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Abstract. We propose a general framework to constrain∆L = 2 processes by measuring observ-
ables associated with neutrino-antineutrino oscillations in π± decays. First, we use this formalism
as a new strategy for detecting the CP-violating phases and the effective mass of muon Majorana
neutrinos. Within the generic framework of quantum field theory, we compute the non-factorizable
probability for producing a pair of same-charged muons inπ± decays as a distinctive signature of
νµ − ν̄µ oscillations. Using the neutrino-antineutrino oscillation probability reported by MINOS
collaboration, a new stringent bound on the effective muon-neutrino mass is derived. Secondly, we
interpret the production of the pair of same-charged muons as a result of lepton number violating
(LNV) interactions at the neutrino source, which allow us toconstrain New Physics.
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INTRODUCTION

As is well known, the Majorana nature of neutrinos can be established via the obser-
vation of ∆L = 2 processes [1]. The parameter characterizing the rate of such transi-
tions, the effective neutrino mass〈mll 〉 ≡ ∑i U

2
li mνi , involves a combination of neutrino

masses, mixings and phases. It turns out that the only way to access the values of Majo-
rana phases is through observables associated to∆L = 2 transitions [2]. Note, however,
that the measurement of the effective electron-neutrino mass in the neutrinoless double
beta decay (0νββ ) experiments can not restrict the two Majorana CP violatingphases
present in the PMNS mixing matrix [3, 4, 2]. This may be expected since in the (0νββ )
one measures the lifetime of the decay of two neutrons in a nucleus into two protons and
two electrons, which is a CP conserving quantity. Other proposals aiming to gain access
to CP-violating phases of Majorana neutrinos using neutrino-antineutrino oscillations
were first discussed in [5, 6, 7, 8, 9, 10, 11].

On the other hand, direct bounds on other effective neutrinomass parameters〈mll 〉
from present experimental data are very poor. Currently, the strongest bound for the
muon-neutrino case from theK+ → π−µ+µ+ branching fraction [12] is only|〈mµµ〉| ≤
0.04 TeV [13], which leads to a negligible constraint on the neutrino masses and CP
violating phases.

In section I we describe the mechanism, based on neutrino-antineutrino oscillation,
which would allow to derive a strong bound on the effective Majorana mass of the



muon-neutrino〈mµµ〉. In addition, it provides a method for detecting the Majorana
neutrino CP violating phases through measuring the CP asymmetry of theπ± decay
where neutrino-antineutrino oscillation take place. Using the preliminary bound on the
neutrino-antineutrino oscillation probability reportedby the MINOS Collaboration [14],
we derive a bound on〈mµµ〉 which improves existing bounds by several orders of
magnitude.

In section II we describe the mechanism that would allow us toconstrain lepton
number violating interactions. In this case we interpret the observation of the final
states, same-charged muons at the production and detectionof neutrinos, as a result
of lepton number violating interactions in pion decays at the neutrino source. Such
interactions appear for example in SUSY models with R-Parity violating terms and
leptoquark models. In particular in a SUSY model without R-Parity conservation, the
radiative contributions are proportional to the R parity couplingsλ and λ ′, which in
general are complex. We attempt to impose constraints over these couplingsλ andλ ′

from the current bound on neutrino-antineutrino transitions obtained by the MINOS
collaboration [14].

It is worth noting that the probability of a process associated to neutrino oscillation
is usually assumed to be factorized into three independent parts: the production process,
the oscillation probability and the detection cross section. Here, we adopt the S-matrix
amplitude method described in [15], in order to avoid the usual factorization scheme.

NEUTRINO-ANTINEUTRINO OSCILLATION

Let us start by considering a positive charged pion which decays into a virtual neutrino at
the space-time location(x, t) together with a positive charged muon. After propagating,
the neutrino can be converted into an antineutrino which produces a positive charged
muon at the point(x

′
, t

′
) where it interacts with a target, as shown in Fig. 1. For

definiteness, we illustrate this process with the production of the neutrino inπ+ decay
and its later detection via its weak interaction with a target nucleonN

π+(p1)→ µ+(p2)+νs
µ(p) →֒ νl

d(p)+N(pN)→ N′(pN′ )+µ+(pl )

where the superscripts(d) refers to the virtual neutrino (antineutrino) at the source
(detection) vertex. This is a|∆L| = 2 process. Notice that if two identical anti-muons
(µ+(p2) andµ+(pl)) are produced at very different space-time locations, wellseparated
in distance and each identified in different detectors, thenthe total amplitude does not
require to be anti-symmetrized.

If one ignores other flavors, the decay amplitude becomes:

Tνµ−ν̄µ (t) = (2π)4δ 4(pl − pN + pN′ + p2− p1)(GFVud)
2(JNN′ )µ fπ

×∑
i

v̄µ(pl)γµ(1+ γ5) 6 p1v(p2)×Uµ iUµ i(mνi)
e−itEνi

2Eνi

, (1)

where the relationνk = ∑Ukανα between flavork and massα neutrino eigenstates
has been used,fπ = 130.4 MeV is the π± decay constant, andJNN′ parametrizes
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Figure 1. Feynman diagram of the processπ(p1) → µ+(p2) + νµ(p) followed by the detection
process:νl(p)+N(pN)→ N′(pN′ )+ µ+(pl ).

the interaction with the nucleon. Note that, contrary to thecase of neutrino-neutrino
oscillations [15], only the neutrino mass term survives in this case. For simplicity, one
assumes that

(JNN′ )µ = uN′ (pN′ )γµ [gV(q
2)+gA(q

2)γ5]uN(pN) (2)

where we keep only the contributions of leading vectorgV(q2) and axial-vectorgA(q2)
form factors, withq= pN′ − pN.

If we neglect terms ofO(mµ/mN,N′ ), one obtains

∣

∣Tνµ−ν̄µ (t)
∣

∣

2
= (2π)4δ 4(pl − pN + pN′ + p2− p1)(GFVud)

4 | fπ |264(gA−1)2mNm2
µ

× ∑
i, j

Uµ iU
∗
µ jUµ iU

∗
µ je

−it△Eνi j
mνi mν j

4Eνi Eν j

(E2−Ep)

(

1
2
(m2

π −m2
µ)+ pl · p2

− mN

(E2−Ep)
G(gA)pl · p2−2mNF(gA)

[

E2−El

(

1+
m2

π
m2

µ

)])

(3)

where E2(El),Ep are, respectively, the initial (final) muon and the pion en-
ergies and△Eνi j = Eνi − Eν j . The functions F(gA) and G(gA) are given by:

F(gA) =
g2

A+1
(gA−1)2

, G(gA) = gA+1
gA−1. One can easily check that Eq. (3) is not factor-

izable into (production)×(propagation)×(detection) subprocesses due to the terms
proportional topl · p2 = El E2 − |~pl ||~p2|cosα, whereα is the angle between the di-
rections ofµ+ particles. This is an important difference with respect to the case of
neutrino-neutrino (∆L = 0) oscillations where it was shown in Ref.[15] that the S-matrix
formalism reproduces the hypothesis of factorization of the probabilities.

In the following, we shall neglect theq2-dependence of the nucleon form factors
(namely, we takegV = gV(q2 = 0) = 1 andgA = gA(q2 = 0) ≈ −1.27 [2]). As is well
known [16], the cross section of charged current neutrino-nucleon quasielastic scattering
is sensitive to theq2-dependence of these form factors. However, as long as we confine
to the CP rate asymmetry for neutrino↔antineutrino oscillations (see below) we expect
that the effects of the momentum-transfer dependence ofgV,A will partially cancel in the
ratio of oscillation rates. Thus, after integration over kinematical variables, it is possible



to write the rate of the complete process as

Γνµ−ν̄µ =

∣

∣

∣

∣

∣

∑
i

U2
µ i

mνi

2Eνi

eitEνi

∣

∣

∣

∣

∣

2

×F(M,φ), (4)

whereF(M,φ) denotes the kinematical function

F(M,φ) =
32π
Ep

(GFVud)
4 | fπ |2(gA−1)2

([

I4−mNG(gA)I5−
1
2
(m2

µ −m2
π)I1)

]

× m2
µ−2mNF(gA)

[

m2
µ I2− (m2

µ +m2
π)I3

] )

. (5)

The functionsIa for a= 1, ..,4 can be obtained from the following integral:

Ia =
∫

d3p2

2E2

d3pl

2El
(E2−Ep) faδ (Ep+EN −EN′ −El −E2), (6)

with f1 = 1, f2 = E2, f3 = El , and f4 = (pl · p2) and f5 = (pl · p2)/(E2−Ep).

There are two interesting limits for this process. At very short times, (as in short-

baseline neutrino experiments),Γνµ−ν̄µ ≃ |〈mµµ 〉|2
E2

ν
×F(M,φ), where〈mµµ〉 is the effec-

tive Majorana mass for the muon neutrino. However in the longtime limit (long-baseline
neutrino experiments) the oscillation terms cannot be neglected. In the limit ofθ13 = 0,
the Majorana phasesα1,2 are the only sources of CP violation and hence

aCP ≃ tan[2(α2−α3)]sinγ whereγ =
∆m2

23L(km)

2Eν(GeV)
(7)

Thus, in the case of LBL neutrino experiment like MINOS wherethe distanceL is
given byL = 735 km and the energyEν is typically around 2−3 GeV, one finds that
sinγ ∼ O(1) [17],[18]. Thus, measuring CP asymmetry will be unavoidable indication
for large CP violating Majorana phases.

Application to MINOS results on neutrino-antineutrino oscillations

Recently, MINOS [18] has measured the spectrum ofνµ events which are missing
after travelling 735 km. It is these missing events which arethe potential source of̄νµ
appearance. In their preliminary analysis, they were able to put a limit on the fraction of
muon neutrinos transition to muon anti-neutrinos [14]:P(νµ → ν̄µ)< 0.026(90% c.l.).

Assuming CPT, this limit can be written as
Γνµ−ν̄µ
Γνµ−νµ

< 0.026. In the limit of ultrarelativistic

neutrinos,Eνi ≃ Eν(1+m2
νi
/2Eν), keeping only the leading terms in themνi/Eν terms,

and using our expresion for the total rate, we get
∣

∣

∣

∣

∣

∑
i

U2
µ imνi e

it
m2

νi
2Eν

∣

∣

∣

∣

∣

2

. 0.001×E2
ν (8)



To illustrate the usefulness of this relation, let us consider the general case of 3
generations. In this case, one finds

0.001 × E2
ν >∼

∣

∣〈mµµ〉
∣

∣

2−4 ∑
i> j

Re
(

U2
µ iU

∗2
µ j

)

mνi mν j sin2 ∆mi j L

4Eν

− 2 ∑
i> j

Im
(

U2
µ iU

∗2
µ j

)

mνi mν j sin
∆mi j L

2Eν
(9)

Assuming that the only phases that appear in the neutrino mixing matrix are the
Majorana phases, it is possible to get a bound on the effective muon-neutrino Majorana
mass, only depending on the values of the Majorana phases as the oscillation terms
cannot be neglected. In such a case, Eq.(9) can be written as:

0.001×E2
ν >∼

∣

∣〈mµµ〉
∣

∣

2±4 sin
(γ32

2

)

mν2mν3|U2
µ2U

∗2
µ3|sin

(

2α2−2α3±
γ32

2

)

− 4sin
(γ21

2

)

mν2mν1|U2
µ1||U∗2

µ2|sin
(

α1+
γ21

2

)

± 4sin
(γ31

2

)

mν1mν3|U2
µ1||U∗2

µ3|sin
(

α2±
γ31

2

)

(10)

whereγi j =
∆mi j L(km)
2Eν (GeV) , and the positive and negative signs refer to normal and inverted

hierarchies, respectively.

We can further neglect sinγ21 ≈ 0 such thatmν1 ≈ mν2 at first order inO(
∆m2

12
4Eν

) for
the fixed experimental parameters in MINOS, then Eq.(10) canbe written as

0.001×E2
ν >∼

∣

∣〈mµµ〉
∣

∣

2
+A(α1,α2)mν2mν3

>∼
∣

∣〈mµµ〉
∣

∣

2
(11)

where the coefficientA(α1,α2) is a function of the Majorana phases. In Fig. (2) we
show the regions in whichA(α1,α2)> 0 is satisfied for both cases of normal or inverted
hierarchies, and therefore we can find a stringent bound on the effective Majorana mass.

Thus, usingEν ≈ 2 GeV, one gets the following bound on|〈mµµ〉|<∼ 64 MeV.

Over the excluded regions it is not possible to get a conservative bound on|〈mµµ〉|
without making extra assumptions on the neutrino mass matrix, however Eq.(9) can be
used to bound Majorana parameters (masses and phases) whichappear in|〈mµµ〉|. As
an example, if 0≤ 2(α2−α3)≤ π −γ/2 and assuming that the effective muon-neutrino
Majorana mass is dominated bymν2 and mν3 (the two flavour limit case) , it is still
possible to get the following conservative bound:|〈mµµ〉|<∼ 109 MeV.

The bound obtained above for|〈mµµ〉| is a factor of 3 above the trivial kinematical
boundmπ −mµ ≈34 MeV that is allowed for the (on-shell) muon neutrino in pion decay.
However, this kinematical bound applies only to the effective mass of a lepton-number
conserving muon neutrino (π+ → µ+νµ ).

A bound on the effective Majorana mass of the muon neutrino, which is independent
of the mass hierarchies and Majorana phases, can be obtainedusing the fluxes ofνµ
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Figure 2. Region of the parametric space (α,β ) for which theA(α,β ) coefficient is positive. The light
and dark gray zones correspond to an inverted and normal hierarchy schemes respectively.

andν̄µ measured with the near detector of the MINOS experiment [19]. Since the near
detector is locatedL=1.04 km away from the target and for neutrino energies above
1 GeV, all oscillatory terms in Eq. (5) are equal to 1. Under the assumption that the
excess of̄νµ events arises fromνµ → ν̄µ transitions we get (note the muon-neutrino and
muon-antineutrino total cross sections induced by chargedcurrents are flat for neutrino
energies above 2 GeV [2]):

|〈mµµ〉|2
∫ dEν

E2
ν

∫

dEν
≤
∫

(ΦObs
ν̄µ

(Eν)−ΦMC
ν̄µ

(Eν))dEν
∫

ΦObs
νµ (Eν)dEν

. (12)

whereΦObs(MC)
ν,ν̄ denote the observed(expected) fluxes. Using the expected and measured

integrated fluxes by the MINOS collaboration for the energy region 5≤ Eν ≤ 50 GeV,
we get the following bound:|〈mµµ〉| ≤ 2.7 GeV , which looks rather poor compared to
the value reported above.

LEPTON NUMBER VIOLATION AT THE NEUTRINO SOURCE

Let us consider next a virtual neutrino(antineutrino) produced together with a posi-
tively(negatively) charged muon at the space time location(x, t), it the travels to(x′, t ′)
and is detected there because it interacts with a target producing a positively(negatively)
charged lepton. We are assuming this∆L = 2 process is due to NSI interactions at the
production vertex. For defitness, we illustrate this process with production of a antineu-
trino(neutrino) in theπ+(π−) decay and its late detection via its weak interaction with a
target nucleonN.

π+(p1)→ µ+(p2)+νc
s(p) →֒ νc

d(p)+N(pN)→ N′(pN′)+ l+(pl) (13)



This effective states are not necessarily∆L conserving once NSI interactions are in-
troduced. If we assume that neutrinos are left-handed,∆L = 2 semi-leptonic interactions
can be described by the following effective Hamiltonian,

H = 2
√

2GFVud

{

Ck
1

(

νc
kγαPRµ

)(

dγαPRu
)

+Ck
2

(

νc
kγαPRµ

)(

dγαPLu
)

+Ck
(3,4)

(

νc
kPLµ

)(

dP(R,L)u
)

+Ck
5(R,L)

(

νc
kσαβ PRµ

)

(

dσ αβ P(R,L)u
)}

, (14)

whereνk denotes a neutrino with flavork andPR,L = (1± γ5)/2.
In the following and for simplicity, we consider the case where lepton number violation
occurs only at theπ+ decay vertex. Note that the tensor currents proportional tothe
Ck

5L(R) Wilson coefficients will not contribute toπ+ decay because it is not possible to
generate an antisymmetric tensor from the pion momentum alone. Thus, the only non-
vanishing hadronic matrix elements at the production vertex are:

〈0|dγµγ5u|π+〉= i fπ pµ
π , 〈0|dγ5u|π+〉 =

−i fπm2
π

mu+md
, (15)

where fπ = 130 MeV is the pion decay constant andmu,d denote the light quark masses.
Again we shall neglect theq2-dependence of the nucleon form factors (namely, we take
gV = gV(q2 = 0) = 1 andgA = gA(q2 = 0) ≈ −1.27 [2]). In this case the total rate of
the∆L = 2 is factorized:

|Tνµ−νc
µ (τ)|2 ≃ Γπ

1
2
(A2m2

π +B2m2
µ −2ℜ[AB∗])P(νc

µ → νc
µ)σν

with τ = (t ′− t)> 0 is the time elapsed from the production to the detection space-time
locations of neutrinos. TheA,B coefficients are given by,

Bµ ≡−i(Cµ∗
1 −Cµ∗

2 ) , Aµ =
−im2

π
mu+md

(Cµ∗
3 −Cµ∗

4 ) (16)

We shall attempt to constrain the LNV parameters with the MINOS preliminary
results [14]:P(νµ → ν̄µ)< 0.026(90% c.l.)., this is,

(A2m2
π +B2m2

µ −2ℜ[AB∗]). 0.05 (17)

As an example let us apply the previous formalism to the MSSM without R-Parity
conservation, but requiring the conservation of baryon number to ensure the proton is
stable. The must superpotential that conserves bayon number is

W∆L=1 = λi jkLi ·L j ēk+λ ′
i jkLi ·Q j d̄k+µ i

LLi ·Hu (18)

here the “·” is a SU(2) product, thereforeλi jk is antisymmetric ini, j. The summation
over the generation indicesi, j,k = 1,2,3 is understood. The bar symbol represents an
antiparticle and not the Dirac conjugation. We can expand the Yukawa terms in the
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Figure 3. ∆L = 2 SUSY contribution to theπ+ → µ++νc

Lagrangian as

L = λi jk

[

ν̃ i
Lek

Rej
L + ẽj

Lek
Rν i

L + ẽ∗k
R(ν i

L)
cej

L − (i ↔ j)
]

+ λ ′
i jk

[

ν̃ i
Ldk

Rd j
L + d̃ j

Ldk
Rν i

L+ d̃∗k
R(ν i

L)
cd j

L − ẽi
Ldk

Ru j
L

− ũ j
Ldk

Rei
L − d̃∗k

R(e
i
L)

cui
L

]

+ h.c. (19)

The corresponding effective hamiltonian (Fig.3) is therefore,

He f f =
GF√

2
Vud∑

i

(

(ν̄γρPLµ)(d̄γρPLu)+C2(ν̄PRµ)(d̄PLu)+C3(νcPLµ)(d̄PLu)
)

(20)

The Wilson coefficients can be expressed asCi = CSM
i +CSUSY

i . For i = 2,3 theCSM
i

vanish identically, andC1 = 1. In this respect, the Wilson coefficientsCi are given by

C2 =

√
2

GFVud
(

1
m̃2)(λ

∗
122λ

′
211+λ232λ311) , C3 =

√
2

GFVud
(

1
m̃4)∑

A,B

λ12Aλ ′
B11(δ

l
RL)AB (21)

Using our previous results (Eq. 17) for typical slepton masses of 200GeV, we obtain
∑A,Bλ12Aλ ′

B11(δ
l
RL)AB. 10−4.

CONCLUSIONS

The production of leptons with same charges at the production and detection vertices of
neutrinos will be a clear manifestation of|∆L| = 2 processes. One interesting result
is that the time evolution probability of the whole process is not factorizable into
production, oscillation and detection probabilities, as is the case in neutrino oscillations
[15]. We find that, for very short times of propagation of neutrinos, the observation of
µ+µ+ events would lead to a direct bound on the effective mass of muon Majorana
neutrinos. In the case of long-baseline neutrino experiments, the CP rate asymmetry
for production ofµ+µ+/µ−µ− events would lead to direct bounds on the difference
of CP-violating Majorana phases. Finally, using the current bound on muon neutrino-
antineutrino oscillations reported by the MINOS Collaboration we are able to set the
bound〈mµµ〉<∼ 64 MeV, which is the first direct limit on the neutrino masses,although
it is still several orders of magnitude below current indirect bounds reported in the



literature. Future results from MINOS are expected from theanalysis of twice the data
set used to get the bound reported so far [14] and quoted in Eq.(12) above. Since
current uncertainties in the observed and expected number of ν̄µ events are dominated
by statistical errors [14], we could expect only a slight improvement by a factor 1/

√
2

on the effective Majorana mass of the muon neutrino. Neutrino factories may improve
this bound by more than one order of magnitude.

We also show the possibility to constrain LNV interactions,such as theλ ,λ ′ terms in
the SUSY superpotential with R-Parity violation, for the case in which the observation
of the final states, same-charged muons at the production anddetection of neutrinos, is
a result of non standard lepton number violating interactions at the neutrino source.
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