Exploring the baryon-to-meson transition region at NICA energies

Content

Data from heavy-ion collision experiments such as SPS, AGS and RHIC have shown a sharp peak in the ratio K^+/π^+ at a value ~ 8 GeV per nucleon, whereas the ratio K^-/π^- shows a monotonically increasing behaviour. The energy region in which this phenomenon occurs will be explored by the NICA experiment and is characterized by a high baryonic density. The statistical models predict that the hadronic medium transits from a baryon- to a meson-dominated gas as the collision energy increases. The transition is expected to take place at a temperature around 140 MeV and a baryon chemical potential around 420 MeV, corresponding to a collision energy of 8.2 GeV per nucleon (center-of-mass energy). In this talk, we employ Monte Carlo simulated data samples in order to discuss some of the production mechanisms at the energy region where this transition happens.

Summary

Primary author(s): Mr. GUZMÁN CASTRO, Rodrigo (Instituto de Ciencias Nucleares, UNAM)
Co-author(s): Dr. CUAUTLE, Eleazar (ICN-UNAM); Dr. BIETENHOLZ, Wolfgang (ICN, UNAM); Dr. AYALA, Alejandro (Instituto de Ciencias Nucleares, UNAM)

Presenter(s) : Mr. GUZMÁN CASTRO, Rodrigo (Instituto de Ciencias Nucleares, UNAM)