Exploring the baryon-to-meson transition region at NICA energies

Rodrigo Guzmán Castro

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México

RADPyC 2023

CINVESTAV, June 12, 2023

Table of contents

- 1. Motivation
- 2. Data generation and selection criteria
- 3. Results:
 - I. Multiplicity
 - Il. Transverse momentum distributions and crossing point
 - III. Particle ratios and yields
- 4. Conclusions

Motivation

The strangeness enhancement is one of the variables proposed to study the existence of the Quark-Gluon Plasma (QGP).

In the framework of the Statistical Model, a rapid change is expected as the hadronic gas undergoes a transition from a baryon- to a meson-dominance.¹

The maximum in the K⁺/ π^+ ratio is predicted in this model which corresponds to this transition region.¹

¹J. Cleymans *et al.*, PLB **615** (2005) 50

Motivation

The Chiral Symmetry Restoration (CSR) in the hadronic phase produces a steep increase of this particle ratio, while the drop at higher energies is associated with the appearance of a deconfined partonic medium.²

As in the case of QCD deconfinement phase transition, the boundaries of CSR phase transition line are not well known. Different models support the idea that at finite chemical potential a partially restored phase is achieved before deconfinement occurs.²

²E. L. Bratkovskaya *et al.*, IWDP **878** (2017) 012018

Data sample analyzed

About the data :

Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$ = 4.5, 7.7, 9.2, 11.5 GeV

UrQMD v3.4 150,000 events Minimum Bias (0<b<20 fm) b: impact parameter

Selection criteria

Au+Au collisions

p_T: Transverse momentum= $\sqrt{(p_x^2+p_y^2)}$ y: rapidity=0.5*Ln((E+p_z)/(E-p_z))

At all energies, the selection criteria are the same:

0.1 GeV/c<p_ $_{\rm T}$, $|y|{<}0.5$

RESULTS

Multiplicity distribution (N_{ch})

As energy increases, multiplicity reaches higher values.

Centrality represents fractions of the cross section.

Transverse momentum distributions for π^{\pm}

• Au+Au collisions |y|<0.5

Positive and negative pion distributions become more similar to each other as we increase the collision energy.

12/06/23

Transverse momentum distributions for p^{\pm}

• Au+Au collisions |y|<0.5

Low energy collisions produce more protons. Antiprotons are produced ~ 100 times less than protons.

Transverse momentum distributions for K^{\pm}

• Au+Au collisions |y|<0.5

Negative kaons are less abundantly produced than positive kaons, which means they are mostly produced by different mechanisms.

Crossing point

Crossing occurs at ~0.38 GeV/c (4.5 GeV) and at ~0.83 GeV/c (11.5 GeV).

Particle ratios

Data includes measurements from RHIC , SPS and AGS (0-5)%. A horn structure appears in the K⁺/ π ⁺ ratio data, but not reproduced in the UrQMD model.

12/06/23

Particle ratios

Data includes measurements from RHIC, SPS and AGS (0-5)%. The model does not predict the kaon ratio, most likely due to the lack of positive kaons.

12/06/23

Particle ratios

Data shows measurements from STAR (0-5)%.

12/06/23

Particle yields

Data includes measurements from AGS and SPS (0-5)%. Strange baryons behave qualitatively similar to the data, with a maximum at 7.7 GeV, but there is a discrepancy by a factor of ~2.

12/06/23

Conclusions

We have presented an analysis of particle production, transverse momentum, antiparticle-particle ratios, K^{\pm}/π^{\pm} with the UrQMD event generator.

- We studied the evolution of the transverse momentum of mesons and baryons, and the crossing point between them as a function of the collision energy.
- We studied the K[±]/π[±] ratio as a function of the collision energy. In the K⁻/π⁻ case, agreement with experimental data is observed, whereas the K⁺/π⁺ ratio is not reproduced.
- A prediction is made for the p⁻/p⁺ ratio at low energy (4.5 GeV).

Those results will be studied in experiments like the MPD-NICA.

Analysis under development: We could extract the freeze-out parameters; further studies for the production mechanisms of strange hadrons...

Thank you for your attention. Special thanks to E. Cuautle, W. Bietenholz, A. Ayala, R. García