τ-data based evaluation of $a_{\mu}^{HVP,LO}$ & the significance of the discrepancy between measurement & SM

Pablo Roig
Cinvestav (Mexico City)

Non-perturbative physics: tools & applications Morelia Workshop, 4-8 September 2023

CONTENTS

The measurement

The SM prediction

Their discrepancy

The a_{μ} measurement

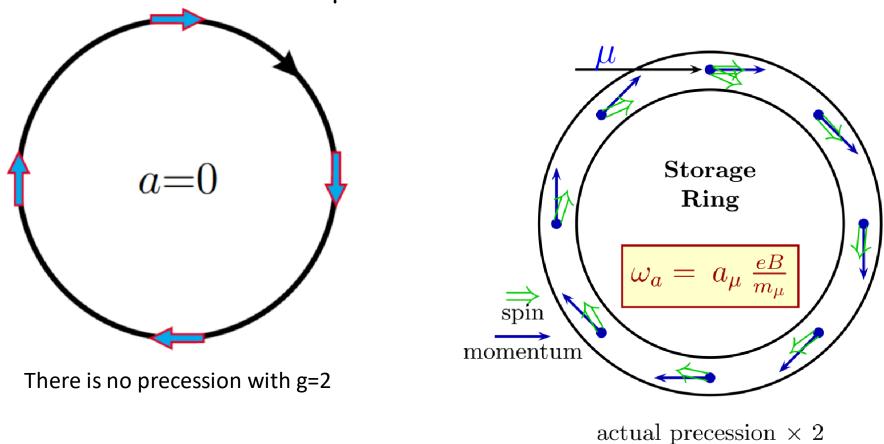
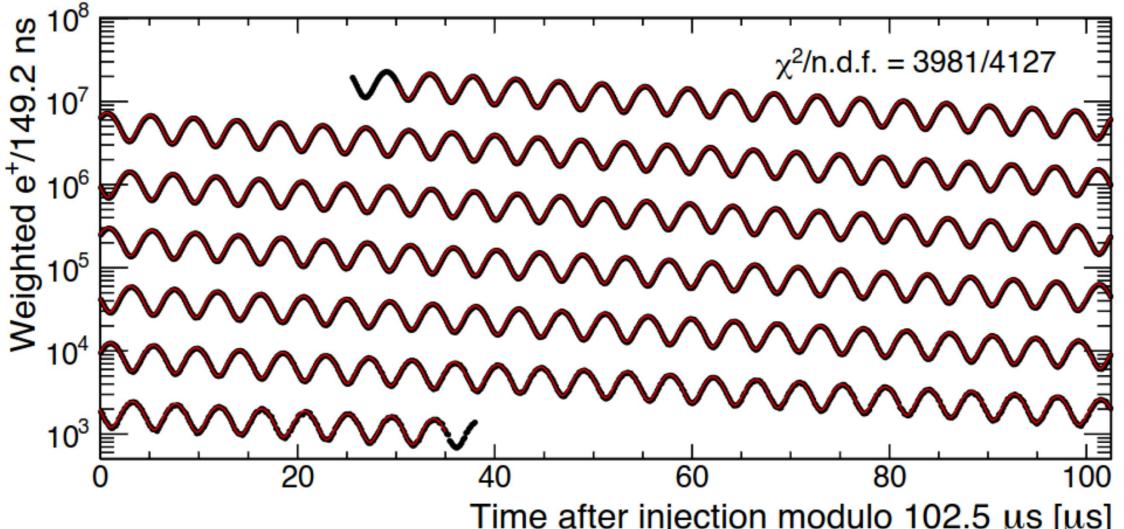


Fig. 3. Spin precession in the g-2 ring ($\sim 12^{\circ}/\text{circle}$).

The a_u measurement @ FNAL (Muon g-2 Coll.'23)



Time after injection modulo 102.5 µs [µs]

The a_µ measurement (Muon g-2 Coll.'23)

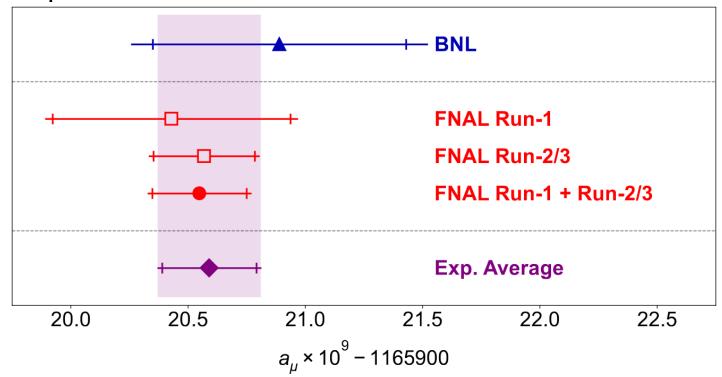
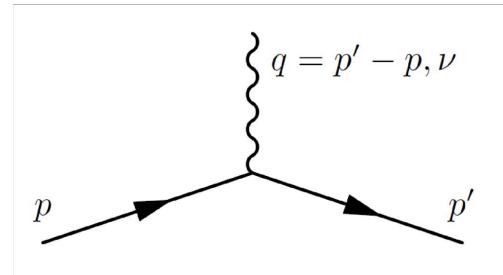


FIG. 3. Experimental values of a_{μ} from BNL E821 [8], our Run-1 result [1], this measurement, the combined Fermilab result, and the new experimental average. The inner tick marks indicate the statistical contribution to the total uncertainties.

White Paper'20, Snowmass document and refs. therein

The SM



Dirac equation implies:

$$\bar{u}(p')\gamma_{\nu}u(p)$$
$$g=2$$

$$q = p' - p, \nu$$

$$p$$

$$\bar{u}(p')\left(F_1(q^2)\gamma_{\nu}+i\frac{F_2(q^2)[\gamma_{\nu},\gamma_{\rho}]q_{\rho}}{4m}\right)u(p)$$

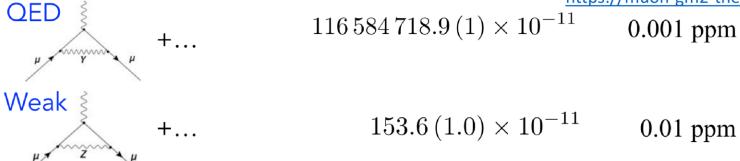
$$a = F_2(q^2 = 0) = \frac{g-2}{2}$$
 Quantum correction

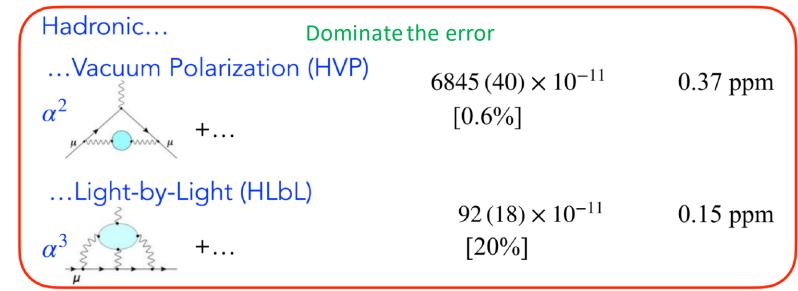
Muon g-2 Theory Initiative

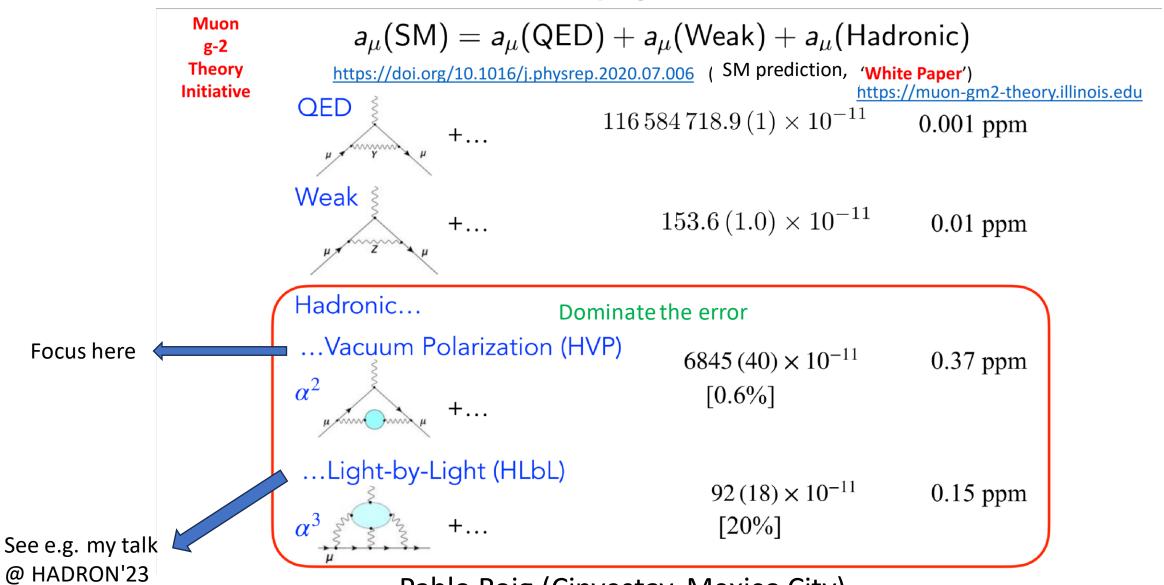
$$a_{\mu}(\mathsf{SM}) = a_{\mu}(\mathsf{QED}) + a_{\mu}(\mathsf{Weak}) + a_{\mu}(\mathsf{Hadronic})$$

https://doi.org/10.1016/j.physrep.2020.07.006 (SM prediction, 'White Paper')

https://muon-gm2-theory.illinois.edu



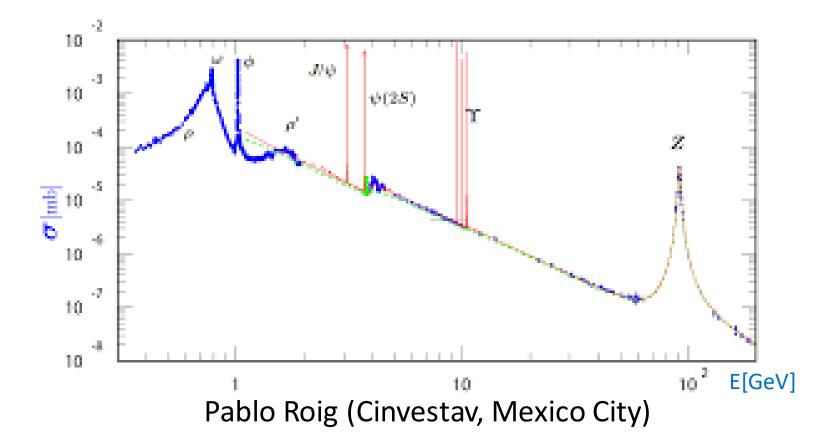




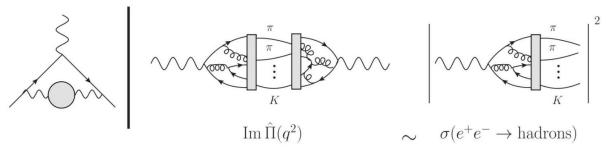
Pablo Roig (Cinvestav, Mexico City)
https://agenda.infn.it/event/33110/contributions/198273/attachments/106048/150321/Presentaci%C3%B3n3.pptx

White Paper'20, Snowmass document and refs. therein

$$a_{\mu}^{HVP,LO} = \frac{1}{4\pi^3} \int_{s_{thr}}^{\infty} ds \, K(s) \sigma_{e^-e^+ \to hadrons}^0(s) \quad \text{Both K \& σ go as 1/s enhancing low-E contributions}$$

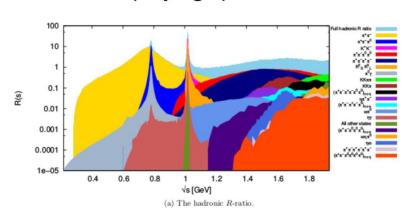


• Nature has solved QCD; use via the optical and Cauchy's th. to get $\hat{\Pi}(-Q^2)$

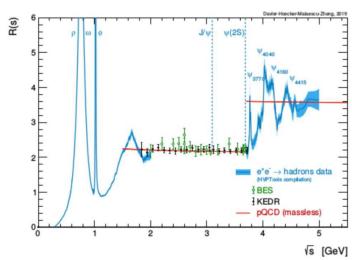


$$\int d^{\mathbf{4}} x e^{iq \cdot x} \langle 0 | T\{j^{\mu}(x)j^{\nu}(0)\} | 0 \rangle = i(q^{\mathbf{2}} g^{\mu\nu} - q^{\mu} q^{\nu}) \hat{\Pi}(q^{\mathbf{2}}) \leftarrow \hat{\Pi}(0)$$

ullet Oversimplifying: precise measurements for $e^+e^-
ightarrow \mathrm{hadrons}$ or the R-ratio

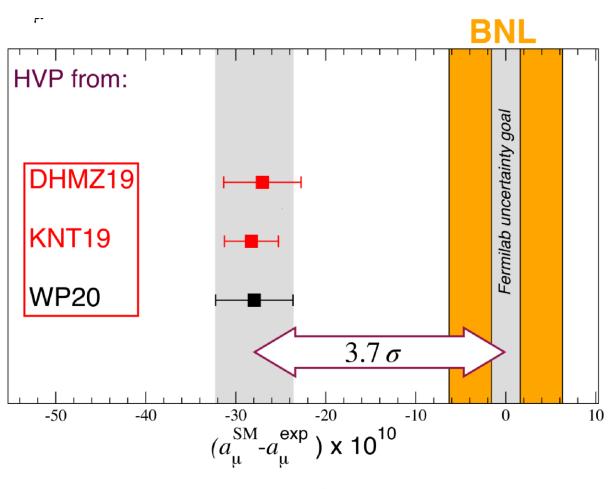


Figs in KNT'18/DHMZ'19 (left/right)

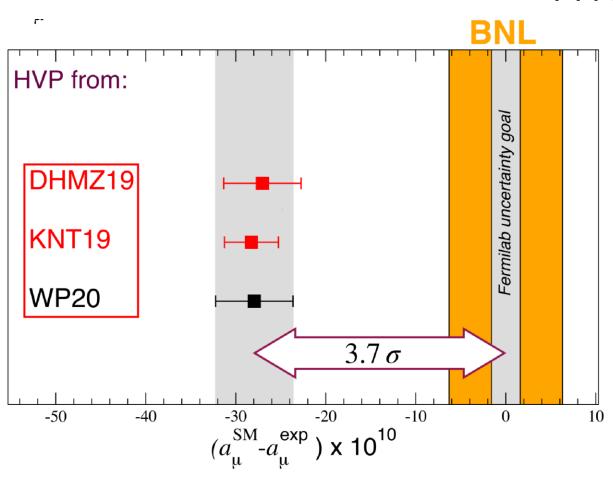


 $R = rac{\sigma^{(0)}(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$

Pablo Roig (Cinvestav, Mexico City)



Davier-Höcker-Malaescu-Zhang'19 & Keshavarzi-Nomura-Teubner'19 drive the White Paper'20 combination



Davier-Höcker-Malaescu-Zhang'19 & Keshavarzi-Nomura-Teubner'19 drive the White Paper'20 combination

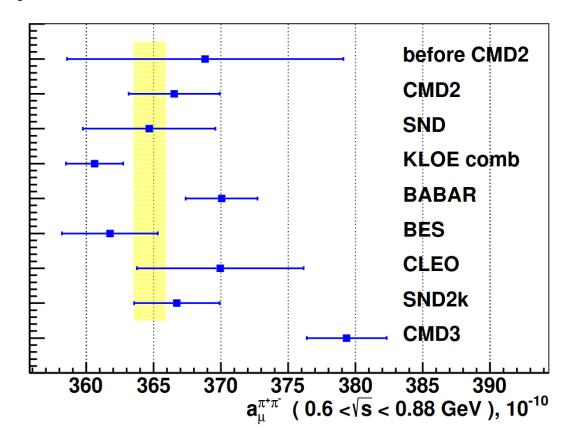


Figure 36: The $\pi^+\pi^-(\gamma)$ contribution to the $a_\mu^{had,LO}$ from the energy range $0.6 < \sqrt{s} < 0.88$ GeV obtained from the CMD-3 data and the results of the other experiments.

Miranda-Roig'20

$$a_{\mu}^{HVP,LO}=rac{1}{4\pi^3}\int_{s_{th}}^{\infty}ds\,K(s)\sigma_{e^-e^+
ightarrow hadrons}^0(s)$$
 Both K & σ go as 1/s enhancing low-E contributions

Miranda-Roig'20

$$a_{\mu}^{HVP,LO} = \frac{1}{4\pi^3} \int_{s_{thr}}^{\infty} ds \, K(s) \sigma_{e^-e^+ \to hadrons}^0(s) \quad \text{Both K \& σ go as 1/s enhancing low-E contributions}$$
(Alemany, Davier, Höcker '97)

Alternative evaluation possible using semileptonic tau decay data, specifically 2π (4π) channel. Requires isospin breaking (IB).

$$\sigma_{\pi\pi}^{0} = \left[\frac{K_{\sigma}(s)}{K_{\Gamma}(s)} \frac{d\Gamma_{\pi\pi[\gamma]}}{ds} \right] \frac{R_{IB}(s)}{S_{EW}},$$

Miranda-Roig'20

$$a_{\mu}^{HVP,LO} = \frac{1}{4\pi^3} \int_{s_{thr}}^{\infty} ds \, K(s) \sigma_{e^-e^+ \to hadrons}^0(s) \quad \text{Both K \& σ go as 1/s enhancing low-E contributions}$$
(Alemany, Davier, Höcker '97)

Alternative evaluation possible using semileptonic tau decay data, specifically 2π (4π) channel. Requires isospin breaking (IB).

$$\sigma_{\pi\pi}^{0} = \underbrace{\begin{bmatrix} K_{\sigma}(s) & d\Gamma_{\pi\pi[\gamma]} \\ K_{\Gamma}(s) & ds \end{bmatrix}}_{K_{\Gamma}(s)} \underbrace{\begin{bmatrix} R_{IB}(s) \\ S_{EW} \end{bmatrix}}_{K_{\Gamma}(s)}$$

Kinematics & global cts.

Measurement

Short-distance EW RadCor

Miranda-Roig'20

$$a_{\mu}^{HVP,LO} = \frac{1}{4\pi^3} \int_{s_{thr}}^{\infty} ds \, K(s) \sigma_{e^-e^+ \to hadrons}^0(s) \quad \text{Both K \& σ go as 1/s enhancing low-E contributions}$$
(Alemany, Davier, Höcker '97)

Alternative evaluation possible using semileptonic tau decay data, specifically 2π (4π) channel. Requires isospin breaking (IB).

$$\sigma_{\pi\pi}^{0} = \left[\underbrace{\frac{K_{\sigma}(s)}{K_{\Gamma}(s)}}^{d\Gamma_{\pi\pi[\gamma]}}\right] \frac{R_{IB}(s)}{S_{EW}}, \qquad R_{IB}(s) = \frac{FSR(s)}{G_{EM}(s)} \frac{\beta_{\pi^{+}\pi^{-}}^{3}}{\beta_{\pi^{+}\pi^{0}}^{3}} \left|\frac{F_{V}(s)}{f_{+}(s)}\right|^{2}$$

Kinematics & global cts.

Measurement

Short-distance EW RadCor

Miranda-Roig'20

$$a_{\mu}^{HVP,LO} = \frac{1}{4\pi^3} \int_{s_{thr}}^{\infty} ds \, K(s) \sigma_{e^-e^+ \to hadrons}^0(s) \quad \text{Both K \& σ go as 1/s enhancing low-E contributions}$$
(Alemany, Davier, Höcker '97)

Alternative evaluation possible using semileptonic tau decay data, specifically 2π (4π) channel. Requires isospin breaking (IB).

$$\sigma_{\pi\pi}^0 = \underbrace{\begin{bmatrix} K_{\sigma}(s) & d\Gamma_{\pi\pi[\gamma]} \\ K_{\Gamma}(s) & ds \end{bmatrix}}_{K_{IB}(s)} \underbrace{\begin{bmatrix} R_{IB}(s) \\ S_{EW} \end{bmatrix}}_{S_{EW}},$$
 Final-state Rad
$$R_{IB}(s) = \underbrace{\begin{bmatrix} FSR(s) & \beta_{\pi^+\pi^-}^3 \\ G_{EM}(s) & \beta_{\pi^+\pi^0}^3 \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-}^3 \\ G_{EM}(s) & \beta_{\pi^+\pi^0}^3 \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-}^3 \\ G_{EM}(s) & \beta_{\pi^+\pi^0}^3 \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-}^3 \\ G_{EM}(s) & \beta_{\pi^+\pi^0}^3 \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-}^3 \\ G_{EM}(s) & \beta_{\pi^+\pi^0}^3 \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-}^3 \\ G_{EM}(s) & \beta_{\pi^+\pi^0}^3 \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^0} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^0} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^0} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^0} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^0} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Kinematics} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ G_{E$$

& global cts.

Miranda-Roig'20

$$a_{\mu}^{HVP,LO} = \frac{1}{4\pi^3} \int_{s_{thr}}^{\infty} ds \, K(s) \sigma_{e^-e^+ \to hadrons}^0(s) \quad \text{Both K \& σ go as 1/s enhancing low-E contributions}$$

(Alemany, Davier, Höcker '97)

Alternative evaluation possible using semileptonic tau decay data, specifically 2π (4π) channel. Requires isospin breaking (IB).

$$\sigma_{\pi\pi}^0 = \underbrace{\begin{bmatrix} K_{\sigma}(s) & d\Gamma_{\pi\pi[\gamma]} \\ K_{\Gamma}(s) & ds \end{bmatrix}}_{K_{IB}(s)} \underbrace{\begin{bmatrix} R_{IB}(s) \\ S_{EW} \end{bmatrix}}_{R_{IB}(s)} + \underbrace{\begin{bmatrix} FSR(s) & \beta_{\pi^+\pi^-} \\ G_{EM}(s) & \beta_{\pi^+\pi^0} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^0} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^0} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^0} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^0} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^0} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^0} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^0} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^0} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV(s) & \beta_{\pi^+\pi^-} \end{bmatrix}}_{Final\text{-state Rad}} \underbrace{\begin{bmatrix} FV(s) & \beta_{\pi^+\pi^-} \\ FV$$

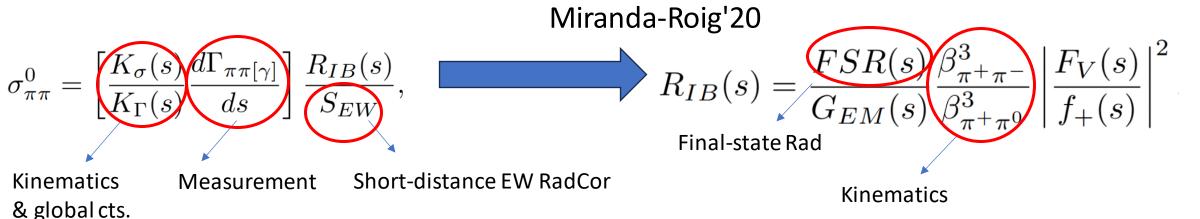
Kinematics & global cts. Measurement

Short-distance EW RadCor

Kinematics

(Cirigliano-Ecker-Neufeld '01)

The ratio of neutral to charged current di-pion form factors (F_{V}/f_{+}) and the long-distance em RadCor (G_{EM}) are challenging.

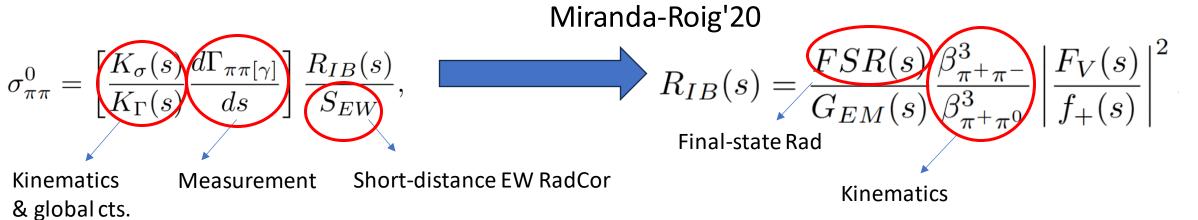


The ratio of neutral to charged current di-pion form factors (F_{V}/f_{+}) and the long-distance em RadCor (G_{EM}) are challenging.

- The S_{EW} contribution $S_{EW} = 1.0201$ gives $\Delta a_{\mu}^{HVP,LO} = -103.1 \times 10^{-11}$, consistent with earlier determinations (using slightly different values of S_{EW}) and with a negligible error.
- The phase space (PS) correction induces $\Delta a_{\mu}^{HVP,LO} = -74.5 \times 10^{-11}$ (trivially in agreement with previous computations), again with tiny uncertainties.
- The final state radiation (FSR, which is formally NLO) yields $\Delta a_{\mu}^{HVP,LO} = +45.5(4.6) \times 10^{-11}$, in accord with ref. [67] (its value was not quoted in ref. [62]).

Pablo Roig (Cinvestav, Mexico City)

[62] Cirigliano-Ecker-Neufeld'02[67] Davier-...-López Castro-...-Toledo et al.'09

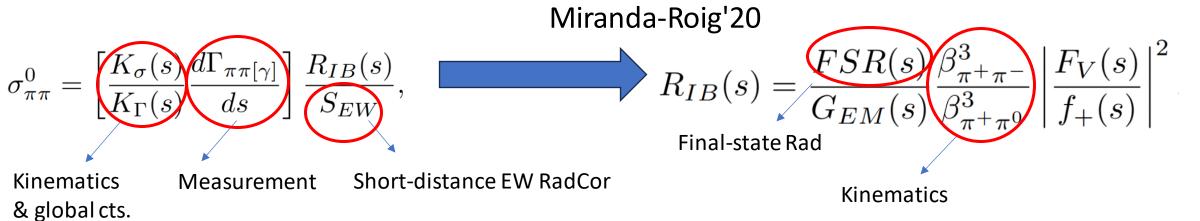


The ratio of neutral to charged current di-pion form factors (F_V/f_+) and the long-distance em RadCor (G_{EM}) are challenging.

This correction was $+(61 \pm 26 \pm 3) \cdot 10^{-11}$ in [62] and $+(86 \pm 32 \pm 7) \cdot 10^{-11}$ in [67], in agreement (despite the big errors) with our FF2 and FF1 determinations, respectively.

$$\Delta a_{\mu}^{HVP,LO} = +40.9(48.9) \times 10^{-11} \quad \Delta a_{\mu}^{HVP,LO} = +77.6(24.0) \times 10^{-11}$$

[62] Cirigliano-Ecker-Neufeld'02[67] Davier-...-López Castro-...-Toledo et al.'09

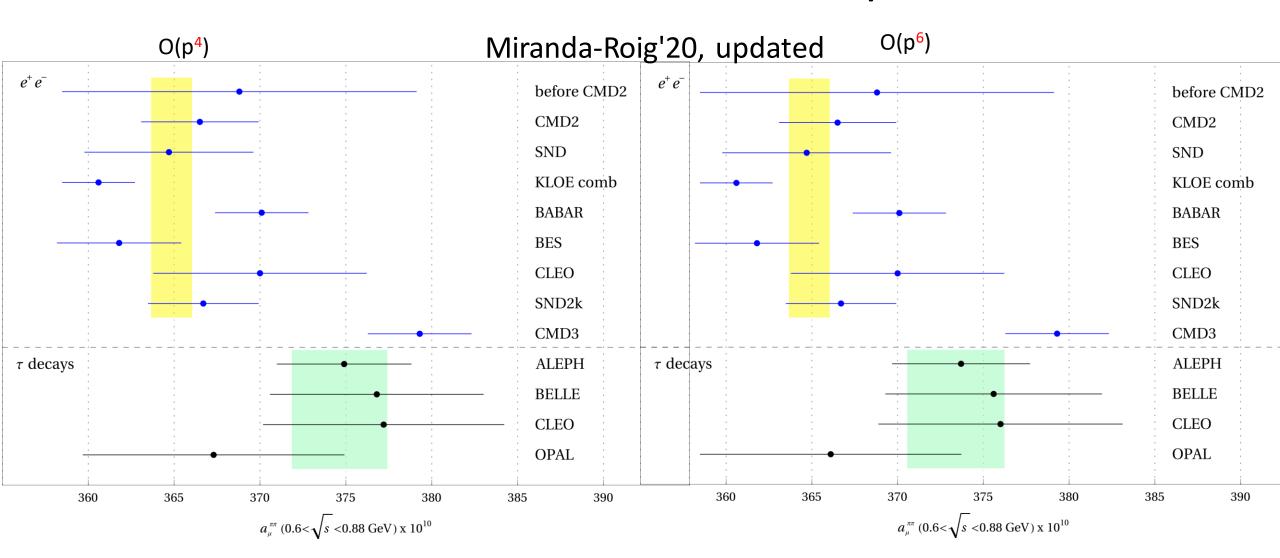


The ratio of neutral to charged current di-pion form factors (F_V/f_+) and the long-distance em RadCor (G_{EM}) are challenging.

• Finally, we get $(-15.9^{+5.7}_{-16.0}) \cdot 10^{-11}$ $((-76 \pm 46) \cdot 10^{-11})$ for the $G_{EM}(s)$ correction at $\mathcal{O}(p^4)$ $(\mathcal{O}(p^6))$, versus $-10 \cdot 10^{-11}$ in [62] and $-37 \cdot 10^{-11}$ in [65] (from the last two results, $(-19.2 \pm 9.0) \cdot 10^{-11}$ was used in [67]). ($\omega \to \pi^0 \gamma$ contribution was subtracted from [65]'s)

[62] Cirigliano-Ecker-Neufeld'02 [67] Davier-...-López Castro-...-Toledo et al.'09

[65] Florez Baez- Flores Tlalpa-López Castro-Toledo '06 Consistent results found in Esparza-Arellano—Rojas—Toledo'23



Pablo Roig (Cinvestav, Mexico City)

The SM: Window quantities

Blum, Boyle, Gülpers, Izubuchi, Jin, Jung, Jüttner, Lehner, Portelli, Tsang (RBC, UKQCD), '18

$$\Theta_{\mathrm{SD}}(t) = 1 - \Theta(t, t_0, \Delta),$$

$$\Theta_{\mathrm{win}}(t) = \Theta(t, t_0, \Delta) - \Theta(t, t_1, \Delta),$$

$$\Theta_{\mathrm{LD}}(t) = \Theta(t, t_1, \Delta), \qquad t_0 = 0.4 \,\mathrm{fm}, \qquad t_1 = 1.0 \,\mathrm{fm}, \qquad \Delta = 0.15 \,\mathrm{fm}.$$

$$\Theta(t, t', \Delta) = \frac{1}{2} \left(1 + \tanh \frac{t - t'}{\Delta} \right),$$

The SM: Window quantities

Colangelo, El-Khadra, Hoferichter, Keshavarzi, Lehner, Stoffer, Teubner'22

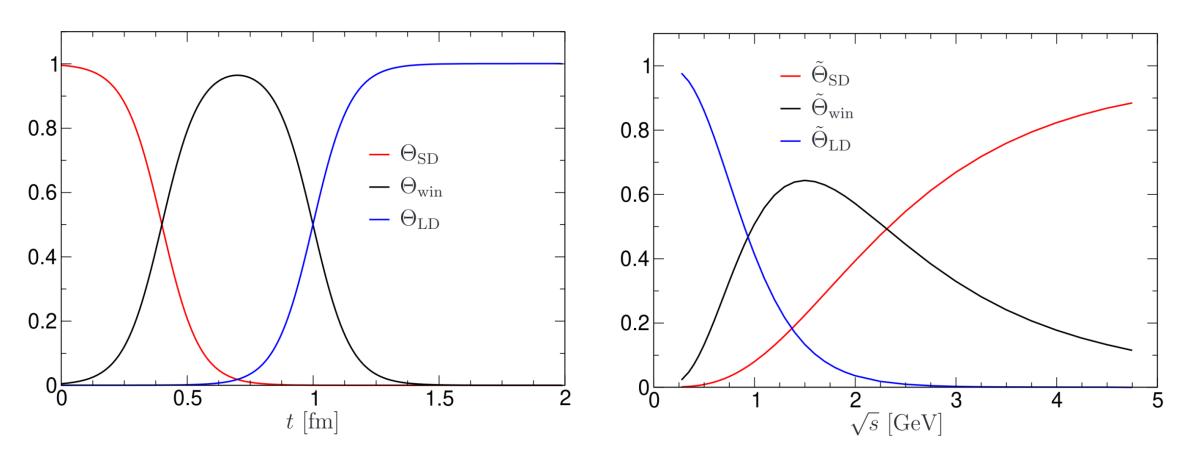
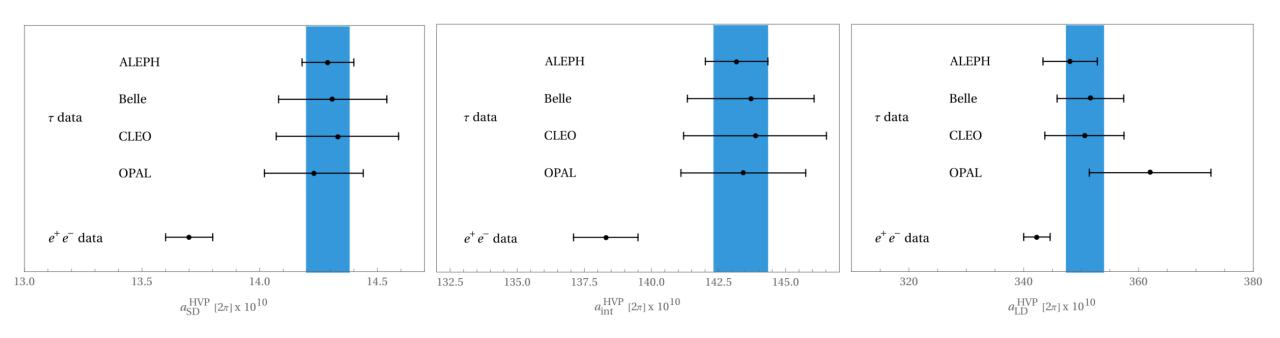


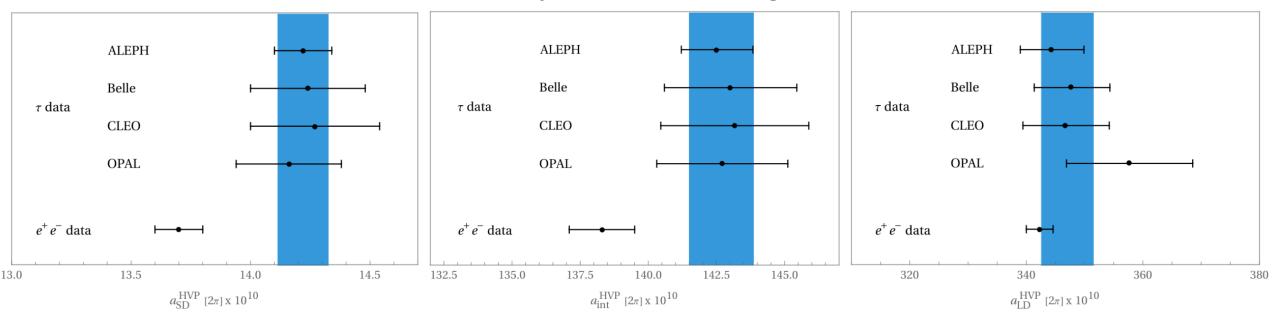
Figure 1: Short-distance, intermediate, and long-distance weight functions in Euclidean time (left), and their correspondence in center-of-mass energy (right).

Masjuan-Miranda-Roig'23



Window quantities @O(p⁴) below 1 GeV. Blue band is τ -data average. e^+e^- number taken from Colangelo et al.'22

Masjuan-Miranda-Roig'23



Window quantities @O(p⁶) below 1 GeV. Blue band is τ -data average. e^+e^- number taken from Colangelo et al.'22

Masjuan-Miranda-Roig'23

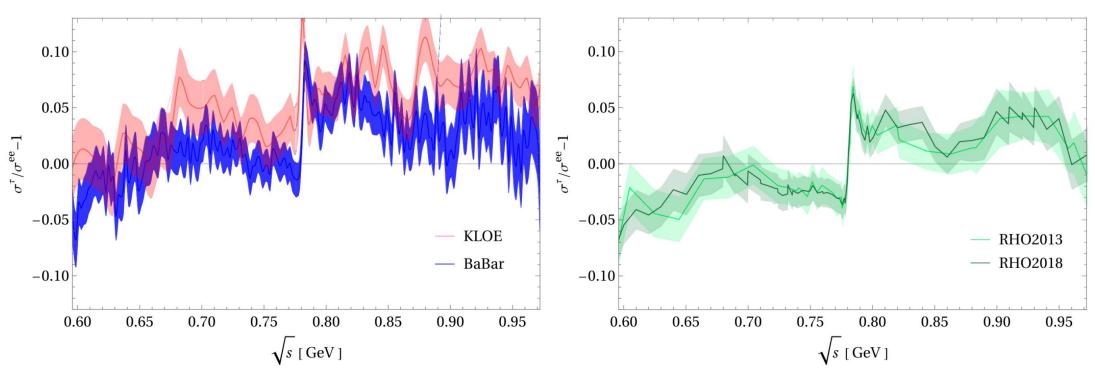
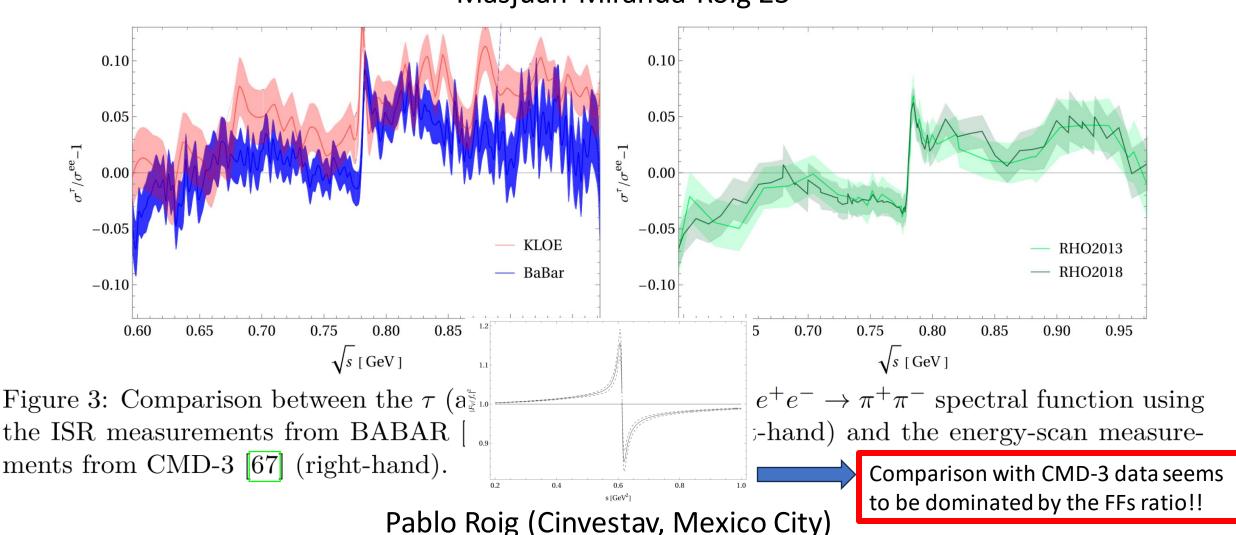


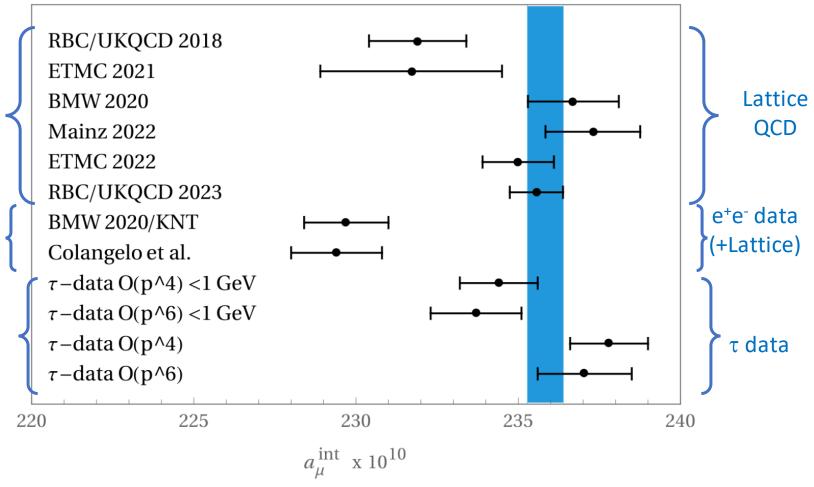
Figure 3: Comparison between the τ (after IB corrections) and $e^+e^- \to \pi^+\pi^-$ spectral function using the ISR measurements from BABAR [78] and KLOE [76] (left-hand) and the energy-scan measurements from CMD-3 [67] (right-hand).

Masjuan-Miranda-Roig'23

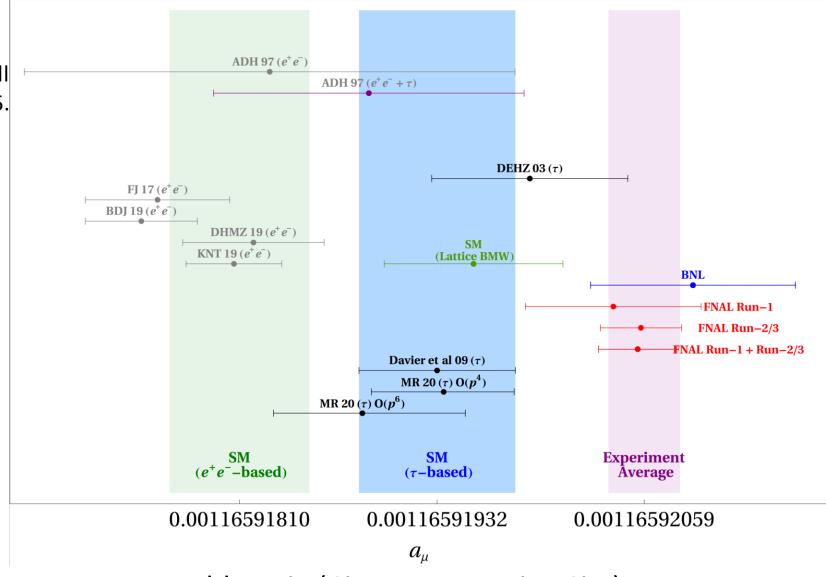


Masjuan-Miranda-Roig'23

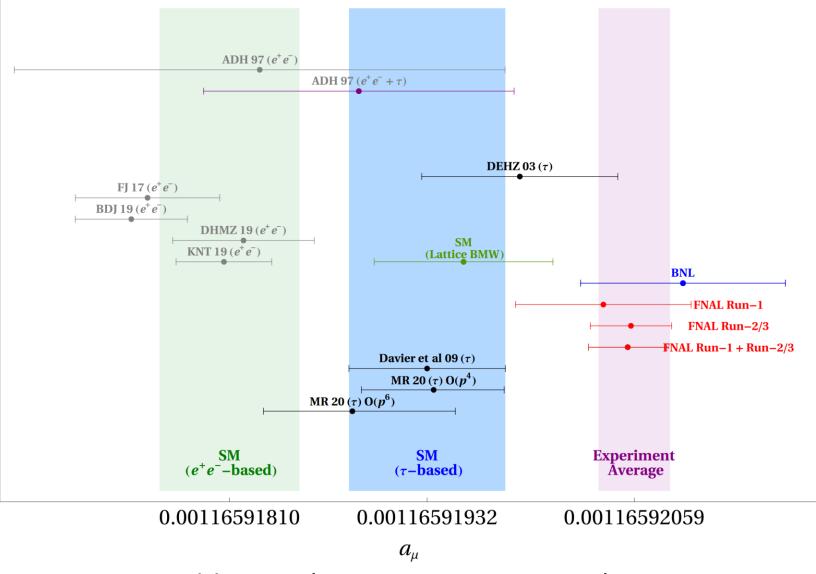
Comparison of the total intermediate window contribution to $a_{\mu}^{\ \ HVP,LO}$. Blue band corresponds to lattice average excluding first two results.



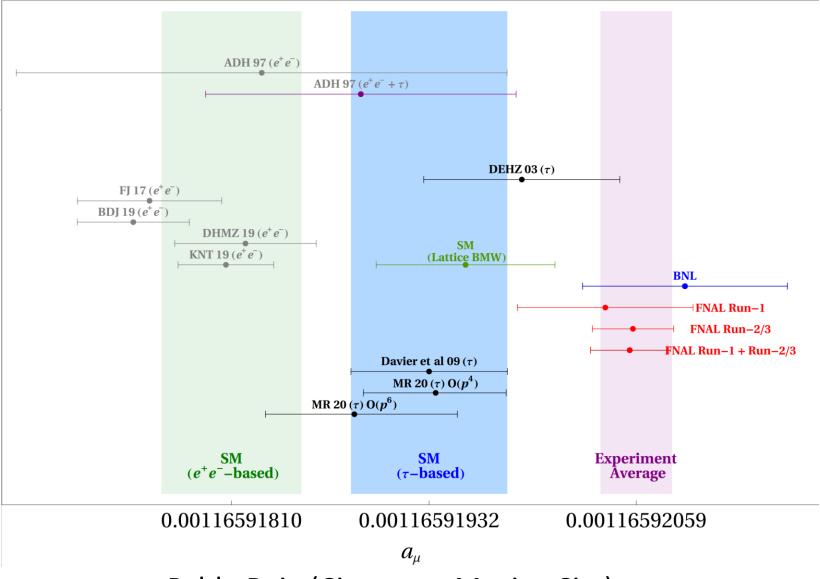
- Experimental result seems extremely reliable. Uncertainty will decrease by ~ ½ in 2025.



- Experimental result seems extremely reliable. Uncertainty will decrease by ~ ½ in 2025.
- An alternative (to BMW) competitive lattice evaluation is urgently needed.



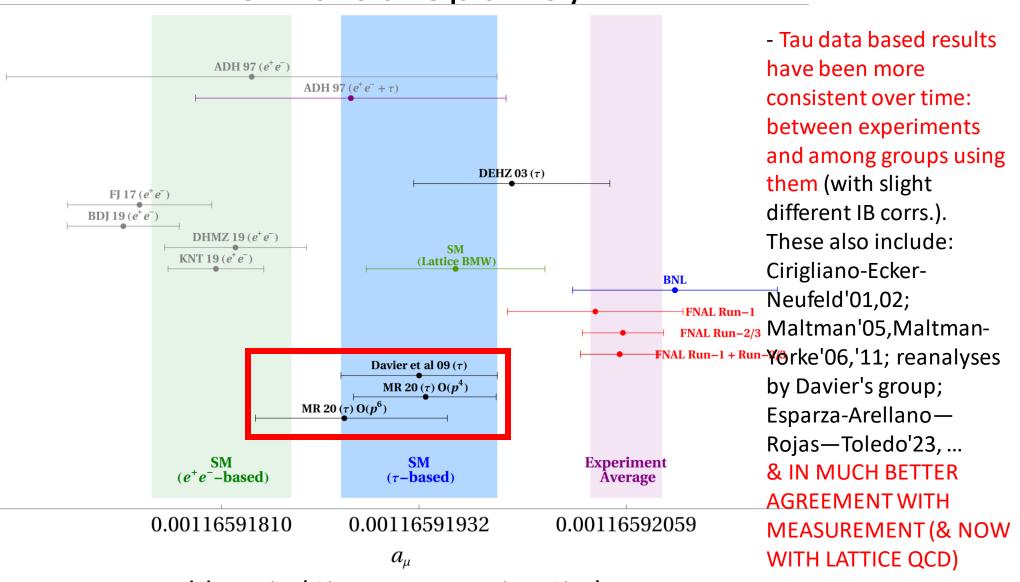
- Experimental result seems extremely reliable. Uncertainty will decrease by ~ ½ in 2025.
- An alternative (to BMW) competitive lattice evaluation is urgently needed.
- e⁺e⁻ data are puzzling.
 The old BaBar vs. KLOE
 discrepancy is enhanced
 with the recent CMD-3
 data. We will see with
 new measurements...



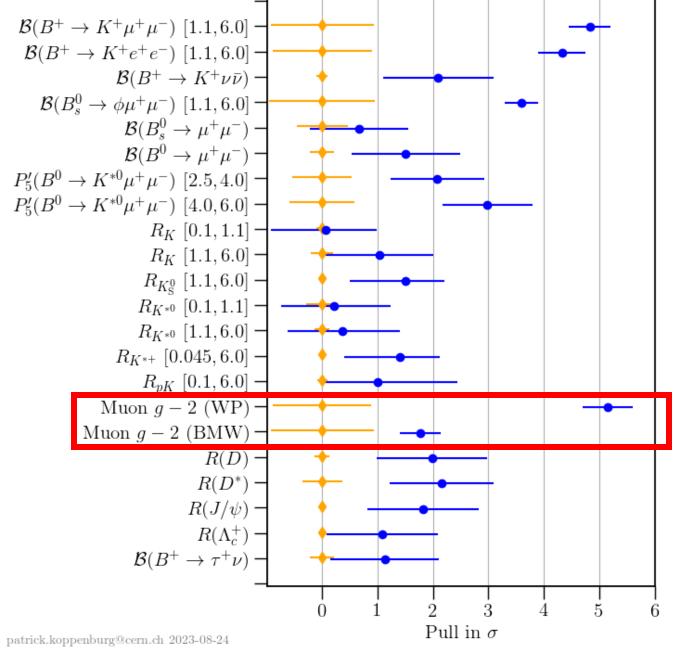
- Experimental result seems extremely reliable. Uncertainty will decrease by ~ ½ in 2025.
- An alternative (to BMW) competitive lattice evaluation is urgently needed.
- e⁺e⁻ data are puzzling. The old BaBar vs. KLOE discrepancy is enhanced with the recent CMD-3 data. We will see with new measurements...



- Experimental result seems extremely reliable. Uncertainty will decrease by ~ ½ in 2025.
- An alternative (to BMW) competitive lattice evaluation is urgently needed.
- e⁺e⁻ data are puzzling. The old BaBar vs. KLOE discrepancy is enhanced with the recent CMD-3 data. We will see with new measurements...



ANOMALIES & THEIR PULL



Outlook (Largely from Theory Initiatitive web)

- This event coincides with the VI plenary workshop of the Muon g-2 Theory Initiative in Bern, http://muong-2.itp.unibe.ch/.
- A new analysis of the cross section based on the **full statistics** collected by the **BABAR** experiment is underway.
- The **SND** 2020 analysis of was based on 10% of the available statistics. An **update** using the full data set is in preparation.
- Improved BES III data between 2&5 GeV will be published.
- The largest KLOE data set ('04-'05) will be analyzed. Its statistics is 7 times larger than their published results together.
- Radiative corrections and Monte Carlo generators, in particular for the crucial di-pion channel, are being scrutinized. This includes the calculation and implementation of higher-order and structure-dependent corrections.
- New lattice-QCD results for the total HVP contribution and the long-distance window observable with a precision comparable to BMW and the data-driven approach will be available by 2025.
- Other window quantities and related observables will be analyzed.
- **Belle-II** will soon release their 3pi analysis & by 2025 the $\pi\pi$ one.
- The **MUonE** experiment at CERN will provide an independent and competitive method to compute the HVP contribution to the muon g-2, based on the high-precision measurement of the shape of the differential cross section of muon-electron elastic scattering as a function of the space-like squared momentum transfer. It would take data from 2026 on.
- **Lattice QCD** will make substantial progress in the evaluation of the **IB corrections** needed to use tau data for the HVP contribution.
- **Belle-II** shall improve the measurement of di-pion **tau** decays.

- ...