3D O(2) non-linear sigma model on the lattice and cosmic strings

Edgar López Contreras, Jaime Fabián Nieto Castellanos, Elías Natanael Polanco Euán y Wolfgang Bietenholz

Instituto de Ciencias Nucleares
Universidad Nacional Autónoma de México

RADPyC 23

Non-linear sigma model 3D O(2)

- 3D Euclidean space
- Field variables in S^{1}.
- 3D O(2) model, 3D XY model or 3D plane rotator.
- Relevant to the critical behavior of superfluids and planar magnets.

Partition Function

$$
Z=\int \mathcal{D} \vec{\sigma} e^{-\beta \mathcal{H}[\vec{\sigma}]}
$$

- Where $\beta=1 / T$, with $k_{B}=1$.

Non-linear sigma model 3D O(2)

- In the lattice regularization, at each site there is a spin

$$
\vec{\sigma}_{x}=\left(\cos \theta_{x}, \sin \theta_{x}\right), \text { where } \theta_{x} \in(-\pi, \pi] \text { and } x=\left(x_{1}, x_{2}, x_{3}\right) .
$$

- We employ a cubic lattice Λ with periodic boundary conditions.
- Example of a 2D O(2) configuration:

Non-linear sigma model 3D O(2)

- We consider two distinct Hamiltonians.

Standard Ferromagnetic Hamiltonian

$$
\mathcal{H}[\vec{\sigma}]=-\sum_{\langle i j\rangle} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j}
$$

- $\sum_{\langle i j\rangle}$ denotes sum over nearest-neighbors.

Topological Hamiltonian

$$
\mathcal{H}[\vec{\sigma}]= \begin{cases}0 & \text { if }\left|\Delta \varphi_{x, x+\hat{\mu}}\right|<\delta, \quad \forall x, \hat{\mu} \\ +\infty & \text { otherwise }\end{cases}
$$

- $\Delta \varphi_{x, x+\hat{\mu}}=\varphi_{x+\hat{\mu}}-\varphi_{x} \bmod 2 \pi \in(-\pi, \pi) .|\hat{\mu}|=1$.
- φ_{x} is the angle of $\vec{\sigma}_{x}$ with respect to a fixed point in S^{1}.
- Most configurations are invariant under infinitesimal transformations.

String defects within the Standard Model

- In the Early Universe, the unbroken electroweak symmetry was,

$$
\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}}
$$

- Electroweak symmetry "breaks spontaneously", at $\approx 159 \mathrm{GeV}^{1}$, when the Higgs field acquires a vacuum expectation value (VEV),

$$
\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}} \longrightarrow \mathrm{U}(1)_{\mathrm{EM}} .
$$

[^0]
String defects within the Standard Model

- When the temperature of the Universe dropped below 159 GeV , the Higgs field in most regions will acquire a VEV, but for causality reasons the phases in widely separated regions will be uncorrelated (Kibble mechanism ${ }^{2}$).
- String defects are trapped in interfaces where the phase change around a loop is 2π.

[^1]
Time evolution of string defects

- A random network of strings may arise.
- The characteristic scale of this network is the correlation length ξ.
- At a short time after string formation the Universe is very dense, which damps the string fluctuations.
- The damping force on strings increases ξ, but for causality reasons, ξ can never grow faster than $c t$. This requires a mechanism for energy dissipation, which involves gravitational radiation and particle emission.

3D O(2) string defects

- The 3D O(2) model undergoes a second-order phase transition, where the $\mathrm{O}(2)$ symmetry breaks,
- The vacuum manifold is isomorphic to S^{1},

$$
\pi_{1}\left(S^{1}\right)=\mathbb{Z}
$$

which suggest the existence of string defects.

- Strings defects in this model are formed from vortex lines.

Vortices

- Field configurations with vortices and anti-vortices.

Vorticity

- Each plaquette has a vorticity,

$$
v_{\mu \nu}(x)=\frac{1}{2 \pi}\left(\Delta \varphi_{x, x+\hat{\mu}}+\Delta \varphi_{x+\hat{\mu}, x+\hat{\mu}+\hat{\nu}}+\Delta \varphi_{x+\hat{\mu}+\hat{\nu}, x+\hat{\nu}}+\Delta \varphi_{x+\hat{\nu}, x}\right)
$$

where $|\hat{\mu}|,|\hat{\nu}|=1$.

- There are only 3 values for the plaquettes vorticity,

$$
v_{\mu \nu}(x) \in\{-1(\text { antivortex }), 0,1(\text { vortex })\} .
$$

Vortex lines

- Vortices tend to form vortex lines.

Observables

- Magnetization density,

$$
m=\frac{1}{L^{3}}\langle | \vec{M}[\vec{\sigma}]| \rangle, \quad \vec{M}[\vec{\sigma}]=\sum_{x \in \Lambda} \vec{\sigma}_{x}
$$

- Magnetic susceptibility,

$$
\left.\chi_{M}=\frac{1}{L^{3}}\left(\left.\langle | \vec{M}[\vec{\sigma}]\right|^{2}\right\rangle-\langle | \vec{M}[\vec{\sigma}]| \rangle^{2}\right) .
$$

- Connected correlation function,

$$
C(x, y)=\left\langle\vec{\sigma}_{x} \cdot \vec{\sigma}_{y}\right\rangle-\left\langle\vec{\sigma}_{x}\right\rangle \cdot\left\langle\vec{\sigma}_{y}\right\rangle .
$$

- At large distance $|x| \gg 1$,

$$
C(0, x)=C(x) \propto \cosh \left(\frac{x-L / 2}{\xi}\right)
$$

- ξ correlation length. Physical scale.

Critical exponents

In a cubic lattice of volume L^{3}, at T_{c}, observables grow as follows,

$$
\begin{gathered}
\xi \propto\left|T-T_{c}\right|^{-\nu} \\
m \propto L^{-\beta / \nu} \\
\chi_{M} \propto L^{\gamma / \nu}
\end{gathered}
$$

Models in the same universality class share same values of critical exponents.

Critical exponents

- For the standard action $\beta_{c}=0.454168(5)$.
- For the topological action $\delta_{c}=2.5156(2)$.
- Critical exponents,

Standard action		
β / ν	γ / ν	ν
$0.512(3)$	$1.97(1)$	$0.68(2)$

Topological action

β / ν	γ / ν	ν
$0.506(4)$	$1.99(1)$	$0.63(4)$

- Compatible critical exponents.
- Both actions fall into the same universality class.

Step scaling function

- At some fixed value u_{0} of $\xi(L) / L$ we define,

$$
\sigma\left(2, u_{0}\right)=\frac{2 L}{\xi(2 L)}
$$

- σ is a universal quantity, based on finite-size effects.".
- σ is sensitive to finite-size effects.
- It allows us to study lattice artifacts.
- $\sigma(2,1.3)=0.95(1)$, with the standard action.
- $\sigma(2,1.3)=0.94(4)$, with the topological action.

Magnetization

Magnetic susceptibility

Gradient Flow Equation

- We explore the persistence of topological defects after evolution of field configurations through gradient flow equation.
- The general gradient flow equation reads ${ }^{3}$,

$$
\frac{\delta \sigma_{t}^{a}(x)}{\delta t}=-g^{a b} \frac{\delta S\left(\sigma_{t}\right)}{\delta \sigma_{t}^{b}(x)}
$$

where S is the action and $g^{a b}$ is non-trivial for non-linear sigma models.

- The evolution of the field through this equation implies the reduction of the action,

$$
\partial_{t} S\left(\sigma_{t}\right) \leq 0
$$

In the 3D $O(2)$ model, this flow causes vorticity and string density suppression.

[^2]
Vorticity and String density suppression

- Suppression of densities of topological defects in a volume of 16^{3} initially at $T=2 T_{c}$.

Conclusions

- There is evidence that the proposed topological action is in the same universality class as the standard action.
- The persistence of topological defects can be explored with the evolution through gradient flow equation.
- Vortex lines in the 3D O(2) non-linear sigma model bear strong analogies with global cosmic strings.
- This is a model for the evolution of the Early Universe.

[^0]: ${ }^{1}$ d'Onofrio, Michela; Rummukainen, Kari (2016). "Standard model cross-over on the lattice". Physical Review D. 93 (2): 025003.

[^1]: ${ }^{2}$ Kibble, Tom W K (1976). "Topology of cosmic domains and strings". Journal of Physics A: Mathematical and General. 9 (8): 1387-1398.

[^2]: ${ }^{3}$ Kikuchi, K., Onogi, T. (2014). "Generalized gradient flow equation and its application to super Yang-Mills theory". J. High Energ. Phys. 2014, 94.

