1)

We have labelled the couplings with the corresponding interacting fields and, in general, V

refers to a vector mesons and Aµ refers to the photon field. The couplings are free parameters

to be determined from experiment. Although, as we mention before, relations between them

and even from other descriptions can be drawn [19–24].

The strong interaction between the !, ⇢ and ⇡ mesons, encoded in the g!⇢⇡ parameter

necessarily involves at least one of the particles o↵-shell due to phase space restrictions. Thus,

the determination of its values might depend on the particular kinematical conditions of the

considered observable. For example, these mesons are produced in experiments devoted to

3
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Amplitude

7

IX. THE e+e� ! !⇡0 ! ⇡0⇡0� CROSS SECTION

The chosen configuration of momenta for the process is: e+(k+) e�(k�) !

⇡0(p1) ⇡0(p2) �(⌘⇤, p3), where ⌘⇤ represents the polarization vector of the photon. The pro-

cess is depicted by the diagrams in Fig. 5, where both the ⇢ and ⇢0 intermediate states are

considered. The amplitude for the diagram of Fig. 5(a) can be written as:

M(a) =
e2

q2

⇣
C⇢0 + ei✓C⇢0

⌘
D!(q � p1) ✏µ�✏� q

� (q � p1)
✏ ✏↵��⌫ (q � p1)

↵ p3
� ⌘⇤⌫ lµ, (16)

where the global factors are defined by:

C⇢0 =
⇣g!⇢⇡

g⇢

⌘2

m2
⇢0 D⇢0(q), C⇢0 =

g!⇢0⇡ g!⇢⇡
g⇢ g⇢0

m2
⇢0 D⇢0(q), (17)

with a relative phase ei✓ between both channels. Note that the amplitude for Fig. 5(b),

which considers the exchange of neutral pions, respect to Fig. 5(a), is exactly the same

amplitude M(a) by interchanging p1 $ p2 momenta.

e�(k1)

e+(k2)

�(q) ⇢0, ⇢0 !

⇡0(p1) ⇡0(p2)

⇢0

�(⌘, p3)

e+(k2)

e�(k1)

�(q) ⇢0, ⇢0 !

⇡0(p2) ⇡0(p1)

⇢0

�(⌘, p3)

(a) (b)

FIG. 5: The e+ e� ! !⇡ ! ⇡ ⇡ � decay.

The cross section is set, in terms of the couplings involved, as:

�(e+e� ! 2⇡0�) =

✓
g!⇢⇡
g⇢

◆4

C1+

✓
g!⇢⇡
g⇢

g!⇢0⇡
g⇢0

◆2

C2+

✓
g3!⇢⇡
g3⇢

g!⇢0⇡
g⇢0

◆⇣
Cos(✓)C3�Sin(✓)C4

⌘
.

(18)

We have considered the data from three SND Coll. [7–9] measurements, although the

later [9] updated the previous ones, they will be useful to illustrate the behavior of the

couplings even in such cases were some corrections are missing. Data from CMD2 [10] Coll.

is also available and used in this analysis. We can profit from the corresponding analysis that

the experiments carried out, by identifying the parameters region favored from their own fit.

In particular we can identify that the relative phase is expected to be large (✓ = 122± 80) is

12

The differential cross section for a given angle of one of the pions emission wrt the collision axis

e+e−→π0π0γ differential cross section

addition to the ⇢
0 can be set as

L =
X

V=⇢, ⇢0

gV ⇡⇡ ✏abc V
a
µ ⇡

b
@
µ
⇡
c +

X

V=⇢, ⇢0

g!V ⇡ �ab ✏
µ⌫��

@µ !⌫ @� V
a
� ⇡

b

+
X

V=⇢, ⇢0,!

em
2
V

gV
Vµ A

µ
. (3)

The couplings are labeled to identify the corresponding interacting fields. In general, V

refers to a vector meson, and A
µ refers to the photon field.

Let us set the momenta notation (within parenthesis) for the process as: e
+(v1) e�(v2) !

⇡
0(p1) ⇡0(p2) �(⌘⇤, p3), where ⌘⇤ represents the polarization vector of the photon. The process

is depicted by the diagrams in Fig. 2, where both the ⇢ and ⇢
0 intermediate states are

considered. Further contributions such as the � meson or scalars are not considered at this

stage, although they may be relevant when considering this process for precision observables

analysis [23, 24, 32]. The amplitude for the diagram of Fig. 2(a) can be written as:

M(a) =
e
2

q2

⇣
C⇢ + e

i✓
C⇢0

⌘
✏µ�✏� q

� (q � p1)
✏
✏↵�⌫

� (q � p1)
↵
p3

�
⌘
⇤⌫
l
µ
, (4)

where l
µ = �iev̄(v1)�µ

u(v2), s = q
2 = (v1 + v2)2, s1 = (q � p1)2 and the global factors are

defined in terms of the couplings and form factors by:

C⇢ =
⇣
g!⇢⇡

g⇢m!

⌘2

f⇢[s]f![s1], C⇢0 =
g!⇢0⇡ g!⇢⇡

g⇢ g⇢0m
2
!

f⇢0 [s]f![s1], (5)

with a relative phase e
i✓ between both channels. Note that this amplitude is exactly the

same amplitude for Fig. 2(b) by interchanging p1 $ p2 momenta.

The total cross section has been analysed recently, following the above description in

combination of a larger set of observables to set the model parameters [26]. There, mea-

surements from SND Coll. [18–20] and from CMD2 Coll. [21] were considered. We can

profit from such analyses by identifying the parameters relevant for our purposes, as listed

in Table I.

Let us now explore the di↵erential cross section as a function of the angular emission

of one of the pions with respect to the axis of the collision, as a way to scan the relative

energy between the ! and the ⇢ resonances, as described in the previous section. In order

to calculate the di↵erential cross section, we follow the kinematics as given in [33] (A factor

of (2⇡)9 is added to agree with the phase space convention used by The Particle Data

Group [34]), which involves five Lorentz invariant variables: s and s1 defined above and
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@
µ
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X
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g!V ⇡ �ab ✏
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X
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� (q � p1)
✏
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FIG. 2: The e+ e� ! !⇡0 ! ⇡0 ⇡0 � scattering.

Parameter Value

g⇢ 4.962 ± 0.093

g! 16.652 ± 0.473

g⇢0 12.918 ± 1.191

g!⇢⇡ (GeV
�1

) 11.314 ± 0.383

g!⇢0⇡ (GeV
�1

) 3.477 ± 0.963

✓/⇡ 0.872 ± 0.051

TABLE I: Parameters of the model, obtained in Ref. [26].

t0 = (v1 � p1)2, u1 = (q � p2)2 and t1 = (v1 � p2)2. The di↵erential cross section at a given

angle between the initial-state particle e
+(v1) and the final state particle ⇡

0(p1) (as seen

from the center of mass frame) is given by

d�(e+e� ! 2⇡0
�)

d⇣
=

Z ¯|M|2

4(2⇡)5|v1||v2|
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e+e- -> pi pi gamma differential cross section 
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Dalitz region

both ρ and ω particles resonant features 
combine to give a maximal enhancement 

e+e−→π0π0γ differential cross section

The resonances around the maximum are twice their 
corresponding decay width away from its pole mass value 

G. Toledo, NPP23

Including only ρ and the ω resonant features
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Including both ρ and ρ’ with the ω resonant features

e+e−→π0π0γ differential cross section

Observable strongly dependent on the ρ’  parameters
Measurement of this differential cross section can 

shed light on the ρ’ effect

Including only ρ has small uncertainty (as we show later)

G. Toledo, NPP23



Parameters analysis. From decay 
modes to cross section data

10

function to minimize is defined by:

�2(✓) =
NX

i=1

(yi � µ (xi; ✓))2

E2
i

, (19)

where ✓ = (✓1, ..., ✓N) are the parameters to determine; yi and Ei are the experimental data

and their corresponding uncertainty. µ(xi; ✓) are the theoretical estimate for the correspond-

ing parameters. In a first step we determine the parameters of the model involving the light

mesons, from 10 decay modes which are insensitive to the ⇢0(1450), namely: ⇢ ! ⇡ ⇡ neutral

and charged modes, ⇢0 ! e+ e�, µ+ µ�, ! ! e+ e�, µ+ µ�, ! ! ⇡0 �, ⇢ ! ⇡ � neutral and

charged modes and ⇡0 ! � �, using the experimental information as listed in the PDG [2].

These involve four parameters: g⇢, g⇢⇡⇡, g! and g!⇢⇡. In Table V, we show the results of the

fit. The value of the minimization function per degree of freedom (dof) is �2/dof = 0.32.

The correlation between parameters is shown in Fig. 7 as a heat map.

Parameter Central value Error

g⇢⇡⇡ 5.9485 0.0536

g⇢ 4.9619 0.0661

g! 17.038 0.603

g!⇢⇡ (GeV�1) 11.575 0.438

TABLE V: Fit to 10 decay modes as described in the text.

Then, we include the ! ! 3 ⇡ decay mode to exhibit the strong modification of the g!⇢⇡

parameter previously obtained, which becomes g!⇢⇡ = 14.572±0.22 and a �2/dof >> 1, sig-

naling the inconsistency and therefore the need of extending the description by incorporating

the ⇢(1450) and a contact term as prescribed by the WZW anomaly. Upon the inclusion of

these contributions we obtain g!⇢⇡ = 11.576 ± 0.463, in accordance with previous results.

Hereafter this is the way to describe the ! decay, and denote this set of data as the 11 decay

modes. In a second step, we incorporate the data from the e+ e� ! 3 ⇡ cross section (as

measured by SND [3], CMD2 [4], BABAR [5] and BES III [6]) and the e+ e� ! ⇡0 ⇡0 � (as

measured by SND [7–9] and CDM2 [10]) to further restrict the ⇢(1450) parameters validity

region. Global restrictions from other measurements, as the mentioned A1 and upper bound

for the g⇢0⇡⇡ parameter,are incorporated by setting a consistent region for the search of the

parameters in the minimization process. In particular, we obtain A1 = 0.125± 0.05.
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We minimize the function

considering the couplings as free parameters, for the following data:

(a) 10 decay modes: 

I. INTRODUCTION

The low energy measurements involving hadrons are reaching a high accuracy. In gen-

eral, the low mass hadron spectra contributing to the processes can be identified and the

corresponding parameters obtained. Excited states manifest themselves in low energy ob-

servables as modifications to the values of the parameters and as part of the scattering

processes for energies reaching the threshold for their nominal masses. The ⇢(1450) vector

meson (denoted by ⇢0 wherever possible) is one example of such states. It can be identified

as contributing to the ! ! 3⇡ decay width, by noticing that the e↵ective strong coupling

associated to such transition deviates from what is observed in other processes insensitive

to the ⇢0 [1]. The di-pion spectrum obtained in ⌧ ! ⌫⌧⇡⇡ and the e+e� ! ⇡⇡ cross section

exhibit clear indications of its presence and are used to determine its mass and total decay

width [2]. This important information needs to be complemented with the partial width of

the di↵erent decay modes, which have then implications on the parameters for the models

attempting to describe them. This information has not been settled, although evidence can

be extracted from particular observables [2]. Decay modes such as ⇢0 ! !⇡ and ⇢0 ! ⇡⇡

are of particular interest to disentangle the contribution of the ⇢0 and ⇢ mesons in low en-

ergy observables sensitive to both mesons. They are involved in the e+e� ! ⇡0⇡+⇡� and

e+e� ! ⇡0⇡0� processes [3–10], and in e+e� ! ⇡0⇡0⇡+⇡� process driven by the ! meson

as intermediate state, where available data for this particular channel o↵ers an opportunity

to test these contributions [11, 12].

In this work, we determine the hadronic couplings of the low energy mesons and the ⇢0, as

described in the context of the vector meson dominance model, by performing a global fit of

a set of decay modes and cross sections. We made use of MINUIT package for minimization

and Vegas [13] subroutine for the phase space integration to obtain the cross section when-

ever needed. In a first step we determine the parameters of the model involving the light

mesons, from 10 decay modes which are practically insensitive to the ⇢0, namely: ⇢ ! ⇡⇡

neutral and charged modes, ⇢0 ! e+e�, µ+µ�, ! ! e+e�, µ+µ�, ! ! ⇡0�, ⇢ ! ⇡�

neutral and charged modes and ⇡0 ! ��. Then, we include the ! ! 3⇡ decay, driven by

the ⇢ meson intermediate state, to exhibit the modification of the parameters previously

obtained, signaling the inconsistency and therefore the need of extending the description by

incorporating the ⇢0 and a contact term as prescribed by the Wess-Zumino-Witten anomaly
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mesons, from 10 decay modes which are practically insensitive to the ⇢0, namely: ⇢ ! ⇡⇡

neutral and charged modes, ⇢0 ! e+e�, µ+µ�, ! ! e+e�, µ+µ�, ! ! ⇡0�, ⇢ ! ⇡�

neutral and charged modes and ⇡0 ! ��. Then, we include the ! ! 3⇡ decay, driven by

the ⇢ meson intermediate state, to exhibit the modification of the parameters previously

obtained, signaling the inconsistency and therefore the need of extending the description by

incorporating the ⇢0 and a contact term as prescribed by the Wess-Zumino-Witten anomaly

2

(c)11 decay modes +  (WZW) [14, 15]. In a second step, we incorporate the data from the e+e� ! 3⇡ cross

section as measured by SND, CMD2, BABAR and BES III [3–6]) and then e+e� ! ⇡0⇡0�

data as measured by SND and CDM2 [7–10] to further restrict the ⇢0 parameters validity

region. As an application of the results, we compute the e+e� ! 4⇡ cross section for the

so-called omega channel, and compare with the data measured by BABAR [11] considering

the parameters found. As a by product, we keep track of the behaviour of the coupling of

the ⇢ � ! � ⇡ mesons and determine its stability upon the inclusion of the ⇢0 and contact

term in the description of the processes under consideration.

II. THEORETICAL FRAMEWORK

The vector meson dominance model (VMD) is able to account for the low energy man-

ifestation of the strong interaction by considering the hadrons as the relevant degrees of

freedom. Incorporation of symmetries such as Isospin and SU(3) flavour symmetry allow

to both classify the hadrons and relate their properties. Further considerations associated

to the vector mesons manifestation as gauge bosons and incorporation of higher symmetries

have been also considered as extensions of the VMD [16–18]. Here, since the hadrons in-

volved are the lightest ones, we restrict ourselves to the part that is common to all the VMD

based models. The VMD Lagrangian including the light mesons ⇢, ⇡ and !, and ⇢0 can be

set as:

L =
X

V=⇢, ⇢0

gV ⇡⇡ ✏abc V
a
µ ⇡b @µ ⇡c +

X

V=⇢, ⇢0

g!V ⇡ �ab ✏
µ⌫�� @µ !⌫ @� V

a
� ⇡b

+ g3⇡ ✏abc ✏
µ⌫�� !µ @⌫ ⇡

a @� ⇡
b @� ⇡

c +
X

V=⇢, ⇢0,!

em2
V

gV
Vµ A

µ. (1)

We have labelled the couplings with the corresponding interacting fields and, in general, V

refers to a vector mesons and Aµ refers to the photon field. The couplings are free parameters

to be determined from experiment. Although, as we mention before, relations between them

and even from other descriptions can be drawn [19–24].

The strong interaction between the !, ⇢ and ⇡ mesons, encoded in the g!⇢⇡ parameter

necessarily involves at least one of the particles o↵-shell due to phase space restrictions. Thus,

the determination of its values might depend on the particular kinematical conditions of the

considered observable. For example, these mesons are produced in experiments devoted to

3
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Cross section description

I. INTRODUCTION

The low energy measurements involving hadrons are reaching a high accuracy. In gen-

eral, the low mass hadron spectra contributing to the processes can be identified and the

corresponding parameters obtained. Excited states manifest themselves in low energy ob-

servables as modifications to the values of the parameters and as part of the scattering

processes for energies reaching the threshold for their nominal masses. The ⇢(1450) vector

meson (denoted by ⇢0 wherever possible) is one example of such states. It can be identified

as contributing to the ! ! 3⇡ decay width, by noticing that the e↵ective strong coupling

associated to such transition deviates from what is observed in other processes insensitive

to the ⇢0 [1]. The di-pion spectrum obtained in ⌧ ! ⌫⌧⇡⇡ and the e+e� ! ⇡⇡ cross section

exhibit clear indications of its presence and are used to determine its mass and total decay

width [2]. This important information needs to be complemented with the partial width of

the di↵erent decay modes, which have then implications on the parameters for the models

attempting to describe them. This information has not been settled, although evidence can

be extracted from particular observables [2]. Decay modes such as ⇢0 ! !⇡ and ⇢0 ! ⇡⇡

are of particular interest to disentangle the contribution of the ⇢0 and ⇢ mesons in low en-

ergy observables sensitive to both mesons. They are involved in the e+e� ! ⇡0⇡+⇡� and

e+e� ! ⇡0⇡0� processes [3–10], and in e+e� ! ⇡0⇡0⇡+⇡� process driven by the ! meson

as intermediate state, where available data for this particular channel o↵ers an opportunity

to test these contributions [11, 12].

In this work, we determine the hadronic couplings of the low energy mesons and the ⇢0, as

described in the context of the vector meson dominance model, by performing a global fit of

a set of decay modes and cross sections. We made use of MINUIT package for minimization

and Vegas [13] subroutine for the phase space integration to obtain the cross section when-

ever needed. In a first step we determine the parameters of the model involving the light

mesons, from 10 decay modes which are practically insensitive to the ⇢0, namely: ⇢ ! ⇡⇡

neutral and charged modes, ⇢0 ! e+e�, µ+µ�, ! ! e+e�, µ+µ�, ! ! ⇡0�, ⇢ ! ⇡�

neutral and charged modes and ⇡0 ! ��. Then, we include the ! ! 3⇡ decay, driven by

the ⇢ meson intermediate state, to exhibit the modification of the parameters previously

obtained, signaling the inconsistency and therefore the need of extending the description by

incorporating the ⇢0 and a contact term as prescribed by the Wess-Zumino-Witten anomaly
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(WZW) [14, 15]. In a second step, we incorporate the data from the e+e� ! 3⇡ cross

section as measured by SND, CMD2, BABAR and BES III [3–6]) and then e+e� ! ⇡0⇡0�

data as measured by SND and CDM2 [7–10] to further restrict the ⇢0 parameters validity

region. As an application of the results, we compute the e+e� ! 4⇡ cross section for the

so-called omega channel, and compare with the data measured by BABAR [11] considering

the parameters found. As a by product, we keep track of the behaviour of the coupling of

the ⇢ � ! � ⇡ mesons and determine its stability upon the inclusion of the ⇢0 and contact

term in the description of the processes under consideration.

II. THEORETICAL FRAMEWORK

The vector meson dominance model (VMD) is able to account for the low energy man-

ifestation of the strong interaction by considering the hadrons as the relevant degrees of

freedom. Incorporation of symmetries such as Isospin and SU(3) flavour symmetry allow

to both classify the hadrons and relate their properties. Further considerations associated

to the vector mesons manifestation as gauge bosons and incorporation of higher symmetries

have been also considered as extensions of the VMD [16–18]. Here, since the hadrons in-

volved are the lightest ones, we restrict ourselves to the part that is common to all the VMD

based models. The VMD Lagrangian including the light mesons ⇢, ⇡ and !, and ⇢0 can be

set as:

L =
X

V=⇢, ⇢0

gV ⇡⇡ ✏abc V
a
µ ⇡b @µ ⇡c +

X

V=⇢, ⇢0

g!V ⇡ �ab ✏
µ⌫�� @µ !⌫ @� V

a
� ⇡b

+ g3⇡ ✏abc ✏
µ⌫�� !µ @⌫ ⇡

a @� ⇡
b @� ⇡

c +
X

V=⇢, ⇢0,!

em2
V

gV
Vµ A

µ. (1)

We have labelled the couplings with the corresponding interacting fields and, in general, V

refers to a vector mesons and Aµ refers to the photon field. The couplings are free parameters

to be determined from experiment. Although, as we mention before, relations between them

and even from other descriptions can be drawn [19–24].

The strong interaction between the !, ⇢ and ⇡ mesons, encoded in the g!⇢⇡ parameter

necessarily involves at least one of the particles o↵-shell due to phase space restrictions. Thus,

the determination of its values might depend on the particular kinematical conditions of the

considered observable. For example, these mesons are produced in experiments devoted to
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FIG. 5: Di↵erential cross section at ⇣ = 0.95. Considering the ⇢ alone (solid line), and then

adding the ⇢0 (dashed line). The broad band region corresponds to the uncertainty from g!⇢0⇡

and the narrow band to the ✓ phase uncertainty.

Let us set the notation for the process as ⌧�(p) ! ⇡
� (p�) ⇡0 (p0) ⌫⌧ (q)� (k, ✏⇤), where in

parenthesis are the corresponding momenta, and ✏
⇤ is the polarization vector of the photon.

We define the auxiliary variables Q̄ ⌘ p0 � p�, k� ⌘ p� + p0 and k+ ⌘ k� + k and the

invariant variables t = k
2
� = (p0 + p�)2 and t

0 = k
2
+ = (k� + k)2 = t+ 2k� · k.

The total amplitude, in the isospin limit, for the ⌧
� ! ⇡

�
⇡
0
⌫⌧� process can be written

in general as [8, 35]:

MT = eGFV
⇤
ud✏

⇤µ
h
F⌫ ū(q)�

⌫(1� �5)(m⌧ + /p� /k)�µu(p)

+(Vµ⌫ � Aµ⌫)ū(q)�
⌫(1� �5)u(p)

i
, (10)

where the first line corresponds to the ⌧ radiation and F⌫ = Q̄⌫
f+[t]
2 p·k , with f+[t] the hadronic

form factor obtained from the corresponding non radiative decay. The weak ⇢ coupling

is set to G⇢ =
p
2m2

⇢/g⇢⇡⇡. The tensors Vµ⌫ and Aµ⌫ correspond to the Vector and Axial

contributions from theW� ! ⇡
�
⇡
0
� transition respectively. Vµ⌫ has the following structure:

Vµ⌫ = �f+[t
0]

p�µ

p� · k (Q̄� k)⌫ � f+[t
0]gµ⌫

+
f+[t0]� f+[t]

k · k�
k�µQ̄⌫ + V̂µ⌫ , (11)

where

V̂µ⌫ ⌘ v1 p� · k Fµ⌫(p�) + v2 p0 · k Fµ⌫(p0)

+v3 p0 · k p� · k Lµ(p�, p0) p�⌫ + v4 p0 · k p� · kLµ(p�, p0)k+⌫ , (12)
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FIG. 6: Feynman diagrams of the ⌧� ! ⇡�⇡0⌫⌧� decay corresponding with the structure

independent parts.

and we have made use of the following functions:

Lµ(a, b) ⌘
aµ

a · k � bµ

b · k ,

L(a, b) = Lµ(a, b)✏
µ
, (13)

Fµ⌫(a) ⌘ gµ⌫ �
aµk⌫

a · k .

The vi functions are determined from the specific model considered for the hadronic de-

scription. In our case, given by the Lagrangian Eq. (3), in addition to the vector meson

- photon interaction (V V �), which is taken in analogous way as for the W gauge boson

(WW�) incorporating the finite width e↵ect [36]. The structure independent (SI) diagrams

are depicted in Fig. 6, which include MI and MD parts, this last associated to the ⇢ meson

11
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MDM (�0) and taken to be �0 = 2 in e/2m⇢ units. In general the vi functions are given by:

v1 = �v2 = �0
[f+(t0)� f+(t)]

2 k� · k ,

v3 = 0, (14)

v4 = 2
⇣
�0

2
� 1

⌘(1 + i�)

m2
⇢

[f+(t0)� f+(t)]

k� · k .

The form factor f+[t] is defined in a similar way to f⇢[t] and satisfy (f+[t0]�f+[t])
2 k�·k =

(1 + i�) f+[t] f+[t0]
m2

⇢
. We identify the MI part, in accordance to the Low theorem, as those

contributions of order O(k�1) and O(k0) [16]:

MLow = eGFV
⇤
ud

n
f+[t]L(p, p�)Q̄⌫ + 2 p0 · k L(p0, p�)

df+[t]

dt
Q̄⌫

� f+[t]

2 p · k ✏
µ
h
Fµ⌫(Q̄)Q̄ · k + iQ̄

↵
k
�
✏⌫↵�µ

i

�f+[t] ✏
µ
Fµ⌫(p�)

o
l
⌫
, (15)

where l
⌫ = ū(q)�⌫(1 � �5)u(p). This is the same result obtained previously in the VMD

[10, 11] and �PT [8, 13] descriptions, with V̂µ⌫ and Aµ⌫ null.

The form factor f+[t], for the energy range of the process, can be extracted from the two

pion invariant mass distribution of the non radiative decay, described by the ⇢(770), ⇢(1450)

and ⇢(1700) vector mesons:

f+[t] =
1

1 + � + �

n
f⇢[t] + � f⇢0 [t] + � f⇢00 [t]

o
, (16)

where � = B0 e
i fb and � = G0 e

i fg . The parameters obtained from a fit to the Belle data

[37] are listed in Table II

Parameter Value Parameter Value

m⇢ 0.7747 GeV �⇢ 0.14612 GeV

m⇢0 1.3832 GeV �⇢0 0.5653 GeV

m⇢00 1.868 GeV �⇢00 0.3941 GeV

B0 -0.4028 fb 1.1321

G0 -0.1725 fg 4.3756⇥ 10
�8

TABLE II: Parameters obtained from a fit to the Belle data form factor f+[t].

The involved couplings from the model are related to the fit by:

�

1 + � + �
=

m
2
⇢

m2
⇢0

G⇢0 g⇢0⇡⇡

G⇢ g⇢⇡⇡
,

�

1 + � + �
=

m
2
⇢

m2
⇢00

G⇢00 g⇢00⇡⇡

G⇢ g⇢⇡⇡
. (17)
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The ρ MDM fig. (b) introduces  model dependent terms

Adding these two contributions is  known as the structure 
independent amplitude (SI)
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The vector form factor
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MDM (�0) and taken to be �0 = 2 in e/2m⇢ units. In general the vi functions are given by:
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The τ−→π−π0ντγ omega channel

Model dependent amplitude O(k)
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FIG. 7: Contributions to the ⌧ ! ⇡⇡⌫� decay, driven by the !.

Note that at this stage only the combination of couplings is set.

Now, we proceed to analyze the MD part coming from the !-channel, as depicted in Fig.

7. There, we show the diagram for the ⌧
� ! ⇡

�
⇡
0
⌫⌧� decay, driven by the presence of the

! intermediate state. It has been shown that this is the only MD relevant channel [10, 11].

The amplitude can be written as:

M! = eGFV
⇤
ud

G⇢p
2

g
2
!⇢⇡

g⇢m
2
⇢m

2
!

f![(p0 + k)2]fo[t
0]✏↵�µ

�
✏���

⌫
k
�
p
↵
0 (p0 + k)�p��✏

⇤µ
`
⌫
, (18)

where fo includes the ⇢0 in addition to the ⇢, which has been considered in previous studies,

fo[t
0] ⌘ 1

1 + B1e
i✓

�
f⇢[t

0] + B1e
i✓
f⇢0 [t

0]
 
. (19)

The parameter B1 is related to the coupling constants of the model by B1 =

|(m⇢/m
0
⇢)

2(G⇢0/G⇢)(g!⇢0⇡/g!⇢⇡)| (with G⇢0/G⇢ determined from the parameters of f+[t]);

and ✓ is the relative phase between the ⇢ and ⇢
0 contribution to the ! channel, this is the

same strong phase as in the e+e� ! ⇡
0
⇡
0
� process. Thus fo[t0], although similar in structure

to f+[t], involves di↵erent values for the parameters associated to the ⇢0 contribution, which

can be determined from e
+
e
� ! ⇡

0
⇡
0
�.

The amplitude can be set in the general structure, Eq. (10), as:

M! = eGFV
⇤
ud✏

⇤µ
V̂

(!)
µ⌫ `

⌫
, (20)
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and V̂
(!)
µ⌫ contributes to V̂µ⌫ with the following coe�cients:

v
!
1 = �C!f![(p0 + k)2]fo[t

0](p0 + 2k) · p0,

v
!
2 = C!f![(p0 + k)2]fo[t

0](p0 + k) · p�, (21)

v
!
3 = C!f![(p0 + k)2]fo[t

0],

v
!
4 = �C!f![(p0 + k)2]fo[t

0],

where

C! =
g
2
!⇢⇡

m2
!g⇢g⇢⇡⇡

. (22)

In order to evaluate the corresponding contributions we use the values for the couplings

obtained from the parameter analysis [26], Table I.

A. Pion angular distribution

The dipion invariant mass distribution has been shown to be a useful observable to study

the underlying dynamics of ⌧� ! ⇡
�
⇡
0
⌫⌧� decay [8, 9, 13]. The distribution associated

to a particular angular emission of the charged pion with respect to the dipion momenta

in the ⌧ rest frame may resemble the behavior observed in the e
+
e
� ! ⇡

0
⇡
0
� process

discussed previously. In Fig. 8, we show the dimeson invariant mass distribution due to

the ! channel, normalized to the non-radiative decay width (�nr) for several angles of the

charged pion emission, obtained using the same kinematics as in Ref. [9]. Lines in the upper

region of the figure (Full) consider ⇢ and ⇢
0. The lines in the lower region consider only the

⇢
0 contribution, for the corresponding angles. We observe that small angles are favored and

the individual resonant structures are split.

In Fig. 9, we show the dipion invariant mass for the full radiative amplitude and the

individual contributions, coming from the interference of the SI part and the ! channel

when considering either ⇢ or ⇢0 intermediate state. We use a cut o↵ for the photon energy

of E�min =300 MeV, implemented by introducing a fictitious mass at the kinematical level,

such that the photon energy can not go lower than that energy. The doted line corresponds

to the total dipion invariant mass, the dot-dashed line is the contribution excluding the ⇢
0

in the ! channel, and the solid line is the SI contribution.
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Including both ρ and ρ’ coupled to the ω 

The amplitude set in the general structure form



The τ−→π−π0ντγ omega channel

Dipion invariant mass distribution due to the ω 
channel, normalized to the non-radiative decay width 
(Γnr) for several angles of the charged pion emission

wrt dipion momentum 

Dipion invariant mass distribution. The doted line corresponds 
to the total, the dot-dashed line is the contribution excluding the 
ρ′ in the omega channel, and the solid line is the SI contribution 
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The τ−→π−π0ντ radiative correction

GEM (t) function including several contributions (the 
error band corresponds to the inclusion of the rho’)

Projection on rho(1450)

19

FIG. 9: Dipion invariant mass distribution using a cut o↵ of E�min = 300 MeV. The doted line

corresponds to the total dipion invariant mass, the dot-dashed line is the contribution excluding

the ⇢0 in the omega channel, and the solid line is the SI contribution.

only the ⇢ in the ! channel. Here, we extend the analysis to incorporate the ⇢
0, which is

already far from the soft photon approximation regime and requires to consider the results

with caution as they are fully model dependent. Still, we do it in an attempt to explore the

role of the parameters involved.

Let us recall the general procedure to compute the electromagnetic correction: The photon

inclusive dipion invariant mass distribution at O(↵) can be set, in terms of the non-radiative

decay, �0
2⇡, as [8]

d�2⇡(�)

dt
=

d�0
2⇡

dt
GEM(t), (23)

where GEM(t) encodes the long distance radiative corrections. In general, the electromag-

netic function can be split into two parts [8, 10]:

GEM(t) = G
0
EM(t) +G

rest
EM(t), (24)

where G
0
EM(t) accounts for the virtual and real contribution up to O(k�2), and G

rest
EM(t),

which includes the remaining higher order contributions from the real part. The first one
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G0 (t) accounts for the virtual and real contribution up to O(k−2), 
Grest(t), includes the remaining higher order contributions from the real part 

Electromagnetic function



muon g-2 ISB correction from τ−→π−π0ντ(γ)

Isospin symmetry breaking
correction

20

FIG. 11: GEM (t) function for the current uncertainties on the ⇢0 parameters (broad shaded region)

as in Fig. 10 and the projection region (inside region) considering an improvement on the g!⇢0⇡ of

20%. We also include the result for G0
EM (t).

GEM (t) �a(HV P,LO)
µ ( ⇥10

�11
)

(i) G0
EM (t) 18

(ii) GEM (t)(MI) -12

(iii) GEM (t)(SI) -15

(iv) GEM (t) (Full) �38.3+2.8
�3.2

(v) GEM (t) (Full+⇢0) �94.2+32.3
�91.9

(vi) GEM (t) (Projection) �94.2+28.2
�66

TABLE III: �a(HV P,LO)
µ |GEM (t) ( ⇥10

�11
) for several contributions of GEM (t).

V. CONCLUSIONS

We have explored the enhancement mechanism due to the resonant properties of the

⇢ and ! mesons, when such resonances carry di↵erent momenta. First, we consider the

e
+
e
� ! ⇡

0
⇡
0
� process and made use the di↵erential cross section at a given angle of emission

19

has been computed in [8] and the last one, which includes MI and MD parts, has been

computed in two frameworks, �PT [8, 13] and VMD [9–11], as mentioned before.

Following the form of GEM(t) as in Eq. (24), we can compute the contributions to

�a
(HV P,LO)
µ |GEM (t) from the di↵erent terms. Namely, G0

EM(t) and then adding the remaining

G
rest
EM(t) which includes MI and MD parts. In Fig. 10 we show the electromagnetic function

including di↵erent contributions. Total (black solid line), the SI and interference with the ⇢

part of the ! channel. The uncertainties associated are not visible at the current scale, that

is, at this stage the MD contribution is well settled. Adding the ⇢
0 and using the current

uncertainties on the parameters defines the shaded region, signaling the lack of precision on

such contribution. We have also ploted the contribution from only the ⇢
0 in the ! channel

(green dashed line), the SI contribution (solid red line) and the result for G
0
EM(t) (black

dashed line).

In Fig. 11, we show the electromagnetic function for the current uncertainties on the ⇢
0

parameters (broad shaded region), as in Fig. 10, and the projection region (inside region)

considering an improvement on the g!⇢0⇡ of 20%, which may be attainable by measuring the

e
+
e
� ! ⇡

0
⇡
0
� angular distribution described in the first part of this work.

The correction to a
(HV P,LO)
µ is estimated by:

�a
(HV P,LO)
µ |GEM (t) =

1

4⇡3

Z 1

4m2
⇡

dtK(t)
K�(t)

K�(t)

d�2⇡(�)

dt

⇥
h 1

GEM(t)
� 1

i
, (25)

where K(t), the QED Kernel function, K�(t) and K�(t) are given elsewhere [7, 8]. The inte-

gration is performed in the region from tmin = 0.0773 GeV2 to tmax = 3.14 GeV2. In Table

III, we show the results considering the di↵erent contributions: (i) G0
EM(t); (ii) GEM(t)(SI),

the SI part in addition to G0
EM(t); (iii) GEM(t) (Full), the SI plus MD in addition to G0

EM(t)

considering only the ⇢ contribution in the ! channel; (iv) GEM(t) (Full+⇢
0 ), similar to the

previous case but adding the ⇢
0 contribution in the ! channel. The uncertainties are taken

to account for the corresponding individual parameters uncertainties without including their

possible correlations; (v) GEM(t) (Projection) is the result for a projected reduction of 20%

in the g!⇢0⇡ uncertainties, while keeping the central value fixed.

The results here obtained for �a
(HV P,LO)
µ |GEM (t) considering (i) and (ii) are consistent

with the ones obtained in previous works, for example in [7, 8]. The result considering (iii)

is consistent with previous estimates �37⇥ 10�11 [10, 11, 39]. This large contribution from
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Introducción Methodología Resultados I Resultados II Conclusion

Así, para el canal dominante a dos piones, incluyendo los efectos IB y
correcciones radiativas para el estado final, estan relacionadas por:

�0
e+e�!⇡⇡

(t) =
h K�(t)

K�(t)

d�⇡⇡(�)

dt

i RIB(t)

SEW
, (10)

donde

K�(t) =
G2

F |Vud |
2m3

⌧

384⇡3

⇣
1 �

t

m2
⌧

⌘⇣
1 +

2t

m2
⌧

⌘
, K� =

⇡↵2

3t
,

(11)
y la corrección IB es

RIB(t) =
FSR(t)

GEM (t)

�3
⇡+⇡�

�3
⇡+⇡0

���
FV (t)

f+(t)

���
2
. (12)

Así, para estudiar los efectos de las correcciones IB sobre aHVP,LO
µ [⇡⇡],

es necesario evaluar la expresión:

�aHVP,LO
µ =

1

4⇡3

Z t2

t1
dt K (t)

h K�(t)

K�(t)

d�⇡⇡[�]

dt

i⇣ RIB(t)

SEW
�1

⌘
, (13)

Función de corrección GEM(t) La función radiativa GEM (t), relacionada
al proceso inclusivo ⌧2⇡[�], en términos del proceso no radiativo ⌧2⇡ es:

d�(⌧2⇡[�])

dt
=

d�0

dt
GEM (t), (14)

donde GEM (t) resume las correcciones electromagnéticas reales y
virtuales de O(↵) y que puede ser dividida en dos partes como:

GEM (t) = G0
EM(t) + Grest

EM (t). (15)
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ChPT O(p4) R�T O(p4) R�T O(p6) VMD

�aHVP LO
µ |GEM (t) (⇥10�11) �10 �15.9+5.7

�16.0 �76 ± 46 �19.2 ± 0.9

-37 (!)
Estructura general del decaimiento

⌧�(P) ! ⇡�(p�)⇡0(p0)⌫⌧ (q)�(k , ✏) La estructura general
del proceso es:

M = e GF V?
ud ✏?µ

h
F⌫ ū(q) �⌫ (1 � �5) (m⌧ + /P � /k) �µ u(P)

+ (Vµ⌫ � Aµ⌫ ) ū(q) �⌫ (1 � �5) u(P)
i
,

donde F⌫ = Q̄⌫
f+(t)

2 P · k
, f+(t) el factor de forma hadrónico,

t = (p� + p0)
2, Q̄ = p0 � p� ,

Vµ⌫ = �f+[t0]
p�µ

p� · k
(Q̄ � k)⌫ � f+[t0] gµ⌫

+
f+[t0] � f+[t]

k� · k
k�µ Q̄⌫ + V̂µ⌫ ,

(16)

V̂µ⌫ ⌘ v1 p� · k Fµ⌫ [p�] + v2 p0 · k Fµ⌫ [p0]

+ v3 p0 · k p� · k Lµ(p�, p0) p�⌫

+ v4 p0 · k p� · k Lµ(p�, p0) k+⌫ .

y

Aµ⌫ = i a1 ✏µ⌫⇢� Q̄⇢ k� + i a2 k+⌫ ✏µ�⇢� k� p⇢� p�0

+ i a3 ✏µ⌫⇢� k⇢ k�
+ + i a4 (p0 + k)⌫ ✏µ�⇢� k� p⇢� p�0 ,

donde, se hace uso de las estructuras invariantes

Lµ(↵�) =
↵µ

↵ · k
�

�µ

� · k
, Fµ⌫ [p] =

⇣
gµ⌫ �

pµ
p · k

k⌫
⌘
, (17)

con k� = p� + p0 y k+ = k� + k .
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FIG. 10: GEM (t) function including several contributions: Total (black solid line) is the SI contri-

bution and the interference with the ! channel considering only the ⇢. Adding the ⇢0 and using

the current uncertainties on the parameters defines the shaded region. The contribution from only

the ⇢ in the ! channel (blue dashed line) and the contribution from only the ⇢0 in the ! channel

(green dashed line), the SI contribution (red solid line) and the result for G0
EM (t) (black dashed

line).

the ! channel is well under control with relatively small uncertainties mainly associated to

the g!⇢⇡ coupling. The result considering (iv) becomes anomalously large and may signal

the break of the approach, and would call for further analysis, we have pointed out the

origin of the main uncertainties to the ⇢
0 and its interaction with the ! through the g!⇢0⇡

coupling. It is close to �(76 ± 46) ⇥ 10�11 obtained at O(p6) in a Chiral description with

resonances [13]. For comparison purposes, we can consider the contributions from the rest of

the RIB(t) and SEW , terms as given in [39]. This would imply a shift in the total �a
(HV P,LO)
µ

from �(16.07 ± 1.85) ⇥ 10�11 to �(17.98 ± 1.64) ⇥ 10�10 considering only the ⇢ in the !

channel, and �(23.57+3.67
�9.33)⇥ 10�10 when adding the ⇢

0.
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We present a new measurement of the positive muon magnetic anomaly, aµ ⌘ (gµ � 2)/2, from
the Fermilab Muon g�2 Experiment based on data collected in 2019 and 2020. We have analyzed
more than four times the number of positrons from muon decay than in our previous result from
2018 data. The systematic error is reduced by more than a factor of two due to better running
conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon
distribution, !̃0

p, and of the anomalous precession frequency corrected for beam dynamics e↵ects,
!a. From the ratio !a/!̃

0
p, together with precisely determined external parameters, we determine

aµ = 116 592 057(25) ⇥ 10�11 (0.21 ppm). Combining this result with our previous result from the
2018 data, we obtain aµ(FNAL) = 116 592 055(24) ⇥ 10�11 (0.20 ppm). The new experimental
world average is aµ(Exp) = 116 592 059(22) ⇥ 10�11 (0.19 ppm), which represents a factor of two
improvement in precision.

We report a new measurement of the muon magnetic
anomaly using data collected in 2019 (Run-2) and 2020
(Run-3) by the Muon g�2 Experiment at Fermilab. The
data constitute a fourfold increase in detected positrons
compared to our previous measurement (Run-1) [1–4].
Analysis and run condition improvements also lead to
more than a factor of two reduction in the systematic un-
certainties, surpassing the experiment’s design goal [5].

Our Run-1 publications describe the principle of
the experiment, previous results, and experimental de-
tails [1–4]. The experiment uses 3.1 GeV/c polarized
muons produced at the Fermilab Muon Campus [6].
Muons are injected into a 7.112 m radius storage ring that
was moved, and significantly upgraded, from the BNL
experiment [7, 8]. Two key components of the storage
ring are kicker magnets that direct the injected muons
onto the central orbit of the storage ring [9] and electro-
static quadrupoles (ESQs) that provide vertical focusing
of the stored beam [10]. The anomalous spin precession
frequency !a—the di↵erence between the muon spin pre-
cession frequency and the cyclotron frequency—is mea-
sured by recording the time dependence of the number
of high-energy positrons detected in a series of calorime-
ters located on the inner radius of the storage ring [11].
The magnetic field is mapped every few days using a
trolley instrumented with Nuclear Magnetic Resonance
(NMR) probes [12]. The probes are calibrated against a
retractable water-based cylindrical probe [13] to express
the magnetic field weighted by the muon spatial distri-
bution in terms of the precession frequency of shielded
protons in a spherical sample !̃

0
p, for which the relation

between precession frequency and magnetic field is pre-
cisely known. Changes in the field between trolley mea-

surements are tracked using NMR probes embedded in
the vacuum chamber walls above and below the muon
storage volume [3]. Dedicated instrumentation is used
to measure transient magnetic fields caused by the puls-
ing of the kickers and ESQs. The spatial distribution of
the muon beam within the storage ring as a function of
time since injection is inferred from positron trajectories
recorded using two tracking detectors [14].

We incorporated major instrumental improvements
with respect to Run-1. Resistors in the high voltage
feedthroughs for the ESQ system that were damaged in
Run-1 were replaced before Run-2. This upgrade greatly
improved transverse beam stability. Thermal insulation
was added to the storage ring magnet before Run-2 to
remove diurnal temperature variations. Increased cool-
ing power and improved air circulation in the experimen-
tal hall installed before Run-3 reduced seasonal temper-
ature variations. The magnitude and reliability of the
kicker field were improved between Run-1 and Run-2,
and again within Run-3. Due to these improvements,
the data are analyzed in three sets, Run-2, Run-3a, and
Run-3b. A full description of the hardware upgrades, op-
erating conditions and analysis details will be provided
in an in-depth paper currently in preparation.

The data are blinded by hiding the true value of the
calorimeter digitization clock frequency. This blinding
factor is di↵erent for Run-2 and Run-3.

We obtain the muon magnetic anomaly from [15]

aµ =
!a

!̃0
p(Tr)

µ
0
p(Tr)

µe(H)

µe(H)

µe

mµ

me

ge

2
, (1)

where this experiment measures two frequencies to
form the ratio R0

µ = !a/!̃
0
p(Tr), where Tr = 34.7 �C is
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Fig. 3 Relative comparison between e+e− and τ spectral functions, expressed in terms of the difference between neutral and charged pion form
factors. Isospin-breaking (IB) corrections are applied to τ data with their uncertainties, although hardly visible, included in the error band

4 Update of ahad,LO
µ [ππ,τ ]

The IB corrections applied to the lowest order hadronic con-
tribution to the muon g −2 using τ data in the dominant ππ

channel can be evaluated with

#IBaLO,had
µ [ππ, τ ]

= α2m2
τ

6|Vud |2π2

Bππ0

Be

∫ m2
τ

4m2
π

ds
K(s)

s

× dNππ0

Nππ0ds

(
1 − s

m2
τ

)−2(
1 + 2s

m2
τ

)−1[RIB(s)

SEW
− 1

]
,

where K(s) is a QED kernel function [47].
The numerical values for the various corrections are

given in Table 1 for the energy range between the 2π mass
threshold and 1.8 GeV. The present estimate of the IB effect
from long-distance corrections is smaller than the previous
one [15, 36, 37], because we now use a GEM(s) correction
in which the contributions involving the ρωπ vertex are ex-
plicitly excluded (except for its interference with the QED
amplitude). Its uncertainty corresponds to the difference be-
tween the correction used in this analysis and that from
[31, 32]. The quoted 10% uncertainty on the FSR and ππγ

electromagnetic corrections is an estimate of the structure-
dependent effects (pion form factor) in virtual corrections
and of intermediate resonance contributions to real photon
emission [44, 48, 49]. The systematic uncertainty assigned
to the ρ–ω interference contribution accounts for the differ-
ence in ahad,LO

µ between two phenomenological fits, where
the mass and width of the ω resonance are either left free to
vary or fixed to their world average values.

Some of the corrections in Table 1 are parametrisation
dependent. We choose to take the final corrections from the
Gounaris–Sakurai parametrisation and assign the full differ-

Table 1 Contributions to ahad,LO
µ [ππ, τ ] (×10−10) from the isospin-

breaking corrections discussed in Sect. 3. Corrections shown in two
separate columns correspond to the Gounaris–Sakurai (GS) and Kühn–
Santamaria (KS) parametrisations, respectively

Source #ahad,LO
µ [ππ, τ ] (10−10)

GS model KS model

SEW −12.21 ± 0.15

GEM −1.92 ± 0.90

FSR +4.67 ± 0.47

ρ–ω interference +2.80 ± 0.19 +2.80 ± 0.15

mπ± − mπ0 effect on σ −7.88

mπ± − mπ0 effect on Γρ +4.09 +4.02

mρ± − mρ0
bare

+0.20+0.27
−0.19 +0.11+0.19

−0.11

ππγ , electrom. decays −5.91 ± 0.59 −6.39 ± 0.64

Total −16.07 ± 1.22 −16.70 ± 1.23

−16.07 ± 1.85

ence with respect to the KS results5 as systematic error. The
total correction for isospin breaking amounts to (−16.07 ±
1.85) × 10−10 for ahad,LO

µ [ππ, τ ], where all systematic er-
rors have been added in quadrature except for the GS and KS
difference which has been added linearly. This correction is
to be compared to the value (−13.8±2.4)×10−10 obtained
previously [12]. Since the FSR correction was previously in-
cluded, but not counted in the IB corrections, the net change
amounts to −6.9×10−10, dominated by the electromagnetic
decay correction.

The corresponding IB-corrected ahad,LO
µ [ππ, τ ] in the

dominant π+π− channel below 1.8 GeV is given in Table 2
for ALEPH, CLEO, OPAL, Belle, and for the combined
mass spectrum from these experiments. The evaluation at

5We do not confirm the significant IB correction difference of the KS
parametrisation on the ρ–ω interference with respect to the GS para-
metrisation observed in [41].

M. Davier, et al, Eur. Phys. J. C 66, 127-136 (2010) 



Conclusions
We explored the e+e−→π0π0γ differential cross section, and identified the double pole resonant 
enhancement features.

Performed an analysis  of the parameters involved, in base of experimental data, to identify their 
robustness. gρωπ  = 11.314 ± 0.383 GeV−1  was found to be consistent with all the relevant observables.

Performed an analysis of the τ−→π−π0ντγ  omega channel,  exhibiting the analogies to the  previous case

The muon g-2 ISB correction from τ−→π−π0ντ(γ) was found to be consistent with previous calculations 
using the same approach.

Considering only the rho, the uncertainties are well grounded. 

The inclusion  of rho(1450) calls for revision as the large effects observed may signal departure from 
soft photon approximation and structure dependence.

The link between the e+e−→π0π0γ process and the ω channel of the τ−→π−π0ντγ decay, can be used to gain 
further insight into the description of such processes. 
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