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Abstract. We present the current status of ongoing efforts to use functional methods, Dyson-
Schwinger equations and functional renormalization group equations, for the description of
the infrared regime of nonabelian (pure) gauge theories. In particular, we present a new
determination of the color-Coulomb potential with the help of the functional renormalization
group that results in an almost linearly rising potential between static color charges at large
spatial distances.

1. Introduction

Important progress has been achieved over the last decade in the description of the deep infrared
region of nonabelian gauge theories with the help of functional methods, employing Coulomb
gauge fixing. By functional methods we refer to semi-analytical tools that do not make use of
the discretization of space-time as does lattice gauge theory. Specifically, equations of Dyson-
Schwinger-type arising from a variational principle have been used, and more recently functional
renormalization group equations. In this contribution, we will report on the current status of
these investigations. We will focus exclusively on pure gauge theories, more specifically SU(N)
Yang-Mills theory, but include static color charges so as to obtain a description of the heavy
quark potential, as in quenched approximations.

We will start by briefly describing the general theoretical setup: the Hamiltonian framework
is used, where the Weyl and Coulomb gauge conditions, Aa

0(x) = 0 and ∇ · Aa(x) = 0, are
imposed on the SU(N) gauge fields. Physical states are described by wave functionals of Aa(x)
with scalar product

〈φ|ψ〉 =

∫
D[A] J [A]φ∗[A]ψ[A] . (1)

Here, J [A] stands for the Faddeev-Popov (FP) determinant J [A] = Det (−∇·D) with the spatial
covariant derivative Dab = δab∇+gfabcAc(x). The functional integral in (1) is understood to be
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restricted to spatially transverse gauge fields, i.e. those that fulfill the gauge fixing conditions.
The dynamics is defined by the Christ-Lee Hamiltonian H [1] that we do not write out. In

the presence of a static color charge density ρa
q(x), H contains the interaction term

Hq =
1

2

∫
d3x d3y ρa

q(x)F ab(x,y)ρb
q(y) (2)

with the integral kernel

F ab(x,y) = 〈x, a|(−∇ · D)−1(−∇2)(−∇ · D)−1|y, b〉 . (3)

The vacuum expectation value
〈
F ab(x,y)

〉
is called the color-Coulomb potential. It is suppposed

to give the dominant contribution to the confining interaction between color charges. More
precisely, for large spatial distances the color-Coulomb potential provides an upper bound for
the Wilson potential [2].

For the following, it will be convenient to write the FP determinant in a local form by
introducing ghost fields,

J [A] = Det (−∇ · D) =

∫
D[c̄, c] exp

(
−

∫
d3x c̄a(x)(−∇ · Dab)cb(x)

)
. (4)

In our analysis, we will focus on the equal-time correlation functions, i.e. the vacuum expectation
values of products of the field operators Aa(x) (transverse), ca(x) and c̄a(x). We can easily write
down an expression for the generating functional of these correlation functions,

Z[J, η, η̄] =

∫
D[c̄, c,A] e−

R
d3x c̄(−∇·D)c |ψ[A]|2

× exp

(∫
d3x [Ja(x) · Aa(x) + c̄a(x)ηa(x) + η̄a(x)ca(x)]

)
, (5)

where ψ[A] is the vacuum wave functional. If we formally define an “action” S[A] through
|ψ[A]|2 = e−S[A], (5) looks like the usual generating functional of Euclidean Green’s functions in
the covariant Lagrangian formulation of the theory, only in three instead of four dimensions. Of
course, S[A] is a complicated and a priori unknown functional of Aa(x). We will parametrize
the “propagators”, the equal-time two-point correlation functions of the theory, in the most
general way (restricted by symmetries) as follows:

〈
Aa

i (p)Ab
j(−q)

〉
=

1

2ω(p)
δab

(
δij −

pipj

p2

)
(2π)3δ(p − q) , (6)

〈
ca(p) c̄b(−q)

〉
=

〈
〈p, a|(−∇ · D)−1|q, b〉

〉
=
d(p)

p2
δab (2π)3δ(p − q) . (7)

Here and in the following, we use the notation p = |p|. The functions ω(p) and d(p) will be of
central interest in the rest of this contribution. Notice that the ghost propagator (7) is just the
vacuum expectation value of the inverse FP operator (or rather, its integral kernel).

2. Variational principle: Dyson-Schwinger equations

A set of equations of Dyson-Schwinger-type for the equal-time correlation functions of the theory
was obtained in Ref. [3] from the variational principle, using a Gaussian ansatz for the vacuum



wave functional. The contribution of the FP determinant was fully taken into account in [4, 5].
We write the ansatz for the vacuum functional as

|ψ[A]|2 = e−
eS[A] , S̃[A] =

1

2

∫
d3p

(2π)3
Aa

i (−p) 2ω̃(p)Aa
i (p) . (8)

Then the variational principle with respect to the unknown function ω̃(p),

δ

δω̃(p)
〈H〉 = 0 , (9)

leads to a gap equation for the equal-time gluon propagator. The detailed form of the equation
as well as the approximations involved in its derivation can be found in [4, 5].

The gap equation involves, apart from the gluon propagator, the ghost propagator and the
color-Coulomb potential, hence further input is needed in order to arrive at a closed system of
equations. The generating functional (5) can be used to derive a Dyson-Schwinger (DS) equation
for the ghost propagator in the usual way:

p2d−1(p) ≡
(

p

)−1
= Zcp

2 −
p

. (10)

In the diagrams, we represent the full equal-time ghost propagator by a dashed line and the gluon
propagator by a curly line, with a dot on the lines. By extending Taylor’s non-renormalization
theorem [6] to the present situation, we have replaced in (10) the full ghost-gluon vertex (one
of the vertices on the right-hand side) with the bare one. This replacement is also used in the
gap equation.

For the color-Coulomb potential,

〈
F ab(p,−q)

〉
=

〈
〈p, a|(−∇ · D)−1(−∇2)(−∇ · D)−1|q, b〉

〉
= Vc(p) δ

ab (2π)3δ(p − q) , (11)

we use the following parameterization and diagrammatic representation motivated by the
appearance of the inverse FP operator [cf. (7)]:

Vc(p) =
d(p)

p2
p2f(p)

d(p)

p2
= p , (12)

thereby defining the Coulomb form factor f(p). Of course, the function f(p) is itself unknown,
and before discussing the possibility of determining it in terms of the gluon and ghost
propagators, we will resort to the factorization hypothesis [7]

〈
(−∇ · D)−1(−∇2)(−∇ · D)−1

〉
=

〈
(−∇ · D)−1

〉
(−∇2)

〈
(−∇ · D)−1

〉
, (13)

which is equivalent to

Vc(p) =
d(p)

p2
p2 d(p)

p2
, (14)

or f(p) = 1. Adopting this (so far unjustified) assumption, we obtain a closed system of
equations.

Before disussing the numerical solutions of the equations, we have to comment on the Gribov-
Zwanziger confinement scenario [8, 9]. In brief, the idea is that the existence of Gribov copies



(gauge-equivalent but different transverse gauge field configurations) forces one to restrict the
functional integral over the gauge field to the first Gribov region where the FP operator is positive
definite.6 By a statistical argument, in the infrared (IR) regime the dominant contribution to
the functional integral comes from the region close to the Gribov horizon where the FP operator
has zero modes. Since the ghost propagator is the vacuum expectation value of the inverse FP
operator, it can be argued that the ghost propagator d(p)/p2 should be more singular in the
IR than p−2, thus d−1(p = 0) = 0, the “horizon condition” [10]. Hence, one should look for
solutions that fulfill the horizon condition.

It turns out that there are two different solutions of this type [4, 12]. Both show scaling
behavior in the IR, i.e. the equal-time propagators obey power laws in this kinematical regime.
Furthermore, among the different contributions to the gluon propagator in the gap equation,
the ghost loop diagram dominates completely the IR behavior, a property known as ghost
dominance. These facts make it possible to even obtain analytical solutions for the propagators
in the IR region [7, 11]. With the notations

ω(p) = Ap−α , d(p) = B p−β , (15)

one obtains in this way a general sum rule for the IR exponents:

α = 2β − 1 . (16)

Consistent solutions exist for the values (α = 0.592, β = 0.796) and (α = 1, β = 1). One may
also define a running coupling constant from the ghost-gluon vertex as

α(p) =
8

3

g2(p)

4π
, g2(p) = g2

B

p

ω(p)
d2(p) (17)

(gB is the bare coupling constant). In the ultraviolet (UV), the solutions show asymptotic
freedom (although not with the correct power of ln p due to the approximations to the
gap equation), while α(p) saturates at a constant value in the IR. Analytically, one obtains
Nc α(0) = 11.99 for the solution with β = 0.796, and Nc α(0) = 16π/3 for β = 1 [11].

To close this section, we comment on a possible drastic simplification of the equations: if
one uses, instead of the general Gaussian ansatz (8), the lowest-order perturbative vacuum wave
functional

|ψ[A]|2 = e−S0[A] = exp

(
−

1

2

∫
d3p

(2π)3
Aa

i (−p) 2pAa
i (p)

)
(18)

in the generating functional (5), the complicated gap equation may be replaced by the following
DS equation for the gluon propagator:

2ω(p) ≡
(

p

)−1
= 2ZAp −

p
. (19)

In particular, (19) does not make use of the factorization hypothesis. Due to ghost dominance,
the gap equation approaches (19) in the IR. Somewhat surprisingly, we have found numerically
that the solutions obtained with the two different sets of equations coincide over the whole
momentum range from the IR to the UV to good numerical precision (for β = 0.796) [13].
In Fig. 1, ghost and gluon propagators are represented in a double-logarithmic plot for the
two different sets of equations. The small discrepancy in the IR is due to the lower numerical
precision of the earlier calculation (“DSE”) in [4].

6 Actually, the first Gribov region contains Gribov copies itself, and it is necessary to further restrict the integral
to the so-called fundamental modular region. It is likely that this additional complication does not affect the
following argument (in the case of the Coulomb gauge).
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Figure 1. Comparison of the results for the propagators from the two different sets of equations
[13]. The label “DSE” stands for the set that contains the gap equation and “FRG” for the set
that uses (19).

3. Color-Coulomb potential and factorization hypothesis

The color-Coulomb potential is more directly related to physically observable quantities than
the gluon and ghost propagators. For the solution with β = 1, the factorization hypothesis (14)
leads to Vc(p) ∝ p−2−2β = p−4 in the IR which corresponds to a potential in position space that
rises exactly linearly for large distances. Unfortunately, the approximation used in the UV [see
our remark following (17)] does not permit to relate the (Coulomb) string tension to the scale
ΛQCD.

We will now turn to the question of whether the factorization hypothesis is actually justified.
To this end, it is convenient to represent the color-Coulomb potential with the help of a composite
operator K,

〈
〈x, a|(−∇ · D)−1(−∇2)(−∇ · D)−1|y, b〉

〉
=

〈
ca(x)Kc̄b(y)

〉

GI
,

K =

∫
d3z c̄d(z)(−∇2

z)c
d(z) , (20)

where the index GI (gluon-irreducible) on the vacuum expectation value means that one has
to restrict the contibuting diagrams to those where the operator K remains connected to the
external points when all gluon lines are cut. The Coulomb form factor f(p) is then precisely the
form factor of the composite operator K. Introducing K in the standard way into the generating
functional (5), one may derive a DS equation for f(p). After suitable approximations, one arrives
at (see also [4])

p2f(p) ≡
p

= Zfp
2 +

p

. (21)

Now (21) can be used to close the system of equations instead of invoking the factorization
hypothesis. The result is disappointing: no solution that fulfills the horizon condition could be
found neither numerically nor analytically [14]. Numerically, solutions of the complete system
of equations are found to exist only for d−1(0) & 0.02. For the latter solutions, f(p) tends to a
constant for p→ 0, so that Vc(p) ∝ p−2 and the color-Coulomb potential is not confining.

Let us briefly comment on the most recent results for the equal-time two-point correlation
functions obtained in calculations on space-time lattices in the Coulomb gauge. They are still



somewhat controversial. In particular, different results have been obtained for the UV-behavior
of the gluon propagator in [15] and [16]. Even worse, both results are at odds with recent
perturbative one-loop calculations [17]. On the other hand, [15] finds an IR behavior consistent
with the (β = 1)-solution of the DS equations. As for the Coulomb potential, although no
conclusion has been reached regarding its IR-behavior, it seems clear that the factorization
hypothesis is violated [18].

4. The functional renormalization group

We will now turn to a different functional method, the functional (or Wilsonian) renormalization
group. In order to adapt it to the case at hand, one starts with the generating functional (5)
and introduces an IR cutoff k in the following way [13]:

Zk[J, η, η̄] =

∫
D[c̄, c,A] exp

(
−

∫
d3p

(2π)3
c̄a(−p)Rc

k(p) c
a(p)

)

× exp

(
−

1

2

∫
d3p

(2π)3
Aa

i (−p)RA
k (p)Aa

i (p)

)
e−

R
d3x c̄(−∇·D)c |ψ[A]|2 e

R
d3x [J·A+c̄η+η̄c] . (22)

The cutoff functions Rc
k(p) and RA

k (p) have the properties

Rc,A
k (p) → ∞ for p≪ k , Rc,A

k (p) → 0 for p≫ k . (23)

This means that the IR modes p ≪ k in the functional integral (22) are heavily suppressed,

while in the limit k → 0, Rc,A
k (p) → 0 and Zk[J, η, η̄] tends toward the full generating functional

Z[J, η, η̄]. In the actual calculations, we have used an exponential suppression of the IR modes,

Rc
k(p) = p2rk(p) , RA

k (p) = 2p rk(p) , rk(p) = exp

(
k2

p2
−
p2

k2

)
. (24)

From (22), flow equations for the k-dependent equal-time correlation functions can be derived
in the standard way [19]. They read for the propagators

2 ∂kωk(p) ≡ ∂k

[(
p

)−1
−RA

k (p)

]
=

p
+

p
, (25)

p2∂kd
−1
k (p) ≡ ∂k

[(
p

)−1
−Rc

k(p)

]
=

p

+
p

. (26)

Here, the symbol stands for the insertion of ∂kR
c,A
k . The non-renormalization theorem for the

ghost-gluon vertex has been used in both equations. Furthermore, we have neglected diagrams
that involve three- and four-gluon vertices, which is justified for the description of the IR regime
if ghost dominance is assumed. Finally, we have omitted tadpole diagrams in order to be able
to close the system of differential equations. Partial inclusion of the tadpole diagrams is argued
in [13] to lead back to the DS equations (10) and (19) (after integrating over k).

The general strategy is to start integrating the flow equations at a large value of k where
due to asymptotic freedom the “action” S[A] can be replaced with S0[A] from (18) and the
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Figure 2. The results for d(p) (left) and ω(p) (right) from the flow equations, for three different
values of kmin [13].

coupling constant is small, so that the initial values of the flow are known. Then the flow
equations are numerically integrated toward k = 0, where ω(p) = ωk=0(p) and d(p) = dk=0(p)
are read off. Technically, it is important to convert the differential equations (25), (26) to integral
equations first, so that the horizon condition and a renormalization condition for ω(p) can be
conveniently incorporated. The results are presented in Fig. 2, again as double-logarithmic plots.
For technical reasons, the integration of the flow equations stops at a minimum value kmin > 0.
Then ω(p) = ωk=kmin

(p) for p ≫ kmin, and similarly for d(p). From Fig. 2 it is clear that the
power-law behavior of the propagators extends toward smaller momenta p as kmin is lowered.

The exponents found numerically are (α = 0.28, β = 0.64), smaller than for both solutions
of the DS equations. They obey the sum rule (16). The fact that the exponents come out
smaller than the ones from the DS equations is not entirely unexpected, since a similar behavior
was found in analogous calculations in the Landau gauge [20]. Generally, the results for the
exponents will vary slightly with the choice of the cutoff functions due to the approximations
made in the system of flow equations. An “optimized” choice is expected to give exponents
identical to the ones from the DS equations [13]. For the running coupling constant (17) one
also finds saturation in the IR at a slightly smaller value than for the DS solutions.

By incorporating the composite operator K in the functional integral (22), one derives (after
suitable approximations) the following flow equation for the Coulomb form factor:

p2∂kfk(p) ≡ ∂k

(
p

)
= −

p

−
p

−
p

. (27)

Making use of the results for ωk(p) and dk(p), this equation can be integrated. Contrary to the
DS equations, (27) has a solution that is represented in Fig. 3. The IR-behavior is determined
numerically to

f(p) ∝ p−γ , γ = 0.57 . (28)

In particular, of course, f(p) 6= 1, and the factorization hypothesis is violated. With the values
for the exponents from the flow equations one obtains in the IR

Vc(p) =
d(p)

p2
p2f(p)

d(p)

p2
=

1

p2+2β+γ
=

1

p3.85
, (29)
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Figure 3. The Coulomb form factor f(p) from (27).

close to Vc(p) ∝ p−4 which would correspond to a linearly rising potential in position space.
In summary, we find that functional methods are a powerful tool for the description of the

nonperturbative infrared regime of nonabelian gauge theories. The formulation of these theories
in the Coulomb gauge is particularly convenient, mainly because it gives direct access to the
color-Coulomb potential. The Gribov-Zwanziger confinement scenario provides a conceptual
framework to understand the confinement mechanism. It can be conveniently implemented via
the horizon condition. In particular, we have seen that an almost linearly rising color-Coulomb
potential is obtained from the functional renormalization group equations (and the factorization
hypothesis is violated). It has also become clear that the approximations employed still have to
be improved in order to achieve a quantitatively reliable description of the infrared region.
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