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Abstract. The δ-regime of QCD is characterised by light quarks in a small spatial box, but
a large extent in (Euclidean) time. In this setting a specific variant of chiral perturbation
theory — the δ-expansion — applies, based on a quantum mechanical treatment of the quasi
one-dimensional system. In particular, for vanishing quark masses one obtains a residual pion
mass, which has been computed to the third order in the δ-expansion. A comparison with
numerical measurements of this residual mass allows for a new determination of some Low
Energy Constants, which appear in the chiral Lagrangian. We first review the attempts to
simulate directly in the δ-regime, which is very difficult. Then we show that an extrapolation
of pion masses measured in a larger volume towards the δ-regime leads to good agreement with
the theoretical predictions. From these results, we also extract a value for the (controversial)
sub-leading Low Energy Constant l̄3.

1. QCD and Chiral Perturbation Theory

The Lagrangian of QCD is scale invariant, but its quantisation singles out an intrinsic energy
ΛQCD, which sets the scale for the hadron spectrum. Our daily life is dominated by low energy
and therefore by the lightest quark flavours, i.e. quarks with masses mq ≪ ΛQCD. In the limit of
vanishing quark masses, their left- and right-handed spinor components (ΨL and ΨR) decouple.
Thus the Lagrangian takes the structure

LQCD = Ψ̄LDΨL + Ψ̄RDΨR + Lgauge , (1)



where D is the Dirac operator. For Nf massless quark flavours, this Lagrangian has the global
symmetry

U(Nf )L ⊗ U(Nf )R = SU(Nf )L ⊗ SU(Nf )R
︸ ︷︷ ︸

chiral flavour symmetry

⊗ U(1)V
︸ ︷︷ ︸

baryon number conservation

⊗ U(1)A
︸ ︷︷ ︸

axial symmetry

. (2)

Here we split off the phases; the symmetry under simultaneous left- and right-handed phase
rotation, U(1)V , corresponds to the conservation of the baryon number. The remaining U(1)A
symmetry — for opposite L and R phase rotations — is the axial symmetry. That is a symmetry
of the classical theory, which breaks explicitly under quantisation, i.e. it is anomalous. Here we
are interested in the remaining chiral flavour symmetry, which breaks spontaneously,

SU(Nf )L ⊗ SU(Nf )R −→ SU(Nf )L+R . (3)

Chiral Perturbation Theory (χPT) deals with an effective Lagrangian in term of fields in the
coset space of this spontaneous symmetry breaking, U(x) ∈ SU(Nf ) [1]. Thus it captures the
lightest degrees of freedom, which dominate low energy physics, in this case given by N2

f − 1
Nambu-Goldstone bosons. The effective chiral Lagrangian Leff embraces all terms which are
compatible with the symmetries. This concept also extends to the case where small quark
masses are added, mq >∼ 0. Then one deals with light pseudo Nambu-Goldstone bosons, which
are identified with the light mesons; for Nf = 3 this involves the pions, the kaons and the
η-meson.

Here we consider the case Nf = 2, so we only deal with the quark flavours u and d. We
assume them to be degenerate; they both have the mass mq. In this case the field U(x) ∈ SU(2)
describes the pion triplet. The terms in Leff are ordered according to an energy hierarchy, which
depends on the number of derivatives and powers of mq. Some of the first terms are

Leff =
1

4
F 2

π Tr[∂µU †∂µU ] +
1

2
Σmq Tr[U + U †]

+
1

4
l1
(

Tr[∂µU †∂µU ]
)2

+
1

4
l2
(

Tr[∂µU †∂νU ]
)2

+(l3 + l4)
(Σmq

2Fπ

)2 (

Tr[U + U †]
)2

− l4
Σmq

4Fπ
Tr[∂µU †∂νU ] Tr[U + U †] + . . . (4)

Each term comes with a coefficient, which is a free parameter of the effective theory. These
coefficients are known as the Low Energy Constants (LECs). The leading LECs are the pion
decay constant Fπ (which was measured as Fπ = 92.4 MeV) and the chiral condensate Σ
(the order parameter for chiral symmetry breaking). The li are sub-leading LECs. In the
chiral limit mq = 0, only Fπ occurs in the leading order. This determines an intrinsic scale
Λχ = 4πFπ ≃ 1.2 GeV, which adopts the rôle of ΛQCD in χPT.

The LECs are of primary importance for low energy hadron physics. To some extent they can
be fixed from phenomenology. On the theoretical side, they can only be determined from QCD
as the underlying fundamental theory. Since this refers to low energy, it is a non-perturbative
task, and therefore a challenge for lattice simulations. If one succeeds in their determination,
we arrive at a rather complete, QCD-based formalism for low energy hadron physics.

2. Pions in a finite volume: p-regime, ǫ-regime and δ-regime

For a system of pions in a finite volume, say with periodic boundary conditions and with a
characteristic extent L, the low energy expansion can be formulated in terms of the dimensionless
lowest non-zero momentum pµ/Λχ ∼ 1/(2FπL), and of the correlation length ξ = M−1

π (Mπ is



the pion mass). Both pµ and Mπ should be light compared to Λχ. Depending on the size and
shape of the volume, one distinguishes various regimes, with different counting rules for these
expansion parameters:

• p-Regime: This is the standard setting with a large volume, L ≫ ξ, and therefore small finite
size effects [2]. In this case the counting is simply O(1/L) = O(Mπ). From the Lagrangian
we can read off (on tree level) the Gell-Mann–Oakes–Renner relation

M2
π =

Σ

F 2
π

mq . (5)

• ǫ-Regime: This regime refers to a small box in Euclidean space [3], say V = L4 with
L<∼ ξ (where ξ is still the would-be inverse pion mass in a large volume, with the same
quark mass; in Nature ξ ≃ 1.5 fm). In this regime, the χPT counting rules read
O(1/L) = O(mq) = O(M2

π/Λχ), unlike the p-regime counting.
Experimentally the ǫ-regime is not accessible, but QCD simulations in this regime are
feasible. They are of interest in particular because the LECs determined in this regime
are the same that occur in large volume. Therefore we can extract physical information
even from an unphysical regime. Since this can be achieved with a modest lattice size, this
method is attractive from a practical perspective [4]. It has been intensively explored since
2003. It is difficult to simulate safely inside this regime, but certain properties, which are
characteristic for the ǫ-regime, have been observed. Ref. [5] provides a short overview.

• δ-Regime: Here one deals with a small spatial volume, but a large extent T in Euclidean
time [6], say

L3 × T , L<∼ ξ ≪ T . (6)

This relation for L and T is depicted in Fig. 1 on the left (it is exactly opposite to the setting
used in studies of QCD at finite temperature). The counting rules for the corresponding
δ-expansion are

1

ΛχL
= O(δ) ,

Mπ

Λχ
,

1

ΛχT
= O(δ3) . (7)

A map of these three regimes in terms of the pion mass and the inverse extent in Euclidean
time (the temperature) is shown in Fig. 1 on the right.

This article addresses the δ-regime. It is far less known and explored than the p- and the ǫ-
regime, but it shares with the latter the exciting property that physical LECs can be extracted
from an unphysical setting. A further motivation for studying QCD in a “δ-box” is that its
shape allows (approximately) for a simplified analytical treatment in terms of 1d field theory,
i.e. quantum mechanics. In this case one considers a quantum rotator as described by the 1d
O(4) model, due to the local isomorphy between the orthogonal group O(4) and the chiral
symmetry group SU(2)L ⊗ SU(2)R. This system has also applications in solid state physics, in
particular regarding the anti-ferromagnetic quantum Heisenberg model [7].

Spontaneous symmetry breaking does not occur in a finite volume. Therefore the pions1 —
i.e. the pseudo Nambu-Goldstone bosons — cannot become massless in the chiral limit mq = 0,
in contrast to the infinite volume. We may consider a fixed box of a δ-shape and vary the quark
mass: a large value of mq implies a large pion mass, so that we enter the p-regime and the
Gell-Mann–Oakes–Renner relation (5), mq ∝ M2

π , is approximated. For small mq the pion mass
turns into a plateau, which ends in the chiral limit at a residual pion mass MR

π . This behaviour
is illustrated schematically in Fig. 2.

1 One might argue if the term “pion” is adequate in the δ-regime. We find it acceptable and convenient, but
readers who disagree may simply denote M

R

π (see below) as the “mass gap”.
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Figure 1. On the left: an illustration of a typical shape of a δ-box, i.e. an anisotropic finite
volume where a pion gas can be treated by the δ-expansion. On the right: a schematic map
of the applicability domains of three different expansion rules of χPT, namely the p- , the ǫ-
and the δ-regime. The dashed lines indicate regions where clearly one expansion holds; in the
transition zones between these regions various expansions could work more or less.
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Figure 2. A qualitative picture of the expected behaviour of the pion mass squared in a δ-box.
For heavy quarks and pions we approximate the p-regime relation mq ∝ M2

π . For light quarks
the pion mass attains a plateau, and finally (in the chiral limit mq = 0) the residual value MR

π .

The value of MR
π can be computed with the δ-expansion. The spectrum of the O(4) quantum

rotator (a quantum mechanical particle on the sphere S3) is given by Eℓ = ℓ(ℓ+2)/(2Θ), so the
mass gap amounts to MR

π = 3/(2Θ). The challenge is now to compute the moment of inertia
Θ. In his seminal paper on the δ-regime, H. Leutwyler gave its value to leading order (LO) as
Θ ≈ F 2

πL3. Thus the residual pion mass can be written as

MR
π =

3

2F 2
πL3(1 + ∆)

. (8)

The shift ∆ captures higher order corrections, which are suppressed in powers of 1/(FπL)2.
They have been evaluated to next-to-leading order (NLO) in Ref. [8], and recently even to



next-to-next-to-leading order (NNLO) [9], which yields

∆ =
0.452 . . .

F 2
πL2

+
0.0884 . . .

F 4
πL4

[

1 − 0.160 . . .
(

ln(Λ1L) + 4 ln(Λ2L)
)]

. (9)

Λi are scale parameters for the sub-leading LECs. The latter are given at the scale of the
physical pion mass as

l̄i = ln(Λi/M
phys
π )2 . (10)

Even more recent papers addressed again the NNLO of the δ-expansion [10], and the corrections
at finite mq [11]. In the following we will discuss numerical results for MR

π . We see that a
confrontation with the analytical prediction in eqs. (8), (9) could enable a new determination of
a set of LECs from first principles of QCD.

3. Attempts to simulate QCD in the δ-regime

The straight way to measure MR
π are simulations directly in the δ-regime. Since the δ-box

differs from the lattice shapes in usual simulations, this requires the special purpose generation
of configurations. Moreover, precise chirality is vital in this regime, hence one is supposed to
use a formulation of lattice quarks which preserves chiral symmetry. Such lattice fermions are
known since the late 90ies, but their simulation is extremely tedious, in particular with dynamical
quarks (i.e. keeping track of the fermion determinant in the generation of gauge configurations).
We anticipate that so far there are no robust results from simulations in the δ-regime. In this
section we summarise the efforts that have been carried out so far.

At the Symposium LATTICE2005 D. Hierl presented a first attempt to simulate 2-flavour
QCD in the δ-regime [12]. That study used a truncated version of a chiral lattice Dirac operator,
so a first question is if the quality of approximate chirality was sufficient for that purpose. Since
this Dirac operator is very complicated, that simulation was performed with a non-standard
algorithm, which probes the fermion determinant with a stochastic estimator. The spatial
volume was ≈ (1.2 fm)3, and the results for Mπ at small quark masses agreed well with the LO
of the δ-expansion, i.e. eq. (8) at ∆ = 0 (and with the phenomenological value of Fπ).

In 2007 the QCDSF Collaboration generated a new set of data, which have not been published.
They were obtained with dynamical overlap quarks, which are exactly chiral. This simulation
used the Hybrid Monte Carlo algorithm (i.e. the reliable standard algorithm). The lattice had
a modest size of 83 × 16 sites, and the spatial box length was again L ≈ 1.2 fm. At first sight
they seem to look fine: for decreasing mq we saw a transition from a Gell-Mann–Oakes–Renner
type behaviour towards a plateau. Its value agreed with the chirally extrapolated value of Ref.
[12], and therefore with the LO of eq. (8).

Unfortunately, this is not the end of the story. If we proceed to the NLO correction, i.e. if
we include the first term of ∆ given in eq. (9), the predicted value for MR

π decreases drastically
in this small volume — from 782.5 MeV down to 321.7 MeV — and the agreement with the
above data is gone. Considering this dramatic effect of the NLO correction one might worry
that the δ-expansion could converge only very slowly in this small box, and such simulations are
not instructive at all. However, adding also the NNLO correction alters the NLO result only a
little — to (336.3±7.6) MeV — so it is reasonable to assume the δ-expansion to be already well
converged.2

Thus simulations in this small box can be useful in view of a confrontation with the analytical
predictions for MR

π . In fact a second sequence of runs by the QCDSF Collaboration (performed

2 To obtain this theoretically predicted value, we inserted the LECs as far as they are known. In particular the
sub-leading LECs l̄1 = −0.4±0.6 and l̄2 = 4.1±0.1 are taken from Ref. [13], along with their uncertainties, which
imply an uncertainty in the NNLO value of M

R

π .



mq a [fm] Mπ MR
π (NNLO)

0.008 0.102(9) (535.8 ± 54.5) MeV (510.2 ± 28.3) MeV
0.01 0.104(8) (580.5 ± 47.2) MeV (506.8 ± 30.8) MeV
0.03 0.114(8) (444.8 ± 31.4) MeV (476.2 ± 33.7) MeV
0.04 0.111(8) (476.4 ± 34.7) MeV (486.2 ± 32.9) MeV
0.05 0.111(9) (511.9 ± 43.9) MeV (486.2 ± 35.3) MeV

Table 1. The results by QCDSF Collaboration of the year 2008, on a 83 × 16 lattice with 5
values of the mass mq for the two degenerate dynamical overlap quark flavours. We display
the measured values of the physical lattice spacing a (based on the Sommer scale) and the pion
mass, as well as the NNLO prediction for the residual pion mass MR

π .

in 2008) yielded data much closer to the NNLO prediction. They involved 5 quark masses; the
results for the physical lattice spacing a and the pion mass are given in Table 1. Since a varies
for the different values of mq, the prediction for MR

π varies as well. In Fig. 3 we compare the
numerically measured pion masses and the corresponding NNLO δ-expansion results. They
are compatible, in contrast to the earlier data, which were probably not well thermalised.
Considering the histories of the second run, however, it is still not clear if thermalisation is
really on safe grounds; this is an extremely tedious issue for dynamical overlap fermions. For
this reason the results of the second run have not been published either so far. Still it is
noteworthy that the right magnitude for the residual pion mass has been attained.
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Figure 3. An illustration of our results given in Table 1: we show the numerically measured
pion mass and the theoretical residual mass MR

π , as predicted by the NNLO δ-expansion. (The
latter actually refer to the chiral limit, but its value depends on L and therefore on the lattice
spacing a, which varies for the simulations at different mq.) We observe a decent agreement
between the measured and the predicted values.

4. Residual pion mass by an extrapolation from the p-regime

In this section we proceed to a different approach. It is based on simulation results in the p-
regime (up to the transition zone), which are then extrapolated towards the δ-regime. Details of
this study are given in Ref. [14]. Also in this framework we consider it essential to use dynamical
quarks, but we do not insist on exact chiral symmetry in the p-regime. Hence we used Wilson



fermions, which is an established standard lattice fermion formulation, in a form which corrects
O(a) lattice artifacts. Thus the simulation was much faster, and we could tackle much larger
lattices than those mentioned in the Section 3; our data reported below were obtained on three
lattice sizes: 243×48 , 323×64 and 403×64 . On the other hand, this lattice regularisation breaks
the chiral symmetry explicitly, so that additive mass renormalisation sets in. Nevertheless we
were able to attain very light pion masses.

For the gauge part we used the standard plaquette lattice action. Our simulations were
carried out at two values for the strong gauge coupling gs, respectively the parameter β = 6/g2

s .
Here we evaluated the physical lattice spacing a from measurements of the nucleon mass, which
revealed that we were dealing with fine lattices,

β = 5.29 → a ≃ 0.075 fm , β = 5.4 → a ≃ 0.067 fm . (11)

Thus the spatial size was in the range L = 1.6 fm . . . 3.0 fm. Due to the additive mass
renormalisation, we could not refer to the bare quark mass anymore. We measured the current
quark mass by means of the PCAC relation,

mq =
〈∂4A4(~0, x4)P (0)〉

〈P (~0, x4)P (0)〉
, (12)

where P is the pseudoscalar density, and Aµ is the axial current. We observed practically no
finite size effects on a and on mq, but we did see a striking L-dependence of Mπ, as expected.
These quantities were found in the range

mq = 3.60 MeV . . . 231 MeV , Mπ = 174 MeV . . . 1.52 GeV , MπL = 2.6 . . . 9.7 . (13)

The latter confirms that our data range from the deep p-regime to the transition zone. A few
missing data points have been completed with a (lengthy) formula for exponentially suppressed
finite size effects [15, 16] within the p-regime, which holds up to O(p4). This formula involves
the renormalised sub-leading LECs l̄i, i = 1 . . . 4, see eqs. (4) and (10). Well established
phenomenological values were summarised in Ref. [13],

l̄1 = −0.4 ± 0.6 , l̄2 = 4.1 ± 0.1 , l̄3 = 2.9 ± 2.4 , l̄4 = 4.4 ± 0.4 . (14)

The LECs l̄1, l̄2 (anticipated in footnote 2) were estimated from ππ scattering data, and the l̄4
value is based on the pion scalar radius. The dark horse in this context is l̄3: we replaced the
above value by l̄3 ≈ 4.2, which we obtained in this study, see below.

Our measured and interpolated data are given in Ref. [14]. We extrapolated them towards
the δ-regime and extracted in particular a value for MR

π based on the relatively simple chiral
extrapolation formula [13]

Mπ(L)2 = MR 2
π + C1mq [1 + C2mq ln(C3mq)] , (15)

which interpolates between the O(p4) correction formula (for large LMπ) and the chiral limit.
The Ci and MR

π are treated as free parameters to be fixed by the fit. Our data and the fits for
β = 5.29 and for β = 5.4 are shown in Figs. 4 and 5, respectively. These plots also illustrate the
extrapolation result for MR

π in the chiral limit.
Our main result is shown in Fig. 6. It compares the extrapolated values for MR

π with the
predictions based on the δ-expansion to LO, NLO and NNLO, as a function of L. The latter two
predictions are very close to each other for the volumes under consideration, so we can again
assume the expansion to be well converged.
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Figure 4. Our chiral extrapolation referring to the lattice spacing a ≃ 0.075 fm (corresponding
to β = 5.29) with L ≃ 1.8 fm (on the left) and L ≃ 3.0 fm (on the right). The data points
show the measured pion mass squared against the quark mass in the p-regime (the Sommer scale
parameter r0 = 0.467 fm is employed to convert them into dimensionless units). The curve is
the fit according to eq. (15). It ends in the chiral limit, where we illustrate the extrapolated
value for MR

π and its error.
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Figure 5. The same as Fig. 4, but now for the finer lattices with a ≃ 0.067 fm (corresponding
to β = 5.4), such that L ≃ 1.6 fm (on the left) and L ≃ 2.1 fm (on the right).

The extrapolation results for MR
π reach down to values even below the physical pion mass.

The plot also shows the line where the product MπL decreases below 1; this can be roughly
considered as the boundary of the δ-regime. Our extrapolations lead close to this boundary, and
in one case into the δ-regime.3

In particular this plot shows that the extrapolated masses MR
π match this curve remarkably

well. It would not have been obvious to predict this feature, because our data were obtained in

3 In that case, the extrapolation should actually turn into a plateau at tiny mq, but this would hardly change
the result.
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Figure 6. A comparison of our extrapolated values for the residual pion mass MR
π with the

predictions by the δ-expansion, as functions of the spatial box size L. We observe a remarkably
good agreement. In our largest volume, the extrapolated MR

π is located below the physical pion
mass, and in the region MR

π L < 1, which can be viewed as the domain of the δ-regime.

a regime where the basis of the δ-expansion (frozen spatial degrees of freedom) does not hold.
This suggests that the extrapolation formula (15) applies well in a sizable domain.

5. Evaluation of Low Energy Constants

By fitting our pion mass data according to eq. (15), we obtained results for the four free fitting
parameters. In Section 4 we discussed the results for MR

π that we obtained in this way. Moreover,
the results for C1, C2 and C3 can be used to evaluate the notorious sub-leading LEC l̄3 [14].
This is how we obtained our value that we anticipated in Section 4,

l̄3 = 2

(

4π

Mphys
π

)2
C2

C1

ln
C1

C3

= 4.2 ± 0.2 . (16)

(The error given here emerges from the fits, the additional systematic error would be hard to
estimate). In view of other results in the literature, this value is in the upper region. An overview
has been presented in Ref. [17], in particular in Table 11 and Figure 9. This overview estimates
the world average as l̄3 = 3.3(7).

In the previous considerations of Sections 4 and 5, we used to insert the physical value of the
pion decay constant, Fπ = 92.4 MeV. Alternatively, we could also treat Fπ as a free parameter
to be determined by the fits. In particular, matching MR

π this yields in the chiral limit [14]

F numerical
π

∣
∣
∣
mq=0

= 78+14
−10 MeV , (17)

which seems a bit low. However, effective field theory considerations suggest indeed that
the value of Fπ in the chiral limit should be below the physical value; Ref. [17] estimated
Fπ|mq=0 ≈ 86 MeV.



6. Conclusions

The δ-regime refers to a system of pions in a finite box, typically of the shape L3 × T with
L<∼M−1

π ≪ T . It can be treated by Chiral Perturbation Theory with suitable counting rules,

the δ-expansion. In particular this predicts the residual pion mass in the chiral limit, MR
π , which

has been computed recently to NNLO [9].
First attempts to simulate 2-flavour QCD in the δ-regime were confronted with severe

technical difficulties. We managed to obtain the pion mass for light quarks in the right
magnitude, though the data are not fully reliable so far, mostly due to thermalisation problems.

In another pilot study we measured pion masses in the p-regime (up to the transition region)
and extrapolated them towards the δ-regime. This yields numerical results for MR

π , which
agree remarkably well with the predictions by the δ-expansion. That expansion is based on
assumptions, which do not hold in the regime where the data were obtained. Therefore it would
not have been obvious to predict the observed agreement. This comparison can be viewed as a
numerical experiment, which led to an interesting observation.

Our pion mass fits from the p- towards the δ-regime also fix some further constants, which
allow for a new determination of the (mysterious) sub-leading Low Energy Constant l̄3; we
obtained l̄3 = 4.2(2). This is somewhat above the average of the phenomenological and numerical
estimates in the literature. The constant l̄3 is relevant in the effective description of ππ scattering.

Finally we also considered the option to treat Fπ as a free parameter. In the chiral limit the
fits lead to a value somewhat below the phenomenological Fπ.

Robust numerical results, measured directly in the δ-regime, are still outstanding.
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