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Abstract. We provide a brief introduction to string theory. We review some basic aspects
of the theory as the quantization of the bosonic and the supersymmetric string. D-branes are
studied in some detail as well as some aspects of T-duality. The course is intended for students
with some previous knowledge in Quantum Field Theory and General Relativity.

1. Introduction
String theory is our best candidate for a model beyond the Standard Model (SM) in the sense
that it provides a quantum mechanically well-defined theory underlying gauge and gravitational
interactions. As a theory of quantum gravity, it has the potential to answer questions so far
unknown as the nature of space-time and the black hole information paradox. As a gauge the-
ory, it has the potential to unify all forces. More over, it offers a way to relate aspects of gauge
theories with gravity and vice versa.

The basic feature of string theory proposes that elementary particles are not point-like, but
rather they are small 1-dimensional extended objects. By this simple fact, we shall see that,
every symmetry we know is relevant in the real world, can be deduced from the supersymmetric
quantum string. More over, we shall review how important aspects of the non-perturbative
physics of strings are easily achieved.

From the phenomenological point of view, we are interested in constructing a theory which
goes far beyond the Standard Model of Particles (SM) since there are basic questions that can
not be answered in the context of quantum field theories. For instance, how is gravity coupled
to other forces at the quantum level? Is there an unification of all forces? Why are there three
families in the SM? How is supersymmetry broken? Why are there so many free parameters
in the SM and even more in the Supersymmetric Standard Model? Why is the cosmological
constant so small? Why and what is the dark energy? The presence of singularities, as the
Big Bang and the black hole singularity, tells us that the theory breaks down in such limits.
What is the extension to General Relativity at the quantum level? and so on. All these ques-
tions might be answered in the context of string theory and for this reason, it is worth to study it.

String theory is however, a theory under construction, meaning that we do not know the basic
physical principles underlying it. Although a lot of progress has been done in the past years,
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still there is not a concrete prediction so far. This is a crucial point we must face in the years
to come. Meanwhile, let us begin studying the basics of this beautiful model called string theory.

Our review is organized as follows. In section 1 we study the bosonic string and its quanti-
zation. Section 2 is devoted to the superstring. Special emphasis is given to the construction of
the spectrum of Type IIA and Type IIB theories. In section 4 we concentrate on the description
of T-duality and the physics of supersymmetric D-branes. At the end, we briefly comment on
some recent studies in string theory. References are restricted to some text books on string
theory [1]-[9] and to some review articles written by one of the authors [11]-[12] . We apologize
for not given an extensive reference list about the hundreds of excellent reviews on string theory.
However, we encourage the interested reader to consult the bibliography reported in the text
books we refer to.

2. The Bosonic String
It is well known that the Lagrangian of a relativistic point particle is proportional to the
corresponding invariant length, the world-line described by the particle while moving in the
space-time. Our first attempt to describe the dynamics of a string is to construct its Lagrangian,
which based on the relativistic particle case, we expect it to be proportional to the invariant
area described by the string as it moves in a D-dimensional space-time2. This is called the string
world-sheet and it is a 2-dimensional object with an induced metric denoted by Gαβ. The action
is given by

S = −T
∫
d2σ

√
−det(Gαβ), (1)

where the world-sheet is parametrized by σ1 = σ (a space-like coordinate), and σ0 = τ (a
time-like coordinate). After some direct calculations, one can see that the above action can be
written in terms of the D-dimensional coordinates XM which characterize the position of the
world-sheet in the space-time3 This is the Nambu-Goto action and it is given by

SNG = −T
∫
dσdτ

√(
Ẋ ·X ′

)2
+ Ẋ2X ′2, (2)

where

ẊM =
∂XM

∂τ
X ′M =

∂XM

∂σ
. (3)

However this action is difficult to quantize. An easiest way to do it, requires an action without
the square root of the field derivatives4. The desired action is known as the Polyakov action and
it is equivalent to the Nambu-Goto action at the classical level in the sense that it give rise to
the same equations of motion for the fields XM . The Polyakov action is

SP = −1
2

∫
d2σ
√
−hhαβ∂αX · ∂βX, (4)

where h = det(hαβ), hαβ is the induced metric on the world-sheet, and α and β runs on 0 and
1. This action posses the following symmetries.
2 Notice that we start from a space-time with an arbitrary dimensionality D = d+1. One of the most interesting
things of string theory, is that it is possible to fix such number. This constitutes an exceptional case in theoretical
models as Quantum Field Theory, where the number of dimensions are fixed by hand. In String Theory, such
number is fixed by the theory itself under certain circumstance we shall comment later on.
3 This is formally known as a sigma model.
4 Here we refer to the path integral method of quantization. In this mini-course we shall take the canonical
quantization procedure. However, using the Polyakov action represents as well an easy way to realize the full set
of symmetries involved in the bosonic string.



(i) Space-time Poincaré symmetry. The action is invariant under Poincaré transformations. It
is a global symmetry.

(ii) Reparametrizations. This is a non-trivial gauge symmetry and represent a large extra
symmetry on the world sheet. Essentially tells us that we can select different coordinate
frames on the world-sheet.

(iii) Weyl transformation. This symmetry represents the invariance of the action under rescaling
of the metric. By transforming the induced metric hαβ to Ω2hαβ the equations of motion
are the same.

Since we have three constraints given by these symmetries, it is possible to fix the corresponding
three parameters in hαβ. By reparametrization invariance we can choose two components of
hαβ, such that only one component remains free. But Weyl invariance fixes it. Therefore, the
induced metric hαβ is fixed as hαβ = ηαβ, where ηαβ is the flat 2-dimensional Minkowskian
metric. With this gauge, the Polyakov action reduces to

S =
T

2

∫
d2σ(Ẋ2 −X ′2). (5)

The corresponding equation of motion with respect to the fields XM , up to some boundary
conditions, are given by

∂α∂
αX = 0, (6)

which is a differential wave equation. Their solutions are then a linear combination of linear
terms in τ and σ and periodic functions. Notice that such solutions represents undulating modes
of the string. Later on we shall see that such modes can be quantized, and they will represent
different massive and massless fields. If some of the massless fields have the properties of already
known fields in the context of quantum field theory, we shall conclude that quantum oscillations
of a string produces the particles we are familiar with. For instance, let us say that we find
that one of the modes is massless, transforms under the Lorentz group as a vector boson, has a
U(1) internal symmetry and has a spin 1. We would assure that such mode is indeed a photon.
Things are nevertheless, a little bit more complicated, but we shall see actually that some modes
have all the desired properties with respect to the particles we already know.

Fixing the gauge as before, implies that each component of the energy-momentum tensor
vanishes,

Tαβ = ∂αX∂βX −
1
2
hαβh

γδ∂γX ∂δX = 0, (7)

and by using the flat induced metric, the components read

Tαβ
.=

 1
2

(
Ẋ2 +X ′2

)
ẊX ′

ẊX ′ 1
2

(
Ẋ2 +X ′2

)
.

 = 0 (8)

This expression has a geometrical interpretation. The gauge selection we have performed implies
that the coordinate framework on the world-sheet is orthogonal. This allows us to choose a
particular useful system of coordinates: the light-cone coordinates. We shall return to this
selection later on.

2.1. Boundary Conditions and D-branes
The stationary points are chosen by demanding the invariance of the action under the shifts
XM → XM + δXM . The variation of the action reads

δS =
T

2

∫
d2σ(∂α∂αXM )δXM − T

∫
dτ
[
X ′MδX

M |σ=π −X ′MδXM |σ=0

]
, (9)



Table 1. Boundary conditions on the bosonic string.

Type Boundary Condition

Closed XM (σ, τ) = XM (σ + π, τ)
Open/Neumann X ′M = 0, σ = 0, π
Open/Dirichlet δXM = 0, σ = 0, π

from which, the vanishing of the boundary terms leads to different conditions on the string (see
Table 1). Strings which endpoints are identified, are called closed strings, while open strings
presents two variations. For Neumann boundary conditions we can see that there is not mo-
mentum flowing away from the string endpoints. These strings are free to move over the whole
D-dimensional space-time, meaning that we can impose Nuemann conditions on all field coordi-
nates XM . We can also consider an open string with all its field coordinates fulfilling Dirichlet
boundary conditions. This means that each of the endpoints of the strings, are fixed on a point
in a D-dimensional space-time. Notice as well that such point is localized in time. Further anal-
ysis shows that this is indeed an instanton of the theory. However, let us consider the richest
case, in which we impose Dirichlet boundary conditions on some coordinates and Neumann on
others. Let us say that for M = 0, 1, . . . , p, XM satisfies Neumann boundary conditions, while
for M = p + 1, . . . , d, it satisfies Dirichlet conditions. Henceforth, the endpoints of the string
will be attached to move freely on a p + 1-dimensional hyperplane. Notice that they can not
leave this object unless their endpoints coincide. If this happens, the open string becomes closed
and it is free to escape away from the D-brane. In this sense we say that D-branes emit closed
strings5.

It turns out that such objects are very important in string theory. They are named Dp-
branes: p- dimensional branes (generalization of membranes) on which the endpoints of an open
string are attached to. Orthogonal coordinates of the endpoints satisfy Dirichlet boundary con-
ditions (the ”D” of D-brane refers to Dirtichlet boundary conditions). For the bosonic case, it
is possible to have different Dp-branes of all dimensionalities, from p = −1 to p = d.

2.2. Solution to the Equations of Motion
We are now ready to explicitly show the solutions of the equations of motion. However, we shall
take a short-way. We are going to solve the equations of motion in a particular coordinate-frame
on the string world-sheet, known as the light-cone coordinates. The advantages of this selection
are that we shall arrive to the solutions in a faster and easier way. The price to pay is how-
ever, that we have lost covariance in our description of the string dynamics. Also, by selecting
this frame, one can check that there are two unphysical degrees of freedom, corresponding to
stretching and rotating a string. In a covariant formalism, one is able to arrive at the same
conclusion, but in a richer way, i.e., by analyzing the anomalies, ghosts fields and by using the
powerful conformal field theory in the string world-sheet.

The light-cone coordinates are given by σ± = τ ±σ, from which the equations of motion read

∂+∂−X
M = 0. (10)

5 We shall see that gravitons are associated to closed strings. Therefore, a D-brane emits and absorbs gravitons,
implying that these objects have mass and tension and mainly, that they are dynamical.



For the closed string, the corresponding solution can be written in terms of two waves by

XM (σ, τ) = XM
R (σ−) +XM

L (σ+), (11)

which represent left and right movers. The most general solution for the closed string given by

XM
R =

1
2
xM + α′pMσ− +

i

2
ls
∑ 1

n
αMn e

−2inσ− , (12)

XM
L =

1
2
xM + α′pMσ+ +

i

2
ls
∑ 1

n
α̃Mn e

−2inσ+
. (13)

SinceXM (σ, τ) is required to be real, the left and right moversXM
L andXM

R must be real function
as well. This implies that xM (center of mass) and pM (momentum of the center of mass) are also
real and in consequence, the modes of the string must obey that αM−n = (αMn )∗, α̃M−n = (α̃Mn )∗

for all n and where we have used αM0 =
√
α′/2 pM . Introducing XL and XR into the energy-

momentum tensor we obtain that

T−− = α′
∑

Lme
−2imσ− , T++ = α′

∑
L̃me

−2imσ+
, (14)

where the Fourier coefficients are actually the Virasoro generators given by

Lm =
1
2

∑
αm−nαn L̃m =

1
2

∑
α̃m−nα̃n. (15)

So the requirement of T++ = T−− = 0 is reflected in the fact that all the modes must vanish.
This constitutes a classical constraint for all modes, Lm = L̃m = 0. An interesting and special
case concerns the zero mode, since it offers a way to compute the mass associated to different
Fourier modes. Hence, for m = 0,

L0 + L̃0 =
1
2

(α2
0 + α2

0) +
∑
n6=0

(α−n · αn,+α̃−n · α̃n)

= α′pMpM +
∑
n6=0

(α−n · αn + α̃−n · α̃n). (16)

Since in a relativistic theory, p2 = −m2, we arrive at the mass expression for the closed string
modes,

M2 =
2
α′

∞∑
n=1

(α−n · αn + α̃n · α̃n). (17)

By thinking that a closed string is made of two open strings glued together, then it is easy to see
that the solution of the equations of motion and the expansion in Fourier modes, corresponds
to just one of the movers. Therefore, for the open string theory, the mass of the modes is given
by

M2 =
1
α

∞∑
n=1

α−n · αn, (18)

where the most general solution of the equations of motion is given by

XM (τ, σ) = xM +
α′

2
pMτ +

iα′

2

∑ 1
m
αMm e

−imτ cos(mσ). (19)



2.3. Canonical Quantization
Our next step consists in quantizing the vibrations modes of the string. We would like to explore
the possibility that some modes be representations of quantum fields. There are many ways to
quantize the string, being the most popular the covariant quantization. However, since we want
to study the quantum string features in a short way, we shall take the canonical quantization
procedure. Essentially, this consists in promoting the Fourier modes αn to operators which
satisfy the algebra6

[
αMm , α

N
n

]
=
[
α̃Mm , α̃

N
n

]
= ηMNδm+n,0,

[
αMm , α̃

N
n

]
= 0. (20)

Notice that this is the algebra that satisfies every rising and annihilator operator in the usual
quantum harmonic oscillator, meaning that each quantum mode, now promoted to be an op-
erator, creates or destroys quantum states. However, since now the modes are non-commuting
operators for m = 0, we must order the product appearing on the Virasoro generator operators.

Therefore, it is possible to order the products α−n · αn (and similarly for left movers) up to
the addition of a constant a. In this context, the mass term for the open string is written as

M2 =
1
α′

(∑
α−n · αn − a

)
, (21)

while for the closed string, it reads

M2 =
2
α′

( ∞∑
n=1

(α−n · αn + α̃−n · α̃n)− 2a

)
, (22)

where a is the zero point energy. Similarly as the quantum harmonic oscillator, the product of
a lowering and a rising operators denotes another operator called the number operator N given
by N =

∑
α−nαn for the left movers and Ñ =

∑
α̃−nα̃n for the right ones. In this way, the

normal ordening constant a cancels out for the difference
(
L0 − L̃0

)
| φ〉 = 0, which implies

N = Ñ . This is called the level-matching condition of the bosonic string.

The corresponding Hilbert space is constructed by acting with the modes αin on a vacuum
| Ω〉 annihilated by the lowering operators α−n and α̃−n. It is important to notice that, although
not explicitly shown in this notes, the use of the light-cone coordinates forces some coordinates
to be non-dynamical. For that reason, the index i in the operators modes runs over D−2 values.

Before constructing the quantum states, let us comment on the value of the ordering constant
a, appearing in the mass expressions for the string. The value of such constant can be computed
as follows. At first sight, it seems we are dwelling with a divergent quantity, since

a =
1
2

(D − 2)
∞∑
n=1

n. (23)

However this sum has an analytic continuation and it is computed by using the ζ-function, which
is defined as

ζ(s) =
∞∑
n=1

n−s. (24)

6 In the classical picture, the Fourier modes αn satisfy a Poincaré algebra.



Table 2. Closed string spectrum. For D = 26, the second state is masless.

State Level M2/α

| Ω〉L⊗ | Ω〉R N = Ñ = 0 −D−2
6

αi−1α̃
i
−1 | Ω〉L⊗ | Ω〉R N = Ñ =1 26−D

12

This complex function has as unique analytic continuation at s = −1, where it takes the value
ζ(−1) = −1/12. Therefore by comparison we obtain that,

a = −D − 2
24

. (25)

Quantum states are constructed by acting the rising operator modes and by restricting to
the level match conditions. This means that for every left mover operator, there must be the
corresponding right one. Therefore, there are an infinite tower of string states, generically given
by the application of rising operators on the closed vacuum | Ω〉L⊗ | Ω〉R or on the open vacuum
| Ω〉. As the reader might expect, one way to construct gauge bosons, is by considering open
strings.

2.4. The Bosonic String Spectrum
Let us firstly, consider the closed string spectrum shown in Table 2. The first state corresponds
to vanishing number operators, implying that such state is a tachyon, i.e., a quantum state
with negative squared mass. Observe that this not depend on the value of D. The presence
of tachyons, as it is now understood, reflects the fact that we are constructing a perturbative
theory on a false vacuum. This means that there are some variable which must run down to
a stable point on which the corresponding perturbative theory would not have tachyons in its
spectrum. Closed string tachyons have been considered in literature, mainly in cosmological
models.

The next state is given by a left and right number operators N = Ñ = 1. Its mass is then
(26−D)/12. It is a state with (D−2)2 degrees of freedom. However, since the theory is Lorentz
invariant, we expect that physical states belong to representations of the little group SO(D−2).
Recall that the little group is the subgroup of the Lorentz group which leaves invariant the D-
dimensional momentum of a particle. Therefore, only a massless state would have the necessary
degrees of freedom of a little group representation (a massive one would transform with respect
to the little group SO(D − 1)). This fixes completely the dimension number D to 26. Some
comments are in order: first, the above argument, although not formal, yields the same result
as the obtained by a covariant quantization7. Second, by requiring the theory to be Lorentz
invariant at the perturbative level, we have fixed the number of dimensions. These theories are
called critical8.

The critical dimension 26 can be as well obtained from the open string spectrum, shown in
Table 3. The first excited state has (D − 2) degrees of freedom and must transform as a vector

7 There, the dimension is fixed by canceling the Weyl anomaly. If this anomaly is present, there would be
inconsistencies as the presence of non-unitary states and unphysical degrees of freedom.
8 There are models in which the Lorentz invariance is preserved and Weyl anomalies are cancelled non-
perturbatively with D 6= 26. They are called non-critical string theories.



Table 3. Open string spectrum for D = 26

State Level M2/α

| Ω〉 N = 0 −1
αi−1 | Ω〉 N =1 0

under the little group SO(D − 2). The number of degrees of freedom match only for a masless
state, i.e., for D = 26.

Therefore, in the critical bosonic theory, the massless first excited state in the closed string,
transforms as a two-index object under SO(24). It contains 242 degrees of freedom, which can
be decomposed on irreducible representations of SO(24). Actually

242 = 1⊕ 276⊕ 299, (26)

corresponding to (all of them being massless) a scalar field φ called the dilaton, an antisymmetric
two-index field BMN and a symmetric two-index field GMN . This last field is the cause that so
many people around the world are interested in string theory and that they have been working
on it for the last 30 years. GMN has all the properties we expect from a quantum particle of
gravity, the graviton!

3. The Superstring
Bosonic string theory opened up a new and huge area of research. Quantum gravity, an old
dream, was now a tangible subject. However, it failed by the first and the simplest feature
we must have in any physical theory: the presence of fermions. Bosonic string theory has only
bosonic fields as quantum vibrations, and that is the main reason that renders it to be unphysical.

The simplest way to incorporate fermions into the theory considers the presence of an extra
symmetry at the level of the Polyakov action. A symmetry that relates a fermionic field for each
bosonic field present in the two-dimensional string world-sheet. This is called supersymmetry.
According with the Ramond-Neveu-Schwarz (R-NS) formalism9, the bosonic fields XM (σ, τ) are
paired with fermionic partners ψM (σ, τ). In this case, the action of the bosonic string is modified
by including the standard Dirac action. Therefore, the supersymmetric string action is

SR−NS = − 1
2π

∫
d2σ (∂αXM∂

αXM + ψ
M
ρα∂αψM ) (27)

where α is a world-sheet index and ρα are 2 × 2 matrices which obey the Dirac algebra. We
shall use the representation given by

ρ0 .=
[

0 −1
1 0

]
ρ1 .=

[
0 1
1 0

]
, (28)

The two-dimensional spinor ψM has two Weyl components according to

ψM =

(
ψM−
ψM+

)
. (29)

9 There exists other formalisms as the Green-Schwarz which consider supersymmetry on the space-time, and
recently and developed by Berkovits, the pure spinor formalism.



In the same way as the bosonic action, using the ligth-cone coordinates the fermionic part of
the string action is rewriten as

Sf =
i

π

∫
d2σ (ψM− ∂+ψM− + ψM+ ∂−ψM−). (30)

The whole action is invariant under supersymmetric transformations of the form

δXM = i
(
ε+ψ

M
− − ε−ψM

)
,

δψM− = −2∂−XM ε+

δψM+ = 2∂+X
M ε− (31)

where ε± are infinitesimal supersymmetric parameters corresponding to constant two-
dimensional Majorana spinors.

3.1. Equations of Motion and Boundary Conditions
The equations of motion with respect to Xi and ψi (notice that there is again just (D − 2)
degrees of freedom) are given respectively by the wave equation in (10) and the Dirac equations

∂±ψ
M
∓ = 0. (32)

The corresponding boundary terms for the fermionic part is given by10

δS = −T
∫
dτ
(
ψM+ δψM+ − ψM− δψM−

)
|σ=π −

(
ψM+ δψM+ − ψM− δψM−

)
|σ=0, (33)

which vanishes in several different ways. Each way establishes the presence of different
uncorrelated sectors of the theory as we shall see shortly.

3.1.1. Boundary Conditions for the Open String Let us consider an open string, i.e., a string
which endpoints are not coincident, and let us analyze the boundary conditions on the fermionic
component of the action. Being an open string, both boundary terms in the variation of the
action, must vanish separately. This is achieved if

ψM+ = ±ψM− , (34)

wich just reflects the very well known fact that fermions need a double rotation to recover their
initial sign11. Let us say that for two of the endpoints at σ = 0, both Weyl spinors are coinci-
dent., i.e., that ψM+ |σ=0= ψM− |σ=0. For the other endpoint there are two possible cases.

Periodic boundary conditions, ψM+ |σ=π= ψM− |σ=π, are commonly called Ramond (R)
boundary conditions. A solution satisfying this condition is said to belong to the R-sector,
and it reads

ψM− (σ, τ) =
1√
2

∑
n∈Z

dMn e
−inσ− ,

ψM+ (σ, τ) =
1√
2

∑
n∈Z

dMn e
−inσ+

. (35)

10 Boundary conditions for the bosonic part are the same as in the bosonic string. This means that Dp-branes
are also present in the superstring theory.
11 Formally speaking, two-dimensional Weyl fermions are representations of the Lie group SU(2), a double covering
of the rotational group SO(3).



The Majorana conditions requires these expansions to be real and hence dM−n = dM†n . Notice
that the index runs over integer numbers.

Anti-periodic boundary conditions, ψM+ |σ=π= −ψM− |σ=π, are referred as Neveu-Schwarz
(NS) boundary conditions. The corresponding solutions belong to the NS-sector, and are of the
form

ψM− (σ, τ) =
1
2

∑
r∈Z+ 1

2

dMr e
−irσ− ,

ψM+ (σ, τ) =
1
2

∑
r∈Z+ 1

2

dMr e
−irσ+

. (36)

Therefore, the supersymmetric open string solutions are separated into two different sectors.
We shall see that space-time bosons are constructed in the NS-sector, while space-time fermions
are constructed in the R-sector.

3.1.2. Boundary Conditions for the Closed String. As in the bosonic string, the closed
superstring solution can be represented in terms of left and right movers. On each of them
is possible to impose periodicity or anti-periodicity boundary conditions, ψ±(σ) = ± ψ±(σ+π).
This establishes four ways to determine a solution of the equations of motion. For instance,
if both left and right movers satisfy NS boundary conditions, we say that the corresponding
solution belongs to the Neveu-Schwartz-Neveu-Schwartz (NS-NS) sector. Hence, the four sectors
are NS-NS, NS-R, R-NS and R-R. We shall see that bosonic fields arise from the NS-NS and
R-R sector, while fermions belong to the R-NS and NS-R sectors. The solutions are denoted as

ψM− (σ, τ) =
1
2

∑
n∈Z

dMn e
−2inσ− , ψM− (σ, τ) =

1
2

∑
r∈Z+ 1

2

bMr e
−2irσ− , (37)

for the right movers with R and NS boundary conditions respectively, and

ψM+ (σ, τ) =
1
2

∑
n∈Z

d̃Mn e
−2inσ− , ψM+ (σ, τ) =

1
2

∑
r∈Z+ 1

2

b̃Mr e
−2irσ− , (38)

for the left movers. The specific fields arising as quantum modes of these solutions, will depend
on which type of spinor we consider in the the supersymmetric action. There are two possibilities:
chiral or non-chiral. So, there are at least two different superstring theories consisting on closed
strings.

3.2. Canonical Quantization of the Supersymmetric String
As in the bosonic string case, we shall take a short-way and we will proceed to quantize the
superstring by using the canonical quantization procedure, which means that Fourier modes are
promoted to be operators satisfying some algebra. For the bosonic modes, the commutation
relations are the same as in the bosonic string. For the fermionic modes we have that

{bMr , bNs } = ηMNδr+s,0 {dMm , dNn } = ηMNδm+n,0, (39)

and similar expressions for the left movers. The reader should observe that such relations are
precisely the algebra of raising and lowering operators in a harmonic oscillator satisfying the



fermi statistics. Therefore, we can assure that such modes act as creator and annihilator oper-
ators. By acting them on a suitable defined background state, we can describe the quantized
string vibrations. Let us then define the background state | Ω〉R for the right movers. For n ≥ 0,
| Ω〉R is annihilated by the operators αMn and dMn in the R sector, while for the NS-sector, the
annihilation comes from operator bMr , for r > 0. Similarly, for the left movers, we have that for
the R sector, α̃Mn | 0〉L = d̃Mn | 0〉L = 0, while for the NS-sector, b̃Mr | Ω〉L = 0, for positive indices.

Therefore, excited states of the closed string are constructed by acting negative modes op-
erators on the ground state | Ω〉R ⊗ | Ω〉L. It turns out that the ground state for left or right
movers is degenerated in the R-sector and unique in the NS-sector. In order to construct the
respective excited states for the closed string, let us start by analyzing the construction on some
left or right movers, which is equivalent to study the spectrum of the open string.

In the NS sector, the ground state is unique, since all rising operators increment its mass.
This follows, as in the bosonic case, from the energy momentum tensor. Classically, the energy-
momentum tensor nonzero components read

T++ = ∂+XM∂+X
M +

1
2
ψM+ ∂+ψ+M ,

T−− = ∂−XM∂−X
M +

1
2
ψM− ∂−ψ−M , (40)

which vanishes by the super Weyl symmetry. Hence, by substituting the solutions of the
equations of motion, these energy-momentum tensor components can be written in terms of
super Virasoro generators Lm and Gr satisfying some algebra. The generators Lm, with m an
integer, are given by12

Lm =
1
2

∑
m

αm−n · αm +
1
4

∑
r

(2r −m)ψm−r · ψr + aδm,0, (41)

where the product of modes operators are already ordered. The constant a is, as in the bosonic
case, a measure of the zero point energy. For the R-sector, fermionic fields contribute with a
same quantity than bosons, but with an opposite sign, i.e., a = ab+af = − 1

12(D−2)(1−1) = 0.

For the NS-sector, the situation is different. Being the modes labeled by fractional indices,
the zero point energy contribution reads af = − 1

48(D− 2), from which the total contribution to
the zero point energy is −1/2.

Therefore, the mass is computed from the zero mode generator L0, which in the NS-sector,
is given by

α′M2 =
∑
n∈Z

α−n · αn +
∑

r∈Z+1/2

rb−r · br −
1
2
, (42)

Notice that a generic excited state is constructed by arbitrary values of NB and NF and that
since all the oscillators transform as space-time vectors then all excited sates are bosons. In the
R sector the ground state is degenerated since the operators dM0 can act without changing the
mass, which is given by

α′M2 =
∑
n∈Z

α−n · αn +
∑
n∈Z

nd−n · dn. (43)

12 We encourage the interested reader to work out the details behind these calculations following standard text
books as the ones shown in the reference list.



This follows from the fact that zero modes d0 satisfy the algebra {dM0 , dN0 } = ηMN yielding the
non-existence of a unique solution for dM0 | Ω〉 = 0. Therefore, the set of ground states in the R
sector must transform as a representation of Dirac algebra,

dM0 | a〉 =
1√
2

ΓMab | b〉, (44)

where Γ is a Dirac matrix. This implies that the R-sector ground state is actually a space-time
fermion.

3.3. The Superstring Spectrum
For the NS sector we have seen that there is a negative-quadratic-mass state which is identified
as the tachyon. Consistency requires the tachyon to be projected out. This can be achieved if
we can project some states out, and the remaining states are self-contained, i.e., that by the
action of any operator, the resulting state is contained among that set of states. It turns out
that such projection exists and it is called the the GSO projection (Gliozzi, Scherk and Olive).
Basically the action of the GSO projector on the NS and R sector is to take out a half of the
states arising at different energy values of the string.

Being more explicit, the action of the GSO projector on NS states is given by (−1)F , with F
being the world-sheet fermion number. Negative states under the GSO projector are removed.
Then, the tachyonic state is projected out (the background state has fermion number F = 1)
and the first state which survives GSO projection is ψM1/2|Ω〉, with M = 1, · · · , 8. The coordi-
nates 0, 9 represent non-physical degrees of freedom13. It is possible to show that this state is
a massless gauge boson transforming in the adjoint of U(1) gauge group, and it is expressed as
the vectorial representation 8V of the little Lorentz group SO(8).

For the R sector, the energy of ground state is zero, implying there is a degeneration in the
energy levels on states given by the zero mode ψM0 . In the light-cone gauge (or after considering
the effect of ghosts) we have eight zero modes which can be used to construct 4 raising and 4
lowering operators by a linear combination of two zero modes. Applying the raising operator to
a bosonic vacuum |Ω〉 we generate 24 = 16 states.

Now, on the one hand, there are at least 16 supersymmetry generators, corresponding to the
Weyl components of the full spinor, which has 32 degrees of freedom. This spinor is a Majorana-
Weyl spinor, which splits it into two real spinors with opposite chirality, i.e., 32 = 16 ⊕ 16′.
Then, under spinorial representations of the Lorentz group SO(1, 9), we have the following
decomposition

SO(1, 9) −→ SO(1, 1)× SO(8)

16 −→ (
1
2
,8s)⊕ (−1

2
,8c) . (45)

On the other hand, there is one constraint (Dirac equation) that threw out representations with
quantum number −1

2 of SO(1, 1). That is why we kept just 16 states that correspond to those
constructed by raising operators described above.

13 Remember we are using the light-cone gauge. In the context of covariant quantization, this is an effect of ghosts
on the string dynamics.



Table 4. Open superstring spectrum

Sector State Level M2/α SO(8) rep. Field GSO

NS | Ω〉NS Nb = Nf = 0 −1/2 - Tachyon −
NS ψM−1 | Ω〉NS Nb = 0, Nf = 1 0 8v Gauge boson +
R | Ω〉R Nb = Nf = 0 0 8c Gauginos −
R | Ω〉R Nb = Nf = 0 0 8s Gauginos +

Table 5. Type IIA superstring spectrum

Sector State SO(8) rep. Fields

NS-NS ψM−1ψ̃
N
−1 | Ω〉L⊗ | Ω〉R 8v ⊗ 8v = 1⊕ 26⊕ 35 GMN , BMN , φ

R-R | +〉L ⊗ | −〉R 8s ⊗ 8c = 8v ⊕ 56t C(1),C(3)

NS-R ψM−1 | Ω〉L ⊗ | −〉 8v⊗8c = 8s ⊕56c λα, ψαM
R-NS | +〉L ⊗ ψ̃M−1 | Ω〉R 8s⊗8v =8c ⊕ 56s λα̇, ψα̇M

Table 6. Type IIB superstring spectrum

Sector State SO(8) rep. Fields

NS-NS ψM−1ψ̃
N
−1 | Ω〉L⊗ | Ω〉R 8v ⊗ 8v = 1⊕ 26⊕ 35 GMN , BMN , φ

R-R | +〉L ⊗ | +〉R 8s ⊗ 8s = 1⊕ 26⊕ 35 C(0),C(2)

NS-R ψM−1 | Ω〉L ⊗ | +〉 8v ⊗ 8s = 8s ⊕ 56s λα, ψαM
R-NS | +〉L ⊗ ψ̃M−1 | Ω〉R same as NS-R

Therefore, GSO projection in RR sector is basically the application of the chiral matrix
Γ = iΓ0Γ1 · · ·Γ9 to the spinor states. Because the states in the 16 of SO(8) are spinors, the
action of Γ split up them into two Weyl fermions, which are representations of SO(8) given
by 8s and 8c with different chirality. After GSO projection, the R-sector contains 16 spinorial
states in the 8s of SO(8) that represents the super-partners of 8v in the NS sector (gauginos).
The spectrum of the open string is shown in Table 4.

3.3.1. Closed superstring spectrum Once the spectrum of the open string has been computed,
it is straightforward to compute the closed string spectrum. The resulting fields are constructed
by the tensorial product of the corresponding states for the left and right movers. However,
there are two different ways to do it.

The theory is called type IIA if left and right-moving R-sector ground states are chosen to
have the opposite chirality (which reflects in the fact that the two R-sectors have opposite parity.
In the type IIB left and right-moving sector ground states have the same chirality. These two
consistent ways to construct a superstring theory spectrum, are summarized in Tables 5 and 6.



3.3.2. The Type IIA Superstring spectrum As mentioned, the representation of the complete
states is obtained by tensoring the representation of the left and right movers. The NS-NS sector
contains a symmetric tensor of two index corresponding to a graviton (GMN ), an antisymmetric
tensor or 2-form (BMN ) and a dilaton (Φ). The R-R sector contains a set of completely anti-
symmetric tensors (p-forms). In particular a 1-form(CM ) and a 3-form (C3). It is sometimes
convenient to introduce the Hodge duals of these, which are a 5-form (C5) and a 7-form (C7).
Finally, it is also useful to introduce a 9-form C9, with no dynamics. The space-time fermions
arise from the R-NS and NS-R sectors which contain the gravitino (56 states) and a dilatino (8
states) with opposite chirality. The R-NS and NS-R sectors contain fermions, which are a spin
3/2 gravitino and a spin 1/2 dilatino, each of these fermions with opposite chirality.

3.3.3. The Type IIB Superstring spectrum For this case, we choose left and right movers in
R-sector to have the same chirality (in the 8s and 8s of SO(8)). The NS-NS sector contains
the same fields as in the Type IIA case. The R-NS and NS-R sectors contain fermions with
the same chirality. Bassically they are two copies of fermions in the NS-R sector in type IIA.
The RR sector contains a 0-form C0 (scalar), a 2-form C2 and a 4-form C†4 with a self-dual field
strength. It is sometimes convenient to introduce the Hodge duals of these, which are a 6-form
B6, and 8-form C8. Finally, it is also useful to introduce a 10-form C10, which does not have
any propagating degrees of freedom, since it has no space-time kinetic term.

The Type IIA and IIB superstring theories have as low energy description (when just massless
modes are considered) the Types IIA and IIB supergravity (SUGRA) versions. In other words,
II refers to supersymmetry N = 2 and we have two gravitinos in each supergravity multiplet
with D = 10 14.

4. Non-perturbative aspects of Superstring Theory
Until now we have described the perturbative sector of type II superstring theories15 in a flat
space-time. However, it is interesting and important to compactify some of the spatial extra
dimensions that the theory predicts. The first step is wrapping one such dimension on a circle.
Here we find a big difference by comparing strings to quantum fields. While for fields on a
compact dimension we get only Kaluza-Klein (KK) modes arising by periodicity, strings can
also be wrapped on compact coordinates. In this form, for the string there are two values the
energy depends on. One is the energy required to stretch the string in a space with less volume
because of the compactification. Essentially these are the KK modes; smaller the radius R of
the compact dimension, bigger the energy required to stretch the string. KK modes goes as n

R
with n ∈ Z. When the string is wrapped on the compact dimension, then we need energy to
wrap it, i.e, the string has a strength tension in order to be wrapped around the circle. Then,
smaller the radius of the compact dimension, smaller the energy needed to wrap it. The number
of times a string winds a compact dimension is called the winding number, and the energy is

14 It is surprising that at SUGRA level, space-time anomalies due to gauge and gravitational fields, coupled to
chiral fermions, and cancel each other exactly. This is reflected in string theory (or viceversa) as the absence
of tadpole diagramas at the fermionic sector. However, if we couple IIB theory (strings or SUGRA) to super
Yang-Mills (SYM) gauge bosons, there is an extra term in the anomaly, which makes the theory inconsistent. On
the string theory side, this means we are adding a D9-brane to the background which introduces an open string
sector and breaks supersymmetry. This theory is not consistent and one can see that by including open strings
and SYM gauge theories, more details must be considered. In Type IIA theory such anomalies are not present
because the theory is not chiral.
15 There are other three types, we shall briefly mention at the end of this note.



proportional to mR with m ∈ Z being the winding number.

The mass of a string with KK modes and winding number is given by

M2 =
n2

R2
+
m2R2

α′2
+

2
α′

(NB + ÑBrNF + rÑF − E0), (46)

with NB, ÑB being the bosonic energy number level for the right and left movers respectively,
NF , ÑF the fermionic ones and E0 the ground energy level for each sector.

Now, consider the symmetric two-order tensor GMN from the NS-NS sector. Upon
compactification on a circle, one obtains a nine-dimensional two-tensor Gij , a gauge field
ALi = Gi9 and a scalar φ = G99. In the same way, the two-form BMN gives rise to a nine-
dimensional two-form Bij and a gauge field ARi = Bi9. Stringy states carrying KK modes
or winding numbers are charged under such gauge fields. So, by compactification there is an
extra gauge symmetry U(1) × U(1) under which massive states are charged. In other words,
there are states that are charged under NS-NS fields. However, at perturbative level, there is
not evidence that there exist massive objects charged under RR fields. This is in some sense
paradoxical because compactification also affects RR fields. In fact, the p-forms are reduced to
(p − 1)- and p-forms on a nine-dimensional space-time, so we expect that (p − 1)-forms must
be the fields under which some objects are charged. For the NS-R and R-NS sector, under
compactification into a circle, we obtain a nine-dimensional theory in which fermionic fields
have no chirality (there is no such chiral Dirac matrix Γ). Gravitinos and gauginos in Type IIA
theory are mapped according to

R-NS: ψαµ , λ
α −→ λα

′
, λβ, ψα

′
i

8s ⊗ 8v = 8c ⊕ 56s −→ 8 + 8 + 48
NS-R: ψα̇µ , λ

α̇ −→ λα
′
, λβ, ψα

′
i

8c ⊗ 8v = 8s ⊕ 56s −→ 8 + 8 + 48

(47)

where i = 0, · · · , 8. Notice the two extra gravitinos 8 are the superpartners of the gauge fields
in the NS-NS sector, ARi and ALi and of the (p − 1)-forms in the RR-sector. For Type IIB we
have the same fields in the nine-dimensional spacetime.

4.1. T-duality and D-branes
Consider the mass expression given by Eq. (46). We see that mass of states, i.e. their energy,
is unchanged under the identification

m ←→ n
α′

R ←→ R .
(48)

Then it follows that under such change of parameters, the theory has the same spectrum and
it is indistinguishable of the original one. We said that two such theories are dual one to each
other and the transformation is called T-duality.

This identification also has an effect on the bosonic and fermionic modes. T-duality maps
Xµ
L into −Xµ

L and by superconformal symmetry, the fermionic modes are changed in a similar
way, ψµL → −ψ

µ
L. The latter map has a profound and very important consequence in the theory.

Mapping the left fermionic mode into its negative one, implies a change in the chirality of the
spinors constructed with them. Let us explain it with more detail. A basis of states in the RR



sector is given by |s1s2s3s4〉 with si = ±1
2 for all i values. They give us the 16 states we studied

previously. We set the ground state as the element given by |12
1
2

1
2

1
2〉 and then the rest of the

basis is generated by the raising operator S†a = 1√
2
(ψa0 + iψa+1) which raises the value of si by

a half for each i.

When ψa is mapped to its negative mode by performing T-duality on the a + 1-coordinate,
S†a transforms into Sa, which corresponds to a lowering operator. For instance, take a = 9;
this means that the state |s1s2s3 − 1

2〉 will be projected out by the lowering operator. On the
other hand, if initially we have the state |s2s2s3

1
2〉, then under T-duality this state is replaced

by |s1s2s3 − 1
2〉, i.e, under T-duality, the number of negative or positive one-half factors are

interchanged. But this is the definition of the action of GSO projection on RR states. Then
T-duality changes the chirality. The most important consequence of this is that Type IIA and
Type IIB theories are T-dual.

Under toroidal compactifications (taking many wrapped dimensions on circles) it is possible
to elucidate the existence of certain planes in which the endpoints of open strings are fixed.
Although open strings has not been considered, we shall see it is possible to include them under
some constraints. Take for instance the ninth-coordinate wrapped into a circle, and consider a
closed and an open string in the bulk. It is important to point out an open string is not able to
wind a circle because always can be unwinded; this is a big difference between closed and open
strings. The latter has no winding number.

Now let the radius R tends to zero. What does happen to the strings? At the limit, the
open string looks like being fixed by its endpoint, in a eight-dimensional plane. This is the first
evidence of such hyperplanes. It turns out that the y are actually the D-branes we have studied
previously. For the closed string the story is more surprising: at the limit R → 0, the closed
string is flatten, identifying the points under σ → 2π− σ. This gives two fixed points which are
identified to the endpoints of an unoriented open string. The next step is asking, what are the
T-dual version for these cases? The last one gives rise to the construction of another consistent
string theory called Type I, which contains closed an open unortiented strings.

Let us perform T-duality for an open string on a compact dimension. Under T-duality we
know that Xµ

L → −X
µ
L and then we can define a T-dual bosonic field Xµ = Xµ

R −X
µ
L. Working

on the dual coordinates the Neumann boundary condition, which an open string satisfies, is
transformed into a Dirichlet condition ∂τX

µ = 0. In consequence the endpoints are fixed on a
D-brane. But, is there any constraint to include open strings to Type II theories? To include
oriented open strings we require that D9-branes do not exist because their existence implies also
the existence of SYM degrees of freedom in the ten-dimensional space-time, and as we know,
the coupling between Type II SUGRA and SYM is anomalous, meaning that R tadpoles are not
cancelled.

However, D-branes are more than just hyperplanes. Actually, they are also BPS states
(Bogomol’nyi-Prasad-Sommerfeld), i.e., states that break down a half of supersymmetry on the
bulk, and their mass were determined by their charge under some fields. Because of that, su-
persymmetry protects them from radiative corrections. Their mass and charge are exact. The
relation between mass and charge is given by the supersymmetry algebra in ten dimensions with
N = 2. In the same way, it was found that some solitonic objects described in the context
of supergravity (generalizations of black-holes) known as p-branes, are the low energy limit of
Dp-branes. In this form, Dp-branes are the solitonic objects (with tension T ∼ 1

gs
) that allow us

to study the non-perturbative sector in string theory; we are able to study their excited states



by the perturbative description in terms of open strings. This is a crucial point in our knowledge
of the theory.

As we said, D-branes must be charged by some fields because of the BPS condition M = |Q|.
These fields are precisely the RR fields. Then the objects we require to be charged under RR
fields are Dp-branes. In general, a (p+ 1)-form Cp+1 couples to a Dp-brane by

µp

∫
Wp+1

Cp+1 , (49)

where µp is the charge of the Dp-brane and Wp+1 is its worldvolume. Then, by the RR spectrum
for Type IIA and IIB theories, we can deduce which values of p are allowed in each theory. For
Type IIA we have Dp-branes for p even, and for Type IIB, p must be odd.

The picture we should have in mind is that open strings has their endpoints attached to
Dp-branes and supersymmetry is broken to one half of the bulk. This means that for Type II
theories we have supersymmetry N = 1 on the brane and N = 2 in the bulk. Far away from
the brane, we have locally a closed string theory. This can be regarded also as follows: take an
open string on the Dp-brane, and consider the process in which the two endpoints are coming
forward to the same point on the D-brane worldvolume. When two endpoints are glued into a
single point, we have essentially a closed string (the charge at the endpoints cancel each other)
and it is said that a Dp-brane emits a closed string into the bulk.

Emission of closed string has a relevant role in D-brane physics. Consider two Dp-branes
parallel to each other and interchanging a closed string and take into account the tree level
amplitude of such a process. There is a well studied duality between the 1-loop open string
amplitude and the tree level closed one. We can consider an open string connecting the two
Dp-branes and forming a cylinder (1-loop) or a closed string interchanged by the branes at
tree-level amplitude. At the open-sector we see that the amplitude is zero because the theory
is supersymmetric, then there is not net force between the branes. But if one return to the
closed-sector is easy to see there must be a force due to NS-NS and RR fields. It is concluded
that NS-NS contribution cancels the RR one. In other words, a Dp-brane has tension (mass)
and then could emit gravitons. Also it is able to emit B-fields and dilatons, and Cp+1-forms.
All of them contribute to a non-zero amplitude but all at once give a zero net force.

The bosonic part of the action which describes a Dp-brane classically is,

S =

∫
dpx e−φ

√
det(Gµν +

1

2πα′
(Bµν + Fµν)) +

∫
Gp+2 ∧ ∗Gp+2 + µp

∫
Cp+1 ,

where Gp+2 is the strength field given by Gp+2 = dCp+1, Gµν and Bµν are the induced metric
and B-field on the D-brane and Fµν is the magnetic flux on the Dp-brane (µ and ν run over
the Dp-brane coordinates excepting the light-gauge cone ones). The magnetic flux arises as a
background field on the worldvolume of the brane. It is the classical version of the strength
two-form F2 = dA whit A being the gauge field obtained in the NS sector of the open string
ψµ1

2

|0; k〉.

The presence of open strings in Type II theories are due to the existence of D-branes. Under
this context there is an enhancement of gauge symmetry given by the NS gauge bosons. Con-
sider N Dp-branes at the same position. For each open string there are N possible states each
endpoint has. It can be attached to the ‘first’ brane, or to the jth-brane with j = 1, · · · , N . The
same holds for the other endpoint. Then for stringy states we have to label the states by ij.



These extra non-dynamical degrees of freedom are called Chan-Paton factors. It can be seen
that they introduce a U(N) symmetry and NS gauge bosons turn out into NS non-abelian gauge
bosons which transform in the adjoint representation of U(N). The endpoints are charged by
these 1-form gauge fields because there is a natural topological coupling between point-particles
and 1-forms. By this, there is an enhancement of gauge symmetry U(1)→ U(N). We say that
there is a gauge field in the worldvolume of a Dp-brane and if this field is non-trivial, there is
also a field strength given by the two-form F which we refer previously as a magnetic flux.

T-duality also plays an important role in the non-perturbative regime. Under it a Dp-brane
turns into a D-brane with a higher or lower dimension depending in which coordinates T-duality
is taken. For instance, if we take T-duality on transverse coordinates to the brane, its dimen-
sion will grow up according the number of coordinates we have considered. When T-duality is
performed on longitudinal coordinates the brane dimension decreases. For example, if we have a
Dp-brane on coordinates 0, 1, · · · , p− 1, p and we take T-duality transformation on one of these
coordinates we obtain a D(p − 1)-brane. This because the Neumann boundary conditions are
transformed into Dirichlet ones.

Returning to our original picture (before taking T-dual transformation) the existence of a
magnetic flux establishes an extra coupling on the classical action. Every (p + 1)-form will we
couple to the worldvolume Wp of a Dp-brane. Then if we have a two-form given by the strength
gauge field F , this together with a (p − 1)-form establish a (p + 1)-form that couples to Wp.
This kind of coupling is known as Chern-Simons term and is given generally by∫

Σ
ΣpCp+1 ∧ Tr eF , (50)

Now, if this kind of couplings are allowed then the presence of RR charges related to low-
dimensional D-branes is implied when a magnetic flux is turned on over the Dp-brane. Con-
sidering just the first non-trivial term in the expansion of eF we induce a RR charge of a
D(p − 2)-brane. Then we hope to obtain a similar spectrum of open strings attached to D-
branes as the obtained by analyzing D-branes with magnetic fluxes.

The spectrum of open strings attached to N coincident Dp-branes is as follows. For the
NS-sector the state is ψi1/2 |0; k〉 (i labels longitudinal D-brane coordinates) which gives us
N2 (p − 1)-dimensional gauge vectors of SO(p − 1) in the adjoint of U(N). Also we have
(8 − p) scalars ψa1/2 |0; k〉 of the Lorentz group SO(p − 1). In the R-sector, 8s flips out under
SO(8) → SO(p − 1) × SO(8 − p) into suitable representations of the Lorentz group SO(p − 1)
in the adjoint of U(N). The values of p for which Dp-branes generates a supersymmetric Yang-
Mills theory are p = 9, 5, 4, 2. For instance, a D9-brane gives a SYM theory D = 10 and N = 1.
Also, for a D5-brane, we have a SYM theory D = 6 and N = 2.

The RR fields of Type IIA theory are differential forms Cp+1 with p even and for Type IIB p
is odd. Denote by Gp+2 the field strength given by Gp+2 = dCp+1. The field strength is invariant
under gauge transformations Cp+1 → Cp+1 + dΛp, that implies a gauge invariant action given
by

S ∼
∫
M10

dCp+1 ∧ ∗dCp+1 +
∫
Wp

Cp+1 . (51)

The RR charge is given by

QE =
∫
S8−p
∗dCp+1 . (52)



Also we can built magnetic dual objects to the Dp-brane, which corresponds to an object coupling
to a (7− p)-form. This object is a D(6− p)-brane with magnetic charge given by

QM =
∫
Sp+2

dCp+1 . (53)

By this, for instance a D5-brane in Type IIB is the magnetic dual to a D1-brane and so on. In
the same way the magnetic dual to a string under NS-NS charge is a five-brane namely NS5-
brane.

4.1.1. M-theory Together with type II superstring theories, there are three more supersym-
metric string theories. The first one, we already have sai a little about it. It is called type
I theory, and consists of a ten-dimensional background in which un-oriented open and closed
strings are allowed to exist. Since it contains open string, it also have ten-dimensional gauge
bosons transforming in the adjoint of SO(32). Essentially this follows from the fact that there
is a gravitational and gauge anomalies which cancel each other only for gauge groups with 496
generators. For type I theory, it turns out that we require the presence of the gauge group
SO(32). An alternative way to construct type I theory is by means of type IIB. Type I is con-
structed by adding 32 D9-branes to type IIB and by projecting out all oriented strings. This is
the action of another non-perturbative object called Orientifold.

Another way to construct consistent supersymmetric theories involves the mixture between
bosonic and fermionic strings. Take a closed string and let us say that left-movers are bosonic,
and impose supersymmetry on the right movers. “Half of the string” propagates on a ten-
dimensional space-time, while the other, being bosonic, propagates on a space-time with 26
dimensions. The apparent contradiction is solved when one realizes that the extra 16 coordi-
nates on the bosonic side behave as gauge degrees of freedom. Once again, the fact that we have
chiral gauged fermions, implies the presence of gauge anomalies, which cancel for gauge groups
SO(32) and E8×E8. These are precisely the extra pair of superstring theories we have not men-
tioned. They are called Heterotic SO(32) (Het(SO(32)) and Heterotic E8×E8 (Het(E8×E8)).

Five different and consistent string theories seem to much for an unified description of nature.
This issue was softened once people realized that these five string theories and actually related
by a set of mappings, called dualities. We have already discussed one of the, T-duality. The
other one is called S-duality, and essentially relates a weak coupled string theory with a strong
coupled one. Nowadays, we believed that the five different theories are just different limits on
the moduli space of a bigger 11-dimensional theory, so far called M-theory. No much is known
about it, but since the theory is still under progress, we expect to develop more powerful tech-
niques which allow us to explore the fundamentals of M-theory.

5. Recent developments
String theory has become a huge framework on which different topics can be addressed. Enumer-
ating all of them is a task far beyond the scope of this course. However, we shall mention some
of them according to our interests. First of all, big progress has been performed in the so called
string phenomenology branch. There is a lot of people working on effective four-dimensional
theories constructed from string theory. See [10] (and references therein) for a more extensive
treatment. One of the main topics covered includes the construction of Standard-Model-like sce-
narios and their corresponding supersymmetric extensions from Type II superstrings and from



Heterotic strings as well.

Historically, people used Type I and Heterotic theories to construct phenomenologically viable
models. The main reason for that, was that such theories already had gauge groups, necessary
to incorporate the Standard Model gauge groups. This vision changed once D-branes were in-
troduced in Type II theories.

The construction of vacua from string scenarios, established an starting point for some very
nice researches. First of all, we wanted to know the conditions, physical or mathematical, that
the extra six dimensions must satisfy in order to obtain a four-dimensional effective physics,
close enough to what we daily observe. Soon, people realized that the extra six dimensions must
be enrolled in a six-dimensional mathematical object known as Calabi-Yau manifold. Some
properties of the field content in the effective theory, as the number of families, was related to
topological properties of such manifold. In the last decade, there was a huge progress towards
the construction of realistic vacua, as the flux compactification and the generalization of Calabi-
Yau manifolds, a topic that has enriched the develop of new mathematics [13]. People have also
explored the possibility that our universe is just one choice among thousands of options in the
so called String Landscape.

Other applications of String theory involve the construction of cosmological models, the
AdS/CFT correspondence (a correspondence between gauge theories and gravity which has be-
come a huge area of research) and its implications on physical predictions on the quark-gluon
plasma. Also, new methods of calculations on amplitude scatterings by the use of twistors have
been developed and the always fascinating study of black holes.

String theory is doubtless a very rich scenario in which many open questions of theoretical
physics might be answered. The theory is still under construction and we hope that in the near
future we realize whether or not, string theory plays a role in our world.

Acknowledgments
O. L.-B. thanks the organizers of the XIV Mexican School of Particles and Fields for inviting
him to give this mini-course. O.L.-B. is partially supported by a CONACyT grant with contract
number 60209. C. D.-A. is supported by a PhD CONACyT grant.

References
[1] K. Becker, M. Becker and J. H. Schwarz, Cambridge, UK: Cambridge Univ. Pr. (2007) 739 p
[2] E. Kiritsis, Princeton, USA: Univ. Pr. (2007) 588 p
[3] J. Polchinski, Cambridge, UK: Univ. Pr. (1998) 402 p
[4] J. Polchinski, Cambridge, UK: Univ. Pr. (1998) 531 p
[5] B. Zwiebach, Cambridge, UK: Univ. Pr. (2004) 558 p
[6] M. B. Green, J. H. Schwarz and E. Witten, Cambridge, Uk: Univ. Pr. ( 1987) 596 P. ( Cambridge Monographs

On Mathematical Physics)
[7] M. B. Green, J. H. Schwarz and E. Witten, Cambridge, Uk: Univ. Pr. ( 1987) 469 P. ( Cambridge Monographs

On Mathematical Physics)
[8] D. Lust and S. Theisen, Lect. Notes Phys. 346, 1 (1989).
[9] C. V. Johnson, Cambridge, USA: Univ. Pr. (2003) 548 p
[10] M. Dine, Cambridge, UK: Cambridge Univ. Pr. (2007) 515 p
[11] H. Garcia-Compean and O. Loaiza-Brito, arXiv:hep-th/0003019.
[12] H. Garcia-Compean and O. Loaiza-Brito, AIP Conf. Proc. 562, 86 (2001) [arXiv:hep-th/0010046].
[13] O. Loaiza-Brito and L. Vazquez-Mercado, AIP Conf. Proc. 1287, 52 (2010).


