

Annual meeting of the DPyC-SMF: Ultraviolet extensions of the Scotogenic model.

Diego Portillo Sánchez

Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional

> In collaboration with: Pablo Escribano. (IFIC) Avelino Vicente. (IFIC)

ArXiv: 2301.05249

June 11, 2023

- Introduction to the Scotogenic model.
- UV extensions.
- Model II(1,2).
- Phenomenology of the UV extensions.
- Summary.

June 11, 2023

• Gauge theory $SU(3)_c \times SU(2)_L \times U(1)_Y$

 \Rightarrow Accidental symmetries: lepton number...

 \Rightarrow Massless neutrinos.

• Open questions (neutrino sector):

 \Rightarrow What is the origin of neutrino masses?

 \Rightarrow Are neutrinos Dirac or Majorana fermions?

Brief introduction to the Scotogenic model.

The Scotogenic model is an extension to the standard model where three generations of right-handed fermions (N) and a scalar doublet are added: EM, Phys. Rev. D 73, 077301 (2006)

Where the yukawa sector of the lagrangian can be written as:

$$\mathcal{L}_{Y} = y \,\overline{N} \,\widetilde{\eta}^{\dagger} \,\ell_{L} + \frac{1}{2} M_{N} \,\overline{N}^{c} N + \text{h.c.}\,, \qquad (1$$

and the scalar potential

$$\mathcal{V}_{\rm UV} = m_H^2 H^{\dagger} H + \frac{\lambda_1}{2} (H^{\dagger} H)^2 + m_{\eta}^2 \eta^{\dagger} \eta + \frac{\lambda_2}{2} (\eta^{\dagger} \eta)^2 + \lambda_3 (H^{\dagger} H) (\eta^{\dagger} \eta) + \lambda_4 (H^{\dagger} \eta) (\eta^{\dagger} H) + \left[\frac{\lambda_5}{2} (H^{\dagger} \eta)^2 + \text{h.c.} \right].$$
(2)

After the Spontaneous Symmetry Breaking (SSB) using

$$\langle H^0 \rangle = \frac{v_H}{\sqrt{2}}, \quad \langle \eta^0 \rangle = 0.$$
 (3)

we obtain the mass at one loop level for ν_L such that

$$(m_{\nu})_{\alpha\beta} = \frac{\lambda_5 \, v_H^2}{32\pi^2} \sum_n \frac{y_{n\alpha} \, y_{n\beta}}{M_{N_n}} \left[\frac{M_{N_n}^2}{m_0^2 - M_{N_n}^2} + \frac{M_{N_n}^4}{\left(m_0^2 - M_{N_n}^2\right)^2} \log \frac{M_{N_n}^2}{m_0^2} \right], \quad (4)$$

where $m_0^2 = m_\eta^2 + (\lambda_3 + \lambda_4) v_H^2/2$ and M_{N_n} are the diagonal elements of the M_N matrix. Two of the main "problems" of this formulation are:

- Dark \mathbb{Z}_2 discrete symmetry is introduced ad-hoc to the model in order to forbid the interaction $\bar{N}H^{\dagger}\ell_L$ within the model.
- $\lambda_5 \sim 10^{-5} \ll 1$. In order to recover the smallness of neutrinos masses.

Ultraviolet extensions to the Scotogenic model.

Top.	Diagram	Required operators	
I	$\begin{array}{c} \sigma_A \\ \sigma_A \\ H^{\dagger} \\ H^{\dagger} \end{array} \eta$	$(\sigma_A H^{\dagger} S \tilde{H}), (\sigma_B \tilde{\eta}^{\dagger} S^{\dagger} \eta)$	• DPS, PE and AV,
II	σ_A S σ_B	$(\sigma_A H^{\dagger} S \eta), (\sigma_B H^{\dagger} S^{\dagger} \eta)$	(A) $U(1)_L \xrightarrow{\langle \sigma \rangle} \mathbb{Z}_2$
III	$\frac{\sigma_A}{H^{\dagger}} = \frac{\eta}{S} + \frac{H^{\dagger}}{H^{\dagger}}$	$(\sigma_A\sigma_B H^\dagger S), (H^\dagger\eta S^\dagger\eta)$	(B) Have an effective $(H^{\dagger}\eta)^2$ after the decoupling of an scalar S and the SSB. Leaving a natural suppressed λ_5
IV	$\begin{array}{c} H^{\dagger} & \sigma_A \\ \eta & S & \eta \\ H^{\dagger} & \sigma_B \end{array}$	$(H^{\dagger}SH^{\dagger}\eta), (\sigma_A\sigma_BS^{\dagger}\eta)$	parameter. $\mathcal{O}_{\lambda_5} = (H^{\dagger}\eta)^2 \sigma_A \sigma_B , (5)$
V	$ H^{\dagger} = \sigma_{C} \qquad H^{\dagger} = \sigma_{A} \qquad \eta \qquad \eta $	$(\sigma_A H^{\dagger} S \eta), ((S^{\dagger})^2 \sigma_B \sigma_C)$	$\mathcal{O}_{\lambda_5} = (H^{\dagger}\eta)^2 \sigma_A^2 \sigma_B \sigma_C , \ (6)$ We have the operator $\sigma_1 \bar{N}^c N$ within all the models.

 λ_5 operator in the UV theory.

DPS

We obtain 50 different models of this kind. One example of them II(1,2):

$$\begin{aligned} \mathcal{V}_{\rm UV} &= m_H^2 H^{\dagger} H + m_S^2 S^* S + m_{\sigma_i}^2 \sigma_i^* \sigma_i + m_\eta^2 \eta^{\dagger} \eta + \frac{\lambda_1}{2} (H^{\dagger} H)^2 + \frac{\lambda_2}{2} (\eta^{\dagger} \eta)^2 \\ &+ \frac{\lambda_S}{2} (S^* S)^2 + \frac{\lambda_{\sigma_i}}{2} (\sigma_i^* \sigma_i)^2 + \lambda_3 (H^{\dagger} H) (\eta^{\dagger} \eta) + \lambda_3^S (H^{\dagger} H) (S^* S) \\ &+ \lambda_3^{\sigma_i} (H^{\dagger} H) (\sigma_i^* \sigma_i) + \lambda_3^{\eta^S} (\eta^{\dagger} \eta) (S^* S) + \lambda_3^{\eta\sigma_i} (\eta^{\dagger} \eta) (\sigma_i^* \sigma_i) \\ &+ \lambda_3^{\sigma\sigma} (\sigma_1^* \sigma_1) (\sigma_2^* \sigma_2) + \lambda_3^{\sigma_i S} (\sigma_i^* \sigma_i) (S^* S) + \lambda_4 (H^{\dagger} \eta) (\eta^{\dagger} H) \\ &+ \left[\beta_1 (\sigma_1 H^{\dagger} S \eta) + \beta_2 (\sigma_2 H^{\dagger} S^{\dagger} \eta) + \frac{\mu}{\sqrt{2}} (\sigma_2 \sigma_1 \sigma_1) + \lambda_0 (SS \sigma_1 \sigma_2^*) + \text{h.c.} \right], \end{aligned}$$

Once S is integrated out, we obtain

$$\begin{aligned} \mathcal{V}_{\mathrm{IR}} &= m_{H}^{2}(H^{\dagger}H) + m_{\eta}^{2}(\eta^{\dagger}\eta) + m_{\sigma_{i}}^{2}(\sigma_{i}^{*}\sigma_{i}) + \frac{\lambda_{1}}{2}(H^{\dagger}H)^{2} + \frac{\lambda_{2}}{2}(\eta^{\dagger}\eta)^{2} + \frac{\lambda_{\sigma_{i}}}{2}(\sigma_{i}^{*}\sigma_{i})^{2} \\ &+ \lambda_{3}(H^{\dagger}H)(\eta^{\dagger}\eta) + \lambda_{3}^{\sigma_{i}}(H^{\dagger}H)(\sigma_{i}^{*}\sigma_{i}) + \lambda_{3}^{\eta\sigma_{i}}(\eta^{\dagger}\eta)(\sigma_{i}^{*}\sigma_{i}) + \lambda_{3}^{\sigma\sigma}(\sigma_{1}^{*}\sigma_{1})(\sigma_{2}^{*}\sigma_{2}) \\ &+ \left[\lambda_{4} - \frac{|\beta_{i}|^{2}}{m_{S}^{2}}(\sigma_{i}^{*}\sigma_{i})\right](H^{\dagger}\eta)(\eta^{\dagger}H) \\ &+ \left[\frac{\mu}{\sqrt{2}}(\sigma_{2}\sigma_{1}\sigma_{1}) - \frac{\beta_{1}\beta_{2}}{m_{S}^{2}}\sigma_{1}\sigma_{2}(H^{\dagger}\eta)^{2} + \mathrm{h.c.}\right] + \mathcal{O}\left(\frac{1}{m_{S}^{4}}\right). \end{aligned}$$
(9)

After the decomposition

$$H^{0} = \frac{1}{\sqrt{2}}(v_{H} + \phi + iA), \quad \sigma_{i} = \frac{1}{\sqrt{2}}(v_{\sigma_{i}} + \rho_{i} + iJ_{i}), \quad (10)$$

The non-trivial tadpole equation are

$$\frac{d\mathcal{V}_{\rm IR}}{dH^0}\Big|_{\langle H^0,\sigma_i\rangle = \{\frac{v_H}{\sqrt{2}},\frac{v_{\sigma_i}}{\sqrt{2}}\}} = \frac{v_H}{\sqrt{2}} \left(m_H^2 + \lambda_1 \frac{v_H^2}{2} + \lambda_3^{\sigma_1} \frac{v_{\sigma_1}^2}{2} + \lambda_3^{\sigma_2} \frac{v_{\sigma_2}^2}{2} \right) = 0, \tag{11}$$

$$\frac{d\mathcal{V}_{\rm IR}}{d\sigma_1}\Big|_{\langle H^0,\sigma_i\rangle = \{\frac{v_H}{\sqrt{2}}, \frac{v_{\sigma_i}}{\sqrt{2}}\}} = \frac{v_{\sigma_1}}{\sqrt{2}} \left(m_{\sigma_1}^2 + \mu \, v_{\sigma_2} + \lambda_3^{\sigma_1} \frac{v_H^2}{2} + \lambda_{\sigma_1} \frac{v_{\sigma_1}^2}{2} + \lambda_3^{\sigma_3} \frac{v_{\sigma_2}^2}{2} \right) = 0, \quad (12)$$

$$\frac{d\mathcal{V}_{\rm IR}}{d\sigma_2}\Big|_{\langle H^0,\sigma_i\rangle = \{\frac{v_H}{\sqrt{2}}, \frac{v_{\sigma_i}}{\sqrt{2}}\}} = \frac{v_{\sigma_2}}{\sqrt{2}} \left(m_{\sigma_2}^2 + \mu \frac{v_{\sigma_1}^2}{2v_{\sigma_2}} + \lambda_3^{\sigma_2} \frac{v_H^2}{2} + \lambda_{\sigma_2} \frac{v_{\sigma_2}^2}{2} + \lambda_3^{\sigma\sigma} \frac{v_{\sigma_1}^2}{2} \right) = 0.$$
(13)

Taking our attention in the η fields

$$\eta^{0} = \frac{1}{\sqrt{2}} (\eta_{R} + i \eta_{I}) \,. \tag{14}$$

The mass of the charged η^+ and the neutral $\eta_{R,I}$ fields are given by

$$m_{\eta^+}^2 = m_{\eta}^2 + \frac{v_H^2}{2} \lambda_3^{\text{eff}} , \qquad (15)$$

$$m_{\eta_R}^2 = m_{\eta}^2 + \frac{v_H^2}{2} \left(\lambda_3^{\text{eff}} + \lambda_4^{\text{eff}} - \frac{\beta_1 \beta_2 v_{\sigma_1} v_{\sigma_2}}{m_S^2} \right) \,, \tag{16}$$

$$m_{\eta_I}^2 = m_{\eta}^2 + \frac{v_H^2}{2} \left(\lambda_3^{\text{eff}} + \lambda_4^{\text{eff}} + \frac{\beta_1 \beta_2 v_{\sigma_1} v_{\sigma_2}}{m_S^2} \right) \,, \tag{17}$$

where we defined

$$\lambda_{3}^{\text{eff}} \equiv \lambda_{3} + \lambda_{3}^{\eta\sigma_{1}} \frac{v_{\sigma_{1}}^{2}}{v_{H}^{2}} + \lambda_{3}^{\eta\sigma_{2}} \frac{v_{\sigma_{2}}^{2}}{v_{H}^{2}}$$
(18)
$$\lambda_{4}^{\text{eff}} \equiv \lambda_{4} - \frac{\beta_{1}^{2} v_{\sigma_{1}}^{2}}{2m_{S}^{2}} - \frac{\beta_{2}^{2} v_{\sigma_{2}}^{2}}{2m_{S}^{2}} .$$
(19)

For the CP-even fields we get

$$\mathcal{M}_{R}^{2} = \begin{pmatrix} \lambda_{1}v_{H}^{2} & \lambda_{3}^{\sigma^{1}}v_{H}v_{\sigma_{1}} & \lambda_{3}^{\sigma^{2}}v_{H}v_{\sigma_{2}} \\ \lambda_{3}^{\sigma^{1}}v_{H}v_{\sigma_{1}} & \lambda_{\sigma_{1}}v_{\sigma_{1}}^{2} & v_{\sigma_{1}}(\mu + \lambda_{3}^{\sigma\sigma}v_{\sigma_{2}}) \\ \lambda_{3}^{\sigma^{2}}v_{H}v_{\sigma_{2}} & v_{\sigma_{1}}(\mu + \lambda_{3}^{\sigma\sigma}v_{\sigma_{2}}) & \lambda_{2}v_{\sigma_{2}}^{2} - \frac{\mu v_{\sigma_{1}}^{2}}{2v_{\sigma_{2}}} \end{pmatrix}$$

On the other hand, for the CP-odd scalars

$$\mathcal{M}_{I}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2\mu v_{\sigma_{2}} & -\mu v_{\sigma_{1}} \\ 0 & -\mu v_{\sigma_{1}} & -\frac{\mu v_{\sigma_{1}}^{2}}{2v_{\sigma_{2}}} \end{pmatrix}, \qquad \qquad \widehat{\mathcal{M}}_{I}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\frac{\mu (v_{\sigma_{1}}^{2} + 4v_{\sigma_{2}}^{2})}{2v_{\sigma_{2}}} \end{pmatrix},$$

where the mixing $J_1 - J_2$ is

$$\tan(2\theta) = \frac{2(\mathcal{M}_I^2)_{23}}{(\mathcal{M}_I^2)_{22} - (\mathcal{M}_I^2)_{33}} = \frac{4v_{\sigma_1}v_{\sigma_2}}{4v_{\sigma_2}^2 - v_{\sigma_1}^2}.$$
 (20)

$$\mathcal{L}_{\ell\ell J} = J \,\bar{\ell}_{\beta} \left(S_L^{\beta\alpha} P_L + S_R^{\beta\alpha} P_R \right) \ell_{\alpha} + \text{h.c.} \,. \tag{21}$$

$$g_{JNN} = \begin{cases} i\frac{\kappa}{\sqrt{2}} \\ i\frac{\kappa}{\sqrt{2}}\cos\theta \end{cases}$$

with

% in models with one σ singlet in models with two σ singlets

$$S_{L,R} \propto g_{JNN} \frac{M_N^2 - m_{\eta^+}^2 + m_{\eta^+}^2 \log\left(\frac{m_{\eta^+}^2}{M_N^2}\right)}{M_N^2 - m_{\eta^+}^2 + M_N^2 \log\left(\frac{m_{\eta^+}^2}{M_N^2}\right)}.$$
 (22)

Contours of BR $(\mu \to eJ)$ in the (M_N, m_{η^+}) plane. The colored regions correspond to the regions allowed by the current experimental bound on the branching ratio. On the left, g_{JNN} has been fixed to 10^{-1} (blue) and to 10^{-2} (pink), while $r_{\eta} = 1$ has been used. On the right, the coupling g_{JNN} was not fixed and three different values of the r_{η} ratio have been considered, 0.1 (pink), 1 (blue) and 2 (green).

$$BR(\mu \to eJ) = \frac{m_{\mu}}{32 \pi \Gamma_{\mu}} \left(|S_L^{e\mu}|^2 + |S_R^{e\mu}|^2 \right) , \qquad (23)$$

- We provided the condition for $U(1)_L$ charges must satisfy in order to recover the Scotogenic model in each of the 50 models.
- This UV extensions enrich the phenomenology of the Scotogenic model.
- We studied the effective coupling at one-loop level between the majoron and two charged leptons. Using experimental bounds for the transition $\mu \to eJ$ we set the allowed region in the new physic parameter space (m_{η}, m_N) .
- Illustrated the possibility of having \mathbb{Z}_2 dark parity as an accidental symmetry after the SSB, obtaining 19 different models.

Thank you!