

New modular flavor phenomenology from $2D_3$ symmetries

Carlos Moisés Arriaga Osante

National Autonomous University of Mexico,
XX Mexican School on Particles and Fields 2023,
in collaboration with Xiang-Gan Liu (CA-I) and Saúl
Ramos-Sánchez (UNAM)

Contents

1 The flavor puzzle

2 Vector-Valued Modular Forms

3 Binary dihedral group

4 SUSY with $2D_3$ invariance

5 Phenomenology

6 Conclusions

The Standard Model

Standard Model of Elementary Particles

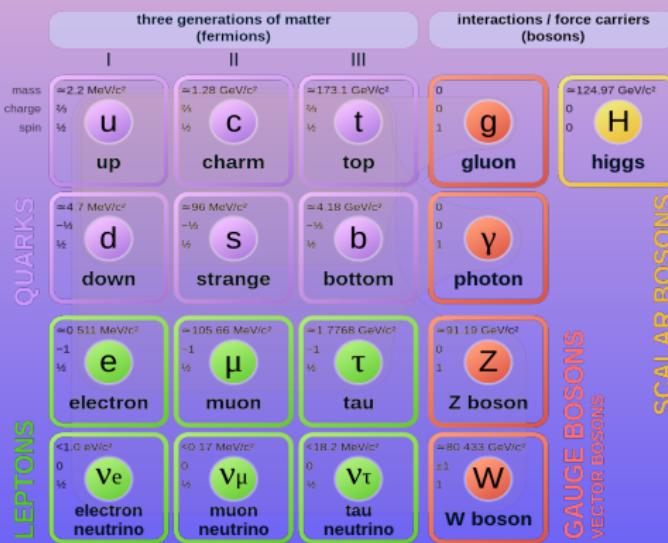


Figure: The Standard Model of Elementary Particles (SM).

The CKM matrix

$$V_{\text{CKM}} =$$

$$\begin{pmatrix} \cos \theta_{12} \cos \theta_{13} & \sin \theta_{12} \cos \theta_{13} & \sin \theta_{13} e^{-i\delta} \\ -\sin \theta_{12} \cos \theta_{23} - \sin \theta_{13} \sin \theta_{23} \cos \theta_{12} e^{i\delta} & \cos \theta_{12} \cos \theta_{23} - \sin \theta_{12} \sin \theta_{13} \sin \theta_{23} e^{i\delta} & \sin \theta_{23} \cos \theta_{13} \\ \sin \theta_{12} \sin \theta_{23} - \sin \theta_{13} \cos \theta_{12} \cos \theta_{23} e^{i\delta} & -\sin \theta_{23} \cos \theta_{12} - \sin \theta_{12} \sin \theta_{13} \cos \theta_{23} e^{i\delta} & \cos \theta_{13} \cos \theta_{23} \end{pmatrix}.$$

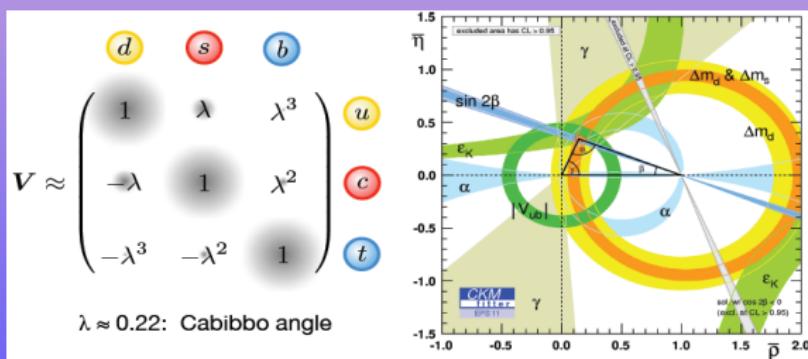


Figure: Parametrization of the CKM matrix.

What is the flavor puzzle?

- ① The origin of the 3 fermion generations.
- ② Hierarchical pattern of the charged lepton masses
 $m_e \ll m_\mu \ll m_\tau$. $m_e/m_\mu \approx 1/200$ and $m_\mu/m_\tau \approx 1/17$.
- ③ Lightness of neutrinos $m_{\nu i} \lesssim 0.5\text{eV}$, $m_l \gtrsim 0.511\text{MeV}$ and $m_q \gtrsim 2\text{MeV}$.
- ④ Masses and mixings of fermions from V_{CKM} and U_{PMNS} .

Vector-Valued Modular Forms

1 The flavor puzzle

2 Vector-Valued Modular Forms

3 Binary dihedral group

4 SUSY with $2D_3$ invariance

5 Phenomenology

6 Conclusions

The Modular Group

$$\Gamma := \mathrm{SL}(2, \mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc = 1, \quad a, b, c, d \in \mathbb{Z} \right\}. \quad (1)$$

Γ has two generators S and T obeying

$$S^4 = (ST)^3 = 1, \quad S^2T = TS^2, \quad (2)$$

which can be represented as

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}. \quad (3)$$

VVMF

The group acts on $\mathcal{H} = \{\tau \in \mathbb{C} \mid i\tau > 0\}$ as the transformations

$$\tau \rightarrow \gamma\tau := \frac{a\tau + b}{c\tau + d}, \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma. \quad (4)$$

We consider the holomorphic functions $Y(\tau) = (Y_1(\tau), \dots, Y_d(\tau))^T$ in \mathcal{H} transforming as [2112.14761]

$$Y(\gamma\tau) = (c\tau + d)^{k_Y} \rho_Y(\gamma) Y(\tau), \quad (5)$$

where ρ_Y is a d -dimensional representation of $\gamma \in \Gamma$ with finite image.

VVMF

Under the irrep ρ , all VVMFs constitute a free module $\mathcal{M}(\rho)$ over the ring $\mathcal{M}(1) = \mathbb{C}[E_4, E_6]$. It is possible to generate a basis through the operators

$$D_k^n := D_{k+2(n-1)} \circ D_{k+2(n-2)} \circ \cdots \circ D_k, \quad (6)$$

acting on the VVMFs with minimal weight, where

$$D_k := \frac{1}{2\pi i} \frac{d}{d\tau} - \frac{kE_2(\tau)}{12}, \quad k \in \mathbb{N}^+, \quad (7)$$

and $E_2(\tau)$ is the quasi-modular Eisenstein series

$$E_2(\tau) = 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) q^n. \quad (8)$$

MLDE

A desirable basis of $\mathcal{M}(\rho)$ is $\{Y^{(k_0)}, D_{k_0}Y^{(k_0)}, \dots, D_{k_0}^{d-1}Y^{(k_0)}\}$.

For a VVMF with weight $k_0 + 2d$, the ring $\mathcal{M}(1) = \mathbb{C}[E_4, E_6]$ is a linear combination of the previous basis such that

$$(D_{k_0}^d + M_4 D_{k_0}^{d-2} + \dots + M_{2(d-1)} D_{k_0} + M_{2d}) Y^{(k_0)} = 0, \quad (9)$$

where $M_k \in \mathbb{C}[E_4, E_6]$ is the scalar modular form of weight k .

In summary, $\mathcal{M}(\rho)$ only depends on the VVMFs under the irrep ρ with minimal weight.

Binary dihedral group

1 The flavor puzzle

2 Vector-Valued Modular Forms

3 Binary dihedral group

4 SUSY with $2D_3$ invariance

5 Phenomenology

6 Conclusions

$2D_3$

The binary dihedral group $2D_3$ is the preimage of the dihedral group D_3 under the mapping $SU(2) \cong \text{Spin}(3) \rightarrow \text{SO}(3)$.

$2D_3$ has generators S y T such that

$$S^4 = (ST)^3 = S^2T^2 = 1, \quad S^2T = TS^2. \quad (10)$$

$2D_3$ has 12 elements and its GAP ID is [12, 1].

Its center is $Z_2^{S^2} := \langle 1, S^2 \rangle$.

$2D_3 \cong Z_3 \rtimes Z_4$.

Character table of $2D_3$

Classes	$1C_1$	$1C_2$	$3C_4$	$2C_3$	$3C_4$	$2C_6$
Representative	1	S^2	T	TS	TS^2	TS^3
1	1	1	1	1	1	1
$1'$	1	1	-1	1	-1	1
$\hat{1}$	1	-1	$-i$	1	i	-1
$\hat{1}'$	1	-1	i	1	$-i$	-1
2	2	2	0	-1	0	-1
$\hat{2}$	2	-2	0	-1	0	1

Table: The character table of the binary dihedral group $2D_3 \cong Z_3 \rtimes Z_4$.

VVMFs in $2D_3$ with minimal weight

The VVMFs with minimal weight are

$$\begin{aligned} Y_{1'}^{(6)}(\tau) &= \eta^{12}(\tau), & Y_{\hat{1}}^{(9)}(\tau) &= \eta^{18}(\tau), & Y_{\hat{1}'}^{(3)}(\tau) &= \eta^6(\tau), \\ Y_2^{(2)}(\tau) &= \begin{pmatrix} \eta^4(\tau) \left(\frac{K(\tau)}{1728}\right)^{-\frac{1}{6}} {}_2F_1\left(-\frac{1}{6}, \frac{1}{6}; \frac{1}{2}; K(\tau)\right) \\ -8\sqrt{3}\eta^4(\tau) \left(\frac{K(\tau)}{1728}\right)^{\frac{1}{3}} {}_2F_1\left(\frac{1}{3}, \frac{2}{3}; \frac{3}{2}; K(\tau)\right) \end{pmatrix}, \\ Y_{\hat{2}}^{(5)}(\tau) &= \begin{pmatrix} 8\sqrt{3}\eta^{10}(\tau) \left(\frac{K(\tau)}{1728}\right)^{\frac{1}{3}} {}_2F_1\left(\frac{1}{3}, \frac{2}{3}; \frac{3}{2}; K(\tau)\right) \\ \eta^{10}(\tau) \left(\frac{K(\tau)}{1728}\right)^{-\frac{1}{6}} {}_2F_1\left(-\frac{1}{6}, \frac{1}{6}; \frac{1}{2}; K(\tau)\right) \end{pmatrix}, \end{aligned} \quad (11)$$

where ${}_2F_1$ is the generalized hypergeometric series and $K(\tau) = 1728/j(\tau)$ is the inverse of Klein- j function $j(\tau)$.

VVMFs in $2D_3$

The VVMFs for $2D_3$ are:

$$\begin{aligned} k = 2 : \quad & Y_2^{(2)}, \\ k = 3 : \quad & Y_{\hat{1}'}^{(3)}, \\ k = 4 : \quad & Y_1^{(4)} \equiv E_4, \quad Y_2^{(4)} \equiv -6D_2 Y_2^{(2)}, \\ k = 5 : \quad & Y_{\hat{2}}^{(5)}, \\ k = 6 : \quad & Y_1^{(6)} \equiv E_6, \quad Y_{1'}^{(6)}, \quad Y_2^{(6)} \equiv E_4 Y_2^{(2)}, \\ k = 7 : \quad & Y_{\hat{2}}^{(7)} \equiv 3D_5 Y_{\hat{2}}^{(5)}, \quad Y_{\hat{1}'}^{(7)} \equiv E_4 Y_{\hat{1}'}^{(3)}, \\ & \dots \end{aligned} \tag{12}$$

SUSY with $2D_3$ invariance

1 The flavor puzzle

2 Vector-Valued Modular Forms

3 Binary dihedral group

4 SUSY with $2D_3$ invariance

5 Phenomenology

6 Conclusions

Supersymmetry

We consider the global supersymmetry theory $\mathcal{N} = 1$.

The action is given as

$$\mathcal{S} = \int d^4x d^2\theta d^2\bar{\theta} \mathcal{K}(\Psi_I, \bar{\Psi}_I, \tau, \bar{\tau}) + \int d^4x d^2\theta \mathcal{W}(\Psi_I, \tau).$$

The superpotential is

$$\mathcal{W}(\Phi_I, \tau) = \sum_n Y_{I_1 \dots I_n}(\tau) \Phi_{I_1} \dots \Phi_{I_n}. \quad (13)$$

SUSY $2D_3$ invariance

Every term in the superpotential satisfies

$$-k_{I_1} - k_{I_2} - \cdots - k_{I_n} + k_Y = -1. \quad (14)$$

We assume

$$\Phi_I \rightarrow (c\tau + d)^{-k_I} \rho_I(\gamma) \Phi_I, \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma, \quad (15)$$

where $k_I \in \mathbb{Q}$ is the modular weight of Φ_I and $\rho_I(\gamma)$ is a $2D_3$ irrep.

We choose

$$k_I \in \left\{ \frac{-16}{4}, \frac{-15}{4}, \dots, \frac{15}{4}, \frac{16}{4} \right\}. \quad (16)$$

General fermion mass matrices

All the mass matrices have a structure

$$M_{\psi/\psi^c} = \begin{pmatrix} M_{DD} & \vdots & M_{D3} \\ \cdots & \cdot & \cdots \\ M_{3D} & \vdots & M_{33} \end{pmatrix}, \quad (17)$$

Phenomenology

① The flavor puzzle

② Vector-Valued Modular Forms

③ Binary dihedral group

④ SUSY with $2D_3$ invariance

⑤ Phenomenology

⑥ Conclusions

Quark model with 9 parameters

We obtained a model whose predicted flavor observables are

$$\begin{aligned} \theta_{12}^q &= 0.227392, \quad \theta_{13}^q = 0.00349376, \quad \theta_{23}^q = 0.0400987, \\ \delta_{CP}^q &= 70.2738^\circ, \quad m_u/m_c = 0.00193121, \quad m_c/m_t = 0.00287386, \\ m_d/m_s &= 0.0230934, \quad m_s/m_b = 0.018243. \end{aligned} \tag{18}$$

$$\chi^2_{\min} \sim 19.9.$$

Only m_d/m_s is about the edge of 4σ .

The VEV of the modulus is close to $\omega := e^{\frac{2\pi i}{3}}$.

Quark model with 10 parameters

We obtained a model whose predicted flavor observables are

$$\begin{aligned} \theta_{12}^q &= 0.227368, \quad \theta_{13}^q = 0.00349295, \quad \theta_{23}^q = 0.0401456, \\ \delta_{CP}^q &= 69.2212^\circ, \quad m_u/m_c = 0.00192771, \quad m_c/m_t = 0.00282204, \\ m_d/m_s &= 0.0505254, \quad m_s/m_b = 0.0182414. \end{aligned} \quad (19)$$

$$\chi^2_{\min} \sim 0.0002.$$

All predictions fall within 1σ .

The VEV of the modulus is close to i.

Dirac neutrino model with 8 parameters

We obtained a model whose predicted flavor observables are

$$\begin{aligned} \sin^2 \theta_{12}^l &= 0.302989, \sin^2 \theta_{13}^l = 0.0220300, \sin^2 \theta_{23}^l = 0.571993, \\ \delta_{CP}^l &= 1.49060\pi, m_e/m_\mu = 0.00473701, m_\mu/m_\tau = 0.058568, \\ m_1 &= 17.5723 \text{ meV}, m_2 = 19.5675 \text{ meV}, m_3 = 53.1012 \text{ meV} \\ m_\beta &= 19.6484 \text{ meV}. \end{aligned} \tag{20}$$

$$\chi^2_{\min} \sim 10^{-6}.$$

All predictions fall within 1σ .

Majorana neutrino model for Type-I seesaw mechanism with 9 parameters

We obtained a model whose predicted flavor observables are

$$\sin^2 \theta_{12}^l = 0.302991, \sin^2 \theta_{13}^l = 0.02203, \sin^2 \theta_{23}^l = 0.572022,$$

$$\delta_{CP}^l = 1.27887\pi, \alpha_{21} = 1.27782\pi, \alpha_{31} = 0.418302\pi,$$

$$m_e/m_\mu = 0.00473698, m_\mu/m_\tau = 0.0585681, \frac{\Delta m_{21}^2}{\Delta m_{31}^2} = 0.0295108,$$

$$m_1 = 39.09 \text{ meV}, m_2 = 40.02 \text{ meV}, m_3 = 63.55 \text{ meV}. \quad (21)$$

$$\chi_{\min}^2 \approx 10^{-6}.$$

All predictions fall within 3σ level.

Majorana neutrino model for Weinberg operator with 7 parameters

We obtained a model whose predicted flavor observables are

$$\sin^2 \theta_{12}^l = 0.302725, \sin^2 \theta_{13}^l = 0.0220538, \sin^2 \theta_{23}^l = 0.656858,$$

$$\delta_{CP}^l = 1.46771\pi, \alpha_{21} = 1.93205\pi, \alpha_{31} = 0.951594\pi,$$

$$m_e/m_\mu = 0.00473702, m_\mu/m_\tau = 0.0585681, \frac{\Delta m_{21}^2}{\Delta m_{31}^2} = 0.0295217,$$

$$m_1 = 30.15 \text{ meV}, m_2 = 31.35 \text{ meV}, m_3 = 58.47 \text{ meV}. \quad (22)$$

$$\chi^2_{\min} = 17.14.$$

All predictions fall within 3σ level except $\sin^2 \theta_{23}^l$.

An integrated model of quarks and leptons

For the model

$$d^c \sim u^c \sim, Q \sim E^c \sim L \sim \hat{2} \oplus \hat{1}', H_d \sim H_u \sim \mathbf{1}'.$$

$$k_{d_D^c} = k_{u_D^c} = -k_{E_3^c} = 1/2, k_{d_3^c} = k_{u_D^c} = k_{Q_D} = k_{Q_3} = 5/2,$$

$$k_{E_3^c} = k_{L_D} = 7/2, k_{L_3} = 3/2, k_{H_d} = k_{H_u} = 0.$$

The best-fit input parameters are

$$\langle \tau \rangle = -0.0613689 + 2.68637i, \beta^d/\alpha^d = 20.3565,$$

$$\delta^d/\alpha^d = 309.699, \gamma^d/\alpha^d = -1040.08, \alpha_1^u/\gamma^u = -6422.49,$$

$$\alpha_2^u/\gamma^u = -6413.76, \beta^u/\gamma^u = 4383.68, \delta^l/\alpha^l = -0.0808854,$$

$$\gamma^l/\alpha^l = 17.0445, \alpha_1^\nu/\beta^\nu = 2.3088, \alpha_2^\nu/\beta^\nu = -11784.2,$$

$$\alpha^d v_d = 0.891348 \text{ MeV}, \gamma^u v_u = 6.44174 \text{ MeV},$$

$$\alpha^l v_d = 76.207 \text{ MeV}, \frac{\beta^\nu v_u^2}{\Lambda} = 0.010066 \text{ eV}.$$

An integrated model of quarks and leptons

The predicted flavor observables are

$$\begin{aligned} \sin^2 \theta_{12}^l &= 0.31818, \sin^2 \theta_{13}^l = 0.021746, \sin^2 \theta_{23}^l = 0.527212, \\ \delta_{CP}^l &= 1.59044\pi, \alpha_{21} = 0.901365\pi, \alpha_{31} = 0.526527\pi, \\ m_e/m_\mu &= 0.00473731, m_\mu/m_\tau = 0.058568, \frac{\Delta m_{21}^2}{\Delta m_{31}^2} = 0.030349, \\ m_1 &= 5.23272 \text{ meV}, \quad m_2 = 10.0738 \text{ meV}, \quad m_3 = 49.6888 \text{ meV}, \\ \theta_{12}^q &= 0.227464, \theta_{13}^q = 0.00339533, \theta_{23}^q = 0.0403661, \\ \delta_{CP}^q &= 69.1464^\circ, \quad m_u/m_c = 0.00192463, \quad m_c/m_t = 0.00282265, \\ m_d/m_s &= 0.0505174, \quad m_s/m_b = 0.0182406. \end{aligned} \tag{24}$$

$$\chi^2_{\min} = 8.4.$$

All predictions fall within 3σ .

Conclusions

1 The flavor puzzle

2 Vector-Valued Modular Forms

3 Binary dihedral group

4 SUSY with $2D_3$ invariance

5 Phenomenology

6 Conclusions

Conclusion

We have successful model best-fit models with $2D_3$ symmetry!!

Conclusions

- We investigated the (yet) unexplored phenomenology of $2D_3$.
- $2D_3$ as a flavor group only allows structures $2 + 1$ with VVMFs.
- After a exhaustive numerical analysis, benchmark models with new phenomenology were provided.
- Several fermion scenarios were taken into account.
- For the first time, Higgs fields in non-trivial representations in modular flavor building.
- We allowed fractional modular weights for the fields.
- Our integrated models can be naturally embedded in a Grand unified theory.
- This phenomenology could arise from some $\mathbb{T}^2/\mathbb{Z}_4$ heterotic orbifold.

Thank you for your attention.