Dark Matter searches	Dark Higgs	Scale Factor Determination	Results	Summary	Backup

Scale factors determination applied to the dark Higgs model

Nestor Raul Mancilla Xinto María Isabel Pedraza Morales

Benemérita Universidad Autónoma de Puebla RADPyC2023

June 14th

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

1

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Dark Matter searches ●○○○	Dark Higgs	Scale Factor Determination	Results ○	Summary 00	Backup 000000000000000000000000000000000000

Dark Matter searches

2 Dark Higgs

3 Scale Factor Determination

A Results

5 Summary

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

999

Scale factors determination applied to the dark Higgs model

• • • • • • • • •

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results	Summary	Backup
0000	00000000				000000000000000000000000000000000000000

Dark Matter searches

Possible dark matter detection channels (1).

Collider searches:

- Interactions between SM and DM
- Discovery of the Higgs boson (new annihilation channels)
- Models proposed for LHC Run-2 searches (2): Simplified models (MET+X)

Sac

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results	Summary	Backup
0000	00000000				000000000000000000000000000000000000000

Large Hadron Collider

Compact Muon Solenoid

CMS (Dr. Rogelio REYES ALMANZA)

• • • • • • • • • 9QC

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches ○○●○	Dark Higgs	Scale Factor Determination	Results O	Summary 00	Backup 000000000000000000000000000000000000

Mono-dark Higgs searches

- DM pair production in association with a dark Higgs boson
- $h_s + \chi \chi$ where $h_s \rightarrow b\overline{b}, W^+W^-, ZZ, hh$

Processes leading to a mono-dark-Higgs signal (6).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Benemérita Universidad Autónoma de Puebla RADPyC2023

Mono-Higgs searches

- DM pair production in association with a Higgs boson
- $h+\chi\chi$ where $h o b\overline{b},\gamma\gamma$, ...

Schematic diagram for mono-Higgs production (5).

Nestor Raul Mancilla Xinto

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results	Summary	Backup
0000	000000000				000000000000000000000000000000000000000

CMS searches

m_s [GeV] 220

210

200

190

180

170

160^I

500

CMS Preliminary

Search for dark matter particles produced in association with a dark Higgs boson decaying into W^+W^- in proton-proton ATLAS searches : collisions at \sqrt{s} = 13 TeV with the CMS detector(CMS PAS EXO-20-013).

137 fb⁻¹(13 TeV)

dark Higgs, Z' → DM + s(WW)

Majorana DM, m = 100 GeV g_ = 0.25, g, = 1, sin0 = 0.01

 Observed 95% CL Expected 95% CI ± 1 std. dev.

2000

m_{z'} [GeV]

- RECAST framework reinterpretation of an ATLAS Dark Matter Search constraining a model of a dark Higgs boson decaying to two b-auarks (ATL-PHYS-PUB-2019-032).
- Active Learning reinterpretation of an ATLAS Dark Matter search constraining a model of a dark Higgs boson decaying σ/σ_{theory} to two b-guarks (ATL-PHYS-PUB-2022-045).

Figure: Exclusion limits on the mediator masses $m_{z'}$ and m_s .

Figure: Combined observed (expected) exclusion regions at 95% CL for the dark Higgs model in the $(m_{\rm s}, m_{\pi^\prime})$ plane, marked by the solid red (black) line.

1500

1000

Nestor Raul Mancilla Xinto

+□ + Benemérita Universidad Autónoma de Puebla RADPyC2023

9QC

Results Summary

Backup

Dark Higgs Model

Hunting the dark Higgs: arXiv:1701.08780

- Dark Matter Majorana particle
- Dark Higgs in the lightest state
 - *h_s* mass < 160 GeV
- New Z' mediator spin 1
 - Couplings g_q = 1, g_{χ} = 0.25
- Parameters of the model:
 - h_s mass, Z' mass, χ mass
- Final state: Large MET and bb pair from the dark Higgs

Discriminating variable: Mass of the recoiling large fat jet

Figure: Processes leading to a mono-dark-Higgs signal(6).

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

 $\mathcal{A} \mathcal{A} \mathcal{A}$

4 🗆 X 4 🖓 X 4 🖻 X 4 🖻

Dark Matter searches	Dark Higgs ○●○○○○○○	Scale Factor Determination	Results ○	Summary 00	Backup 000000000000000000000000000000000000
	0000000				

▲□▶ ▲□▶ ▲ Ξ▶ ▲ Ξ▶ Ξ · • ○

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

・ロト・目示・目示・目示・目示・ のへの

Benemérita Universidad Autónoma de Puebla RADPyC2023

Scale factors determination applied to the dark Higgs model

Nestor Raul Mancilla Xinto

Oark Matter searches	Dark Higgs 000●0000	Scale Factor Determination	Results	Summary 00	Backup 000000000000000000000000000000000000

Minimal Event Selection

- Missing energy requirement > 250 GeV
- Minimum fat jet $p_T > 160 \text{ GeV}$
 - AK15 jets as dark Higgs candidates

Signal generation: h_s masses: 50, 70, and 90 GeV

Z' mass [GeV]	DM χ mass [GeV]
195	100
200	150
295	150
300	100
495	250
500	150, 500
995	500
1000	150, 1000
1995	1000
2000	500, 1500
2495	1250
2500	750
2995	1500
3000	1000

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

9QC

Scale factors determination applied to the dark Higgs model

I

Dark Matter searches	Dark Higgs 0000€000	Scale Factor Determination	C C	Summary 00	Backup 000000000000000000000000000000000000

Signal region

- At least one AK15 jet $p_T >$ 160 GeV
- PFMET > 250 GeV
- τ veto, no e, μ, γ
- Minimum requirement on the DeepAK15 score

The table represents the expected yields for the different backgrounds. Main contributions: W+jets, Z+jets and $t\overline{t}$.

Category: sr pass Hbb 81.2 DY+HF 16.6 DY+LF 21.1 WW 114.7 WZ 221.5 77 253.0 ST 591.7 TT 6456.9 W+HF 1044.3 W+LF 1787.2 7+HF 3686.2 Z+LF 3201.6 OCD 152.6

Total expected: 17628.6

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

э

A CA

Dark Matter searches	Dark Higgs 00000●00	Scale Factor Determination	Results O	Summary 00	Backup 000000000000000000000000000000000000

Background estimation: Data Driven

Main background: W/Z + jets, $t\bar{t}$

- Estimation using a data-driven model
- Control regions
- Transfer factors

Rhalphabet: differential alphabet method

> To increase statistics (not data samples with 100% tt, W/Z + jet)

Predict the $t\bar{t}$, W/Z+jets mass vs recoil distribution using data in control regions

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Sac

Dark Matter searches	Dark Higgs ○○○○○●○	Scale Factor Determination	Results ○	Summary 00	Backup 000000000000000000000000000000000000

Analysis summary:

Analyze full Run-2 data (137.2 fb^{-1})

- Run2016 B-H datasets 35.9 fb⁻¹
- Run2017 B-F datasets 41.5 fb⁻¹
- Run 2018A-C datasets 59.74 fb⁻¹

Main background W/Z + jets, $t\overline{t}$

Data-driven

Minimal event selection: MET > 250 GeV and p_T > 160 GeV

Select $b\overline{b}$ events with DeepAK15 tagger as dark Higgs candidates

Files in NanoAOD format. The CMSSW is used as well as COFFEA.

SQ P

Nestor Raul Mancilla Xinto

Dark Matter searches	Dark Higgs ○○○○○○●	Scale Factor Determination	Results ○	Summary 00	Backup 000000000000000000000000000000000000

Triggers

- MET Triggers (and filters)
- Electron
- Muon

Corrections and systematics

- Pile-up weights
- MET/single electron trigger efficiencies
- Muon ID, Eletron ID, Photon ID, and scale factors
- Jet Energy Resolution Corrections
- SF for the DeepAK15 efficiency
 - Uncertainty that correct the DeepAK15 tagger signal efficiency (own dark Higgs tagger)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

0000 00000000 00 0 00 00000000000000000	Dark Matter searches	Dark Higgs	Scale Factor Determination	Results	Summary	Backup
		000000000	000			000000000000000000000000000000000000000

Scale Factors Measurement

• > 0.65

Benemérita Universidad Autónoma de Puebla RADPyC2023

 $\mathcal{A} \mathcal{A} \mathcal{A}$

• MET, jet p_T , R

Variable In(m_{sv}, d_{xy} sig max)

• Separation between the bb components from the rest

Figure: Proxy for double-b (7)

SF measurement direct from the fit: Higgs Combine Tool

Benemérita Universidad Autónoma de Puebla RADPyC2023

Scale factors determination applied to the dark Higgs model

Nestor Raul Mancilla Xinto

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results	Summary	Backup
	000000000	000			

Year	Scale factor
2016	8.5349e-01 ± 1.52e-02
2017	9.3763e-01 ± 5.87e-03
2018	9.8177e-01 ± 1.02e-02

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results •	Summary 00	Backup 000000000000000000000000000000000000
D					

Results

Figure: Fig left and center: Comparison of spin-dependent or independent nucleon cross sections. Fig right expected limits.

-∢≣≯

Sar

э

Nestor Raul Mancilla Xinto

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results ○	Summary ●○	Backup 000000000000000000000000000000000000
Summan	/				

- Obtained scale factors to correct the double b tagger efficiency in Monte Carlo simulations.
- Applied to fat jet analysis in the dark Higgs model.
- Improves accuracy in identifying dark Higgs-associated jets.
- Further studies and validations are ongoing.

▲□▶▲@▶▲≧▶▲≧▶ ≧ りへで

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results ○	Summary ○●	Backup 000000000000000000000000000000000000

Thank you

▲□▶ 4@▶ 4 差▶ 4 差▶ 差 - 約९@

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches	Dark Higgs 00000000	Scale Factor Determination	Results ○	Summary 00	Backup ●000000000000000000000000000000000000

Backup

▲□▶ ▲@▶ ▲ 差▶ ▲ 差▶ 差 - の Q @

Benemérita Universidad Autónoma de Puebla RADPyC2023

Nestor Raul Mancilla Xinto

Dark Matter searches	Dark Higgs 00000000	Scale Factor Determination	Results O	Summary 00	Backup ○●○○○○○○○○○○○○○○○○○○○○○○○○

Motivation

Example unsolve SM problems

- Neutrino mass
- Mass hierarchy
- Baryonic asymmetry
- Dark Energy
- Dark Matter

matter and dark energy in the universe

Astrophysical observations: Galaxy rotations, Gravitational lensing, etc. Dark Matter features:

- Does not interact with the electromagnetic force
- Weakly interacting
- Stable

Renormalization of the U(1) gauge theory for tensor dark matter: preliminary results (Mr. ARMANDO DE LA CRUZ RANGEL PANTOJA).

Nestor Raul Mancilla Xinto

4 🗆 k 4 🗐 k 4 🖻 k 4 🖻 k Benemérita Universidad Autónoma de Puebla RADPyC2023

Sar

Dark Matter searches Dark Higgs Scale Factor Determination Results Summ	mary Backup 000000000000000000000000000000000000
---	---

▲□▶</li

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results ○	Summary 00	Backup 000€000000000000000000000000000000000

RECAST framework reinterpretation of an ATLAS Dark Matter Search constraining a model of a dark Higgs boson decaying to two b-quarks

▲□▶▲舂▶▲差▶▲差▶ 差 めんゆ

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results ○	Summary 00	Backup 000000000000000000000000000000000000

Active Learning reinterpretation of an ATLAS Dark Matter search constraining a model of a dark Higgs boson decaying to two b-quark

Exclusion limits on the mediator masses m_z and m_s in the plane m χ =200GeV, g_{χ} =1.0 and g_q =0.25. The exclusion limits of the previous Mono-H(bb) search using a fraction of the Run 2 data are improved by approximately 300 GeV in terms of m_{τ}^3 .

Dark Matter searches

Dark Higgs Sc

Scale Factor Determination

Results Summary

Backup

Figure: Branching ratio of the dark Higgs boson (9).

-**↓□▶ ↓@▶ ↓**≣▶ ↓≣▶ = 9000

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results ○	Summary 00	Backup 000000000000000000000000000000000000

Z + jets background estimation

•
$$TF_{plf}^{Z+jets}(msd, P_T^{miss}) = \sum_{k=0}^{n_{mad}} \sum_{l=0}^{n_{pred}is} a_{k,l} b_{k,n_{mad}}(msd) b_{l,n_{pred}is}(P_T^{miss}) \sum_{k=0}^{m_{mad}} \sum_{l=0}^{m_{pred}is} c_{k,l} d_{k,m_{mad}}(msd) d_{l,m_{pred}is}(P_T^{miss})$$

$$N_{SR_{pass}}^{Z+jets}(msd, P_T^{miss}) = \mu_{SR_{fail}}^{Z+jets}(msd, P_T^{miss})TF_{p/f}^{Z+jets}(msd, P_T^{miss})$$

▲□▶ 4団▶ 4 Ξ▶ 4 Ξ▶ Ξ - 約Q@

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches	Dark Higgs 00000000	Scale Factor Determination	Results ○	Summary 00	Backup 0000000●00000000000000000000000000000

Similar for W + jets and ttbar background

•
$$N_{SR_{pass}}^{W+jets}(msd, P_T^{miss}) = N_{SR_{fail}}^{W+jets}(msd, P_T^{miss})TF_{plf}^{W+jets}(msd, P_T^{miss})$$

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results ○	Summary 00	Backup 00000000●0000000000000000000000000000

Z+jets Background estimation

To increase statistics from data.

Transfer factor (TF) to connect in fail with pass $TF_{p/f}(msd, p_T^{miss})$

$$N_{SR_{\text{pass}}}^{Z+j}(\text{msd}, p_T^{\text{miss}}) = N_{SR_{\text{fail}}}^{Z+j}(\text{msd}, p_T^{\text{miss}}) TF_{p/f}(\text{msd}, p_T^{\text{miss}}). \tag{2}$$

Similar for W+jets and $t\bar{t}$:

$$N_{SR_{\text{poss}}}^{W+j}(\text{msd}, p_T^{\text{miss}}) = N_{SR_{\text{fall}}}^{W+j}(\text{msd}, p_T^{\text{miss}}) TF_{p/f}(\text{msd}, p_T^{\text{miss}}). \tag{3}$$

$$N_{t\bar{t}(\mu/e)CR_{\text{pass}}}^{t\bar{t}}(\text{msd}, p_T^{\text{miss}}) = \frac{N_{SR_{\text{pass}}}^{t\bar{t}}(\text{msd}, p_T^{\text{miss}})}{\mathsf{TF}_{t\bar{t}(\mu/e)CR_{\text{pass}}}^{t\bar{t}}(\text{msd}, p_T^{\text{miss}}, \theta)}, \tag{4}$$

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches

Dark Higgs Scale

Scale Factor Determination

Results Summary

Backup

BtagMu triggers

```
self. btagmu triggers = {
    '2016': [
        'BTagMu_AK4Jet300_Mu5',
        'BTagMu_AK8Jet300_Mu5',
        'BTaqMu AK4DiJet170 Mu5'
        1.
    '2017': [
        'BTagMu_AK4Jet300_Mu5',
        'BTagMu_AK8Jet300_Mu5',
        'BTagMu AK4DiJet170 Mu5'
        ],
    '2018': [
        'BTagMu_AK4Jet300_Mu5',
        'BTagMu_AK8Jet300_Mu5',
        'BTagMu_AK4DiJet170_Mu5'
```

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Sac

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results ○	Summary 00	Backup 000000000000000000000000000000000000

Triggers

MET triggers

- HLT PFMETNoMu120 PFMHTNoMu120 IDTight
- HLT PFMETNoMu120 PFMHTNoMu120 HT60

MET filters (induced by the HF detector)

- goodVertices
- globalSuperTightHalo2016Filter
- HBHENoiseFilter
- HBHENoiselsoFilter
- EcalDeadCellTriggerPrimitiveFilter
- BadPFMuonFilter
- ecalBadCalibFilterV2
- eeBadScFilter (only for data)

Electron triggers

- 2017 HLT_Ele35 WPTight Gsf OR HLT Photon200
- 2018 HLT Ele32 WPTight Gsf OR HLT Photon200

Muon triggers

- 2017 HLT IsoMu27
- 2018 HLT IsoMu24

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results ○	Summary 00	Backup 000000000000000000000000000000000000

$$\begin{split} \sigma_{\rm SI}^{0} &= \frac{9\,g_{\rm DM}^{2}\,g_{q}^{2}\,\mu_{n\chi}^{2}}{\pi M_{\rm med}^{4}} \\ &\approx 1.1 \times 10^{-39}\,\,{\rm cm}^{2} \cdot \left(\frac{g_{\rm DM}\,g_{q}}{1}\right)^{2} \left(\frac{1\,\,{\rm TeV}}{M_{\rm med}}\right)^{4} \left(\frac{\mu_{n\chi}}{1\,\,{\rm GeV}}\right)^{2} \\ \sigma_{\rm SD}^{0} &= \frac{3\,g_{\rm DM}^{2}\,g_{q}^{2}(\Delta_{u} + \Delta_{d} + \Delta_{s})^{2}\,\mu_{n\chi}^{2}}{\pi M_{\rm med}^{4}} \\ &\approx 4.6 \times 10^{-41}\,\,{\rm cm}^{2} \cdot \left(\frac{g_{\rm DM}\,g_{q}}{1}\right)^{2} \left(\frac{1\,\,{\rm TeV}}{M_{\rm med}}\right)^{4} \left(\frac{\mu_{n\chi}}{1\,\,{\rm GeV}}\right)^{2} \,, \end{split}$$

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results ○	Summary 00	Backup 000000000000000000000000000000000000

DeepAK15 tagger

▲□▶ ▲□▶ ▲ Ξ ▶ ▲ Ξ ▶ Ξ · 𝒴 𝔅

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches

Dark Higgs Scale F

Scale Factor Determination

Results Summary

Backup

Figure: Impacts of the nuisance parameters (NP) on the parameter of interest for 2018

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

99CP

	Dark Matter searches	Dark Higgs 00000000	Scale Factor Determination	Results ○	Summary 00	Backup 000000000000000000000000000000000000
--	----------------------	------------------------	----------------------------	---------------------	---------------	--

Impacts of the nuisance parameters (NP) on the parameter of interest for 2018

Benemérita Universidad Autónoma de Puebla RADPyC2023

Scale factors determination applied to the dark Higgs model

Nestor Raul Mancilla Xinto

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results O	Summary 00	Backup 000000000000000000000000000000000000

- AK4:
 - CHS, latest AK4 JEC applied
 - Tight jet ID, pT>30 & abs(eta)<2.4 & nhf<0.8 & chf>0.1
 - Loose PU ID for pT<50
 - DeepFlavor loose WP>0.0494
- AK15:
 - PUPPI, latest AK8 JEC applied
 - Tight jet ID, pT>160 & abs(eta)<2.4
 - Soft-drop mass corrected
 - DeepAK15 for dark Higgs taggin

Benemérita Universidad Autónoma de Puebla RADPyC2023

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Nestor Raul Mancilla Xinto

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results ○	Summary 00	Backup 000000000000000000000000000000000000

Muons

- Loose: loose ID, pt>15 & abs(eta)<2.4 & pfRellso04_all<0.25
- Tight: tight ID, pt>30 & abs(eta)<2.4 & pfRellso04_all<0.15

Electrons

- Loose: cut-based veto ID, pt>10 & abs(eta)<2.5
- Tight: cut-based tight ID, pt>40 & abs(eta)<2.5
- abs(eta)<1.4442 (barrel): abs(dxy)<0.05 & abs(dz)<0.1
- abs(eta)>1.5660 (endcap): abs(dxy)<0.1 & abs(dz)<0.2
- dR(electrons, loose muons)>0.3

Taus

- MVAoldDM2017v2 very loose ID, pt>18 & abs(eta)<2.3
- Decay mode flag activated
- dR(electrons, loose electrons/muons)>0.4

Photons

- Loose: cut-based loose ID, pt>15 & abs(eta)<2.5 & !(1.4442<abs(eta)<1.5660)

990

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches	Dark Higgs	Scale Factor Determination	O O	Summary 00	Backup 000000000000000000000000000000000000
----------------------	------------	----------------------------	--------	---------------	--

CMS pileup

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results ○	Summary 00	Backup 000000000000000000000000000000000000

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

9 a C

Scale factors determination applied to the dark Higgs model

< <p>I I

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results O	Summary 00	Backup 000000000000000000000000000000000000

Benemérita Universidad Autónoma de Puebla RADPyC2023

Nestor Raul Mancilla Xinto

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results ○	Summary 00	Backup 000000000000000000000000000000000000

▲□▶ ▲□▶ ■▶ ■▶ ■▶ ■▶ ■▶

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results ○	Summary 00	Backup 000000000000000000000000000000000000
----------------------	------------	----------------------------	---------------------	---------------	--

Selection requirements

- Muons
 - Loose: loose ID, p_T>15 & abs(eta)<2.4 & pfRellso04_all<0.25
 - Tight: tight ID, p_T>30 & abs(eta)<2.4 & pfRellso04_all<0.
- Electrons
 - Loose: cut-based veto ID, p_T >10 & abs(eta)<2.5
 - Tight: cut-based tight ID, p_T>40 & abs(eta)<2.5
 - abs(eta)<1.4442 (barrel): abs(dxy)<0.05 & abs(dz)<0.1
 - abs(eta)>1.5660 (endcap): abs(dxy)<0.1 & abs(dz)<0.2
 - dR(electrons, loose muons)>0.
- Tau
 - Loose ID, p_T >18 & abs(eta)<2
 - dR(electrons, loose electrons/muons)>0.4
- Photons
 - Loose: cut-based loose ID, p_T>15 & abs(eta)<2.5 & !(1.4442<abs(eta)<1.5660)
 - Tight: cut-based medium ID, $p_{\rm T}\!>\!230$ and supercluster eta within barrel acceptance
 - pass electron veto. dR(photons. loose electrons/muons)>0.

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

• Scale factors for W/Z + jets

$$N_{W/Z+jets}^{\text{total}} = N_{W/Z+jets}^{\text{pass}} + N_{W/Z+jets}^{\text{fail}}$$
(12)

considering

$$N_{W/Z+jets}^{\text{pass}} = \overbrace{\epsilon_{\text{data}}^{W/Z+jets \text{ mis-tag}} \times N_{W/Z+jets}^{\text{total}}} = \overbrace{SF_{pass}^{W/Z+jets \text{ mis-tag}} \times \epsilon_{MC}^{W/Z+jets \text{ mis-tag}}}_{(13)} \times N_{W/Z+jets}^{\text{total}}$$

and deriving
$$N_{W/Z+jets}^{fail}$$
 as
 $N_{W/Z+jets}^{fail} = N_{W/Z+jets}^{total} \times (1 - SF_{pass}^{W/Z+jets mis-tag} \times \epsilon_{MC}^{W/Z+jets mis-tag})$ (14)
so that $SF_{fail}^{W/Z+jets mis-tag}$ can be expressed in terms of $SF_{pass}^{W/Z+jets mis-tag}$ as
 $SF_{fail}^{W/Z+jets mis-tag} = \frac{1 - SF_{pass}^{W/Z+jets mis-tag} \times \epsilon_{MC}^{W/Z+jets mis-tag}}{1 - \epsilon_{MC}^{W/Z+jets mis-tag}}$ (15)
 $SF_{f} = \epsilon_{f}^{data}(p_{T}, \eta) / \epsilon_{f}^{MC}(p_{T}, \eta)$

Nestor Raul Mancilla Xinto

. .

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches	Dark Higgs	Scale Factor Determination	Results ⊙	Summary 00	Backup 000000000000000000000000000000000000

PICO-2L Run2

• The 90 % C.L. limit on the SD WIMP-proton cross section from Run-2 (Run-1 [8]) of PICO-2L is plotted in green (red), along with limits from PICO-60 (brown), COUPP-4 (light blue region), PICASSO (dark blue), SIMPLE (thin green), XENON100 (orange), IceCube (dashed and solid black) and CMS (dashed orange) [9, 10, 12, 13, 25–29]. For the IceCube and SuperK results, the dashed lines assume annihilation to W pairs while the solid lines assume annihilation to b quarks. Comparable limits assuming these and other annihilation channels are set by the ANTARES, Baikal and Baksan neutrino telescopes [30–32]. The CMS limit is from a monojet search and assumes an effective field theory, valid only for a heavy mediator [33, 34]. Comparable limits are set by ATLAS [35, 36]. The purple region represents the parameter space of the constrained minimal supersymmetric standard model of Ref. [37].

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023

Sac

Figure: Spin dependent results

Benemérita Universidad Autónoma de Puebla RADPyC2023

Dark Matter searches	Dark Higgs	Scale Factor Determination	C C	Summary 00	Backup 000000000000000000000000000000000000

Figure: Spin independent results

Benemérita Universidad Autónoma de Puebla RADPyC2023

Scale Factor Determination

Results Summary

Backup

- S. Giagu, "Wimp dark matter searches with the atlas detector at the lhc," Front. in Phys., vol. 7, p. 75, 2019.
- D. A. *et al.*, ``Dark matter benchmark models for early lhc run-2 searches: Report of the atlas/cms dark matter forum,'' *Physics of the Dark Universe*, vol. 27, p. 100371, Jan 2020.
- I. P. Enginnering, ``The Ihc is 27 km long and lies 100 m underground,'' 2021.
 (The LHC is 27 km long and lies 100 m underground).
- A. M. Sirunyan *et al.*, "Particle-flow reconstruction and global event description with the cms detector," *Journal of Instrumentation*, vol. 12, pp. P10003--P10003, Oct 2017.
- L. Carpenter, A. DiFranzo, M. Mulhearn, C. Shimmin, S. Tulin, and D. Whiteson, "Mono-higgs-boson: A new collider probe of dark matter," *Phys. Rev. D*, vol. 89, p. 075017, Apr, 2014.

~ ~ ~

Scale Factor Determination

Results Summary

Backup

- M. Duerr, A. Grohsjean, F. Kahlhoefer, B. Penning,
 - K. Schmidt-Hoberg, and C. Schwanenberger, "Hunting the dark higgs," *Journal of High Energy Physics*, vol. 2017, apr 2017.
- A. Novak, "Better proxy is better." Presentation at the BTV Meeting, July 2019.
- E. Ward, ``Estimated matter-energy content of the universe,'' 2019.

(Estimated matter-energy content of the Universe).

``RECAST framework reinterpretation of an ATLAS Dark Matter Search constraining a model of a dark Higgs boson decaying to two *b*-quarks,'' tech. rep., CERN, Geneva, 2019.

Scale Factor Determination

Results Summary

Backup

All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2019-032.

▲□▶▲@▶▲≧▶▲≧▶ ≧ り९

Nestor Raul Mancilla Xinto

Benemérita Universidad Autónoma de Puebla RADPyC2023