Future leptonic δ_{CP} -phase determination in the presence of NSI

L.A.D. and O.G.M. arXiv: 2304.05545

Luis A. Delgadillo

ESFM-IPN

June 2023

<ロ><回><週><目><目><目><目><目><日><<0<</1/24

Outline

Introduction

Framework

Simulation

Results

Conclusions

Neutrino Oscillations

$$\left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{array}\right) = \left(\begin{array}{ccc}U_{e1} & U_{e2} & U_{e3}\\U_{\mu1} & U_{\mu2} & U_{\mu3}\\U_{\tau1} & U_{\tau2} & U_{\tau3}\end{array}\right) \left(\begin{array}{c}\nu_{1}\\\nu_{2}\\\nu_{3}\end{array}\right)$$

Mixing matrix U (PMNS):

Particle Data Group Parametrization

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Particle Data Group https://pdg.lbl.gov/

Oscillation Probability

•
$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| \langle \nu_{\beta}(L) | \nu_{\alpha} \rangle \right|^{2} = \left| \sum_{j} U_{\alpha j}^{*} U_{\beta j} \exp\left(-i \frac{m_{j}^{2} L}{2E_{\nu}} \right) \right|^{2}$$

Oscillation Parameters

• 2 flavors:
$$P(\nu_e \rightarrow \nu_\mu) = \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_\nu}\right)$$
.

► 3- ν mixing: ► $\theta_{12} \approx 34^{\circ}$ $\theta_{13} \approx 9^{\circ}$ $\theta_{23} \approx 45^{\circ}$. ► $\Delta m_{21}^2 \approx 7.5 \times 10^{-5} \text{ eV}^2$ $|\Delta m_{31}^2| \approx 2.5 \times 10^{-3} \text{ eV}^2$.

• Indications: δ_{CP} and sign of Δm_{31}^2 .

Salas et al. JHEP02, 071 (2021).

Leptonic δ_{CP} -phase determination

 Neutrino 2020: (~ 2σ) discrepancy on δ_{CP} measurement among T2K and NOvA.

A. Himmel https://zenodo.org/record/3959581#.ZBjbiNLMIso.

- Systematic errors, statistical fluctuations?
- Neutrino non-standard interactions (NSI)?
- Sterile neutrino? ...

イロト イボト イヨト イヨト

Neutral Curent (NC) NSI

NC-NSI parameterized by dimension 6 operators

$$\mathcal{L} = -2\sqrt{2}G_{\mathsf{F}}\epsilon^{\mathsf{fC}}_{\alpha\beta}(\bar{\nu}_{\alpha}\gamma^{\mu}\mathsf{P}_{L}\nu_{\beta})(\bar{f}\gamma_{\mu}\mathsf{P}_{C}f).^{1}$$

Neutrino propagation trough the Earth:

$$\epsilon_{\alpha\beta} = \sum_{f=e,u,d} \epsilon_{\alpha\beta}^{f} \frac{N_{f}}{N_{e}} := \sum_{f=e,u,d} (\epsilon_{\alpha\beta}^{fL} + \epsilon_{\alpha\beta}^{fR}) \frac{N_{f}}{N_{e}},$$

 N_f : number density of the fermion f. At Earth, $N_n \simeq N_p = N_e$, where $N_u \simeq N_d \simeq 3N_e$.

$$\epsilon_{\alpha\beta}\simeq\epsilon_{\alpha\beta}^{e}+3\epsilon_{\alpha\beta}^{u}+3\epsilon_{\alpha\beta}^{d}.$$

 $^{1}C = (L, R); P_{C} = (1 \mp \gamma^{5})/2.$

Effective Hamiltonian

Effective Hamiltonian in the flavor base

$$H_{f} = \frac{1}{2E_{\nu}} \left[U^{\dagger} M^{2} U + a \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^{*} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^{*} & \epsilon_{\mu\tau}^{*} & \epsilon_{\tau\tau} \end{pmatrix} \right],$$

 $\begin{array}{l} {\it E}_{\nu} \mbox{ neutrino energy, } U = R_{23}(\theta_{23})U_{13}(\theta_{13},\delta_{CP})R_{12}(\theta_{12}) \mbox{ mixing matrix} \\ {\it PMNS, } M^2 = {\it diag}(0,\Delta m^2_{21},\Delta m^2_{31}) \mbox{ mass matrix, } {\it a} = 2\sqrt{2}G_F N_e E_{\nu} \\ {\it matter potential.} \end{array}$

We consider complex NSI, where $\epsilon_{\alpha\beta} = |\epsilon_{\alpha\beta}|e^{i\phi_{\alpha\beta}}$. For $\alpha \neq \beta$, the phases $(\phi_{\alpha\beta})$ could contribute to *CP*-violation in the lepton sector.

NC-NSI to explain (δ_{CP}) discrepancy among T2K&NOvA

T2K: L = 295 km, (practically vacuum oscillation experiment), $\langle E_{\nu} \rangle \sim 0.6$ GeV, prefers $\delta_{CP} \sim 1.5 \pi$.

NOvA: L = 810 km (more matter interaction) $\langle E_{\nu} \rangle \sim 1.9$ GeV, prefers $\delta_{\rm CP} \sim \pi$.

In presence of NSI: $\delta_{\text{NOvA}} = \delta_{\text{T2K}} + \phi$, extra *CP*-phases: $\phi = \{\phi_{e\mu}, \phi_{e\tau}\} \sim 3/2\pi \text{ y } |\epsilon_{e\mu}| \sim |\epsilon_{e\tau}| \sim 0.2.$

At the probability level:

 $P(\epsilon = 0, \delta_{\text{measured}}) \simeq P(\epsilon, \delta_{\text{true}}).$

Chatterjee, Palazzo PRL 126, 051802 (2021). Denton et al. PRL 126, 051801 (2021).

Electron neutrino appearance (one parameter at a time)

$$P(\nu_{\mu} \rightarrow \nu_{e}) \propto \epsilon_{e\mu}, \epsilon_{e\tau}.$$

9/24

Numerical fit: T2K+NOvA (one parameter at a time)

TABLE I. Best fit values and $\Delta \chi^2 = \chi^2_{SM} - \chi^2_{SM+NSI}$ for the two choices of the NMO.

NMO	NSI	$ arepsilon_{lphaeta} $	$\phi_{lphaeta}/\pi$	$\delta_{ m CP}/\pi$	$\Delta \chi^2$
NO	Еец	0.15	1.38	1.48	4.50
	$\varepsilon_{e\tau}$	0.27	1.62	1.46	3.75
IO	E _{eu}	0.02	0.96	1.50	0.07
	$\varepsilon_{e\tau}$	0.15	1.58	1.52	1.01

Chatterjee, Palazzo PRL 126, 051802 (2021).

Similar results: Denton et al. PRL 126, 051801 (2021).

NSI solution to the T2K and NOvA discrepancy on δ_{CP}

Chatterjee, Palazzo PRL 126, 051802 (2021).

Simulation

We use the General Long Baseline Experiment Simulator (GLoBES) software https://www.mpi-hd.mpg.de/personalhomes/globes/.

- n-years of exposure: n/2 (ν mode) and n/2 ($\bar{\nu}$ mode).
- ► Electron neutrino appearance $P(\nu_{\mu} \rightarrow \nu_{e})$ and muon neutrino disappearance $P(\nu_{\mu} \rightarrow \nu_{\mu})$ events.
- Sensitivity and allowed regions, χ^2 -statistics.

Experimental configurations

DUNE

- Baseline: 1300 km.
- Neutrino energy: $\langle \boldsymbol{E}_{\nu} \rangle \sim 3$ GeV.
- Data: 13 years total, 6.5 and (6.5) ν ($\bar{\nu}$).

ESSnuSB

- Baseline: 540 km, 360 km.
- Neutrino energy: $\langle E_{\nu} \rangle \sim 0.3$ GeV.
- Data: 10 years total, 5 and (5) ν ($\bar{\nu}$).

T2HKK

- ► Two-baseline: 295-(1100) km.
- Neutrino energy: $\langle E_{\nu} \rangle \sim 0.6 (0.8)$ GeV.
- Data: 10 years total, 5 and (5) ν ($\bar{\nu}$).

ESSnuSB and DUNE (one parameter at a time)

Solid lines 3ν -osc. (SM), dashed lines SM+NSI ($\epsilon_{e\mu}$).

LAD, OGM arXiv:2304.05545 [hep-ph].

ESSnuSB and DUNE (one parameter at a time)

Solid lines 3ν -osc. (SM), dashed lines SM+NSI ($\epsilon_{e\tau}$).

LAD, OGM arXiv:2304.05545 [hep-ph].

イロト イヨト イヨト

NC-NSI at T2HKK (one parameter at a time)

Expected allowed regions : $\Delta \chi^2_{SM+NSI}(\epsilon_{e\mu} \text{ or } \epsilon_{e\tau})$.

16 / 24

Conclusions

- ▶ NSI as an explanation to (δ_{CP}) discrepancy T2K/NOvA.
- Combination (ESSnuSB+DUNE): beneficial to obtain a reliable value of δ_{CP} (even in presence of NSI).
- **T2HKK**: useful to determine the NSI parameters $(\epsilon_{e\mu}, \epsilon_{e\tau})$.

THANK YOU

BACK UP

Any Questions?

Electron neutrino appearance channel (one parameter at a time)

 $P(\nu_{\mu} \rightarrow \nu_{e}) \propto \epsilon_{e\mu}, \epsilon_{e\tau}.$

Electron neutrino appearance channel (one parameter at a time)

TABLE I. Best fit values and $\Delta \chi^2 = \chi^2_{SM} - \chi^2_{NSI}$ for a fixed MO considering one complex NSI parameter at a time. (For the SM, $\chi^2_{NO} - \chi^2_{IO} = 2.3.$)

МО	NSI	$ \epsilon_{lphaeta} $	$\phi_{lphaeta}/\pi$	δ/π	$\Delta \chi^2$
NO	$\epsilon_{e\mu}$	0.19	1.50	1.46	4.44
	$\epsilon_{e\tau}$	0.28	1.60	1.46	3.65
	$\epsilon_{\mu\tau}$	0.35	0.60	1.83	0.90
IO	$\epsilon_{e\mu}$	0.04	1.50	1.52	0.23
	$\epsilon_{e\tau}$	0.15	1.46	1.59	0.69
	$\epsilon_{\mu\tau}$	0.17	0.14	1.51	1.03

Denton et al. PRL 126, 051801 (2021).

T2HKK and DUNE+ESS ($\epsilon_{e\mu}$)

Solid lines (SM), dashed lines SM+NSI ($\epsilon_{e\mu}$).

LAD, OGM arXiv:2304.05545 [hep-ph].

22 / 24

イロト イヨト イヨト

Constraints from cLFV processes

Constraints on NC-NSI parameters from cLFV processes

NSI	Explicit Form	Estimated Limit (NO)	Estimated Limit (IO)
$ \epsilon^{eL}_{ee} $	$(2\sqrt{2}G_F)^{-1}M_{\Delta}^{-2} Y_{\Delta ee}^*Y_{\Delta ee} $	$< 8.0 \times 10^{-4}$	$< 8.0 \times 10^{-4}$
$ \epsilon^{eL}_{e\mu} $	$(2\sqrt{2}G_F)^{-1}M_{\Delta}^{-2} Y_{\Delta ee}^*Y_{\Delta \mu e} $	$<7.0\times10^{-7}$	$<7.0\times10^{-7}$
$ \epsilon^{eL}_{e\tau} $	$(2\sqrt{2}G_F)^{-1}M_{\Delta}^{-2} Y_{\Delta ee}^*Y_{\Delta \tau e} $	$<2.0\times10^{-4}$	$<2.1\times10^{-4}$
$ \epsilon^{eL}_{\mu\mu} $	$(2\sqrt{2}G_F)^{-1}M_{\Delta}^{-2} Y_{\Delta\mu e}^*Y_{\Delta\mu e} $	$< 6.8 \times 10^{-6}$	$<2.5\times10^{-6}$
$ \epsilon^{eL}_{\mu\tau} $	$(2\sqrt{2}G_F)^{-1}M_{\Delta}^{-2} Y_{\Delta\mu e}^*Y_{\Delta\tau e} $	$<4.8\times10^{-6}$	$<2.5\times10^{-6}$
$ \epsilon^{eL}_{\tau\tau} $	$(2\sqrt{2}G_F)^{-1}M_{\Delta}^{-2} Y_{\Delta\tau e}^*Y_{\Delta\tau e} $	$< 9.5 \times 10^{-5}$	$<9.9\times10^{-5}$

MANDAL, MIRANDA, GARCIA, VALLE, and XU PRD 105, 095020 (2022).

Matter Neutral Current (NC)-NSIs

Neutrino NC-NSIs can be parameterized by a dimension six operator

 $\mathcal{L} = -2\sqrt{2}G_{F}\epsilon^{fC}_{\alpha\beta}(\bar{\nu}_{\alpha}\gamma^{\mu}P_{L}\nu_{\beta})(\bar{f}\gamma_{\mu}P_{C}f), \ G_{F} \sim 1/M_{W}^{2}, \ \epsilon^{fC}_{\alpha\beta} \sim M_{W}^{2}/M_{NSI}^{2}$

Projector operators

$$P_C=P_{R,L}=rac{1}{2}(1\pm\gamma^5)$$

For the case of neutrinos propagating trough the Earth:

$$\epsilon_{\alpha\beta} = \sum_{f=e,u,d} \epsilon_{\alpha\beta}^f \frac{N_f}{N_e} := \sum_{f=e,u,d} (\epsilon_{\alpha\beta}^{fL} + \epsilon_{\alpha\beta}^{fR}) \frac{N_f}{N_e},$$

 $N_f = \bar{f}\gamma^0 f$ correspond to the number density of the f fermion. Since N_f is independent of the axial current, both possible Lorentz structures P_C would have the same impact on the NSI matter effects.