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Introduction
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∆θi,j ≡ (θj − θi) mod 2π ∈ (−π, π],

vi ∈ {−1, 0, 1}.

vi = 1 represents a vortex and vi = −1 represents an anti-vortex.

▶ The classical O(2), or XY, lattice model is defined by the Hamiltonian

H = −J
∑
⟨ij⟩

σ⃗i · σ⃗j = −J
∑
⟨ij⟩

cos(θi − θj), σ⃗i ∈ S1, V = LD.

▶ The 2D model undergoes a topological phase transition driven by the topological defects of the
system (vortices). The vorticity of a plaquette is defined as



▶ The 3D model undergoes a second order phase transition

ξ =
Cξ

|ϵ|ν
→ correlation length,

τ =
Cτ

|ϵ|zν
→ relaxation time,

where Cξ and Cτ are constants, ϵ ≡ (Tc − T )/Tc, ν is a
critical exponent and z is known as the dynamical critical
exponent. The latter depends on the dynamics of the system.

▶ We study the dynamics of the vortex density after a linear
cooling process at different speeds by means of Monte Carlo
simulations.
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Zurek’s mechanism
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▶ Consider a system that undergoes a second order phase transition and linearly cool it with time
according to

ϵ(t) =
t

τQ
or T (t) = Tc

(
1− t

τQ

)
, t ∈ [−τQ, τQ],

where τQ is known as the inverse cooling rate.

T (−τQ) = 2Tc, T (0) = Tc, T (τQ) = 0.

0t t t

| / |
Frozen
stage
Adiabatic
stage▶ Zurek gives a prediction for the density of

topological defects at the transition between

the adiabatic and frozen stages, i.e. at t̂ [1,2]

ρ ∝
(

1
τQ

) (D−d)ν
1+zν ≡

(
1
τQ

)−ζ

.
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Remarks
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▶ Zurek’s prediction is valid only for second order phase transitions, where the correlation length
and the relaxation time have a power-law behavior in ϵ = (Tc − T )/Tc in the vicinity of Tc.

▶ In practice, the determination of t̂ is ambiguous.

▶ Several experiments have attempted to verify Zurek’s prediction for the density of topological
defects. Some of them successfully verified the power-law dependence on the inverse cooling
rate [3,4,5]. To deal with the ambiguity of t̂, most works measure the density of topological
defects at a final temperature after cooling the system under the critical temperature.

[3] S. Ducci et al. Phys. Rev. Lett., 83:5210– 5213, (1999).

[4] S. Casado et al. Phys. Rev. E, 63:057301, (2001).

[5] S.-Z. Lin et al. Nat. Phys., 10:970-977, (2014).



Markov chains and Monte Carlo simulations

▶ One is usually interested in computing expectation values

⟨O⟩ = 1

Z
Tr

(
Oe−βĤ

)
, β =

1

T
, Z = Tr

(
e−βĤ

)
.

▶ Monte Carlo methods generate configurations [σ] distributed according to

p[σ] =
1

Z
e−βH[σ].

This way, one can determine ⟨O⟩ through

⟨O⟩ ≈ 1

N

∑
[σ]

O[σ],

where N is the number of configurations sampled with probability p[σ].
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▶ Monte Carlo simulations rely on Markov chains, which are sequences of configurations
where the t+ 1 configuration only needs the information of the t configuration to be
created

[σ1] → [σ2] → · · · → [σt] → [σt+1] → · · ·

To achieve this one requires a transition probability independent of t

T (σ′ = σt+1|σt) = T (σ′|σ), (probability of moving from [σ] to [σ′])∑
[σ′]

T (σ′|σ) = 1.

▶ For the configurations to reach the equilibrium probability, p[σ], the following equation
must be fulfilled

p[σ] =
∑
[σ′]

p[σ′]T (σ|σ′).

A condition to satisfy this is detailed balance

T (σ′|σ)p[σ] = T (σ|σ′)p[σ′].
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Simulation out of equilibrium

▶ Thermalize the system at 2Tc.

▶ Update the system with a Monte Carlo algorithm,

but for each new configuration lower the temperature

according to

T (t) = Tc

(
1− t− τQ

τQ

)
, t ∈ [0, 2τQ].

We measure the evolution of an observable with the temperature.

▶ Repeat the two previous steps numerous times to generate a good statistics of the
evolution of an observable during the cooling.

We are particularly interested in the dynamics of the density of vortices, ρV .
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Cooling in two dimensions with the Metropolis algorithm
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▶ Zurek’s prediction does not apply for the 2D XY model.

▶ Ref. [6] claims that ρV (T = 0) follows a logarithmic decay in τQ instead of a power-law. Still,
for τQ ≫ 1 it can be effectively considered as a power-law. They found ρV (T = 0) ∝ τ−0.72

Q .

[6] A. Jelić and L. F. Cugliandolo. J. Stat. Mech. Theory Exp., 2011:P02032, (2011).



Cooling in three dimensions
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Power-law decay
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▶ For the 3D XY model ν = 0.67169(7)[7] and for the heatbath and Metropolis algorithms

z ≈ 2 [8]. Then, Zurek’s prediction is ρV ∝ τ
−(D−d)ν/(1+zν)
Q = τ−ζ

Q = τ−0.5733
Q after

cooling below the critical temperature. We obtain the following exponents

Tf Metropolis Heatbath

0.001 0.8705(57) 1.0313(336)
0.01 0.8531(23) 0.9277(117)
0.1 0.8889(34) 0.8734(42)
0.2 0.8952(47) 0.8829(38)
0.3 0.8905(30) 0.8984(58)
0.4 0.8911(22) 0.9103(56)
0.5 0.9073(35) 0.9116(49)
0.6 0.9181(34) 0.9077(43)
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Conclusions

▶ The results show that the density of vortices follows a power-law decay in τQ when we
cool the system down to temperatures T ≪ Tc, as predicted by Zurek. However, we do
not obtain the scaling exponent, ζ, that he predicts.

▶ The power-law is a generic property for cooling out of equilibrium, independently of the
algorithm. This is consistent with experiments too.

▶ The ideas here presented could be applied to other early universe models to estimate the
density of cosmic strings in the cosmos.

▶ A comparison between simulations and experiments out of equilibrium is not
straightforward, because we do not know exactly how the dynamics of nature out of
equilibrium works. Still, one would expect the exponent ζ to be universal.
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