

Asymmetries in $H^* \rightarrow 4\ell$ **decays**

RADPyC 2023

A. I. Hernández-Juárez, R. Gaitán alaban7_3@hotmail.com June 14th, 2023

MOTIVATION

H* evidence at the LHC

ARTICLES https://doi.org/10.1038/s41567-022-01682-0

Check for updates

OPEN

nature

physics

Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production

The CMS Collaboration^{*⊠}

Evidence for off-shell Higgs boson production in the final state with two Z bosons decaying into 4 charged leptons has been reported for the FIRST TIME

The Higgs boson must to be off-shell to produce two on-shell Z bosons

MOTIVATION

	units $\times 10^{-5}$		at 95% $\rm CL$
Indirect bounds through effective	f_{a2}	$\Gamma_H = \Gamma_H^{SM}$ $\Gamma_H \text{ unconstrained}$	[-32,514] [-38,503]
ratios	f_{a3}	$\Gamma_H = \Gamma_H^{SM}$	[-46,107]
		Γ_H unconstrained $\Gamma_H = \Gamma_H^{SM}$	[-46,110] [-11,46]
	f_{Λ_1}	$\Gamma_H = \Gamma_H$ Γ_H unconstrained	[-11,40] [-10,47]

A. Tumasyan et al. (CMS), Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production, Nature Phys. 18, 1329 (2022)

 $Z_{\mu}(p_1)$ The anomalous couplings H(q)are induced at one loop $\bigwedge I_{Z_{\nu}(p_2)}$ level (or more) H(q) $Z_{\mu}(p_1)$ **ZZH** in the **SM** H(q) $\mathcal{N}_{Z_{\nu}(p_2)}$ $\bigvee \bigvee Z_{\nu}(p_2)$ $\sim Z_{\mu}(p_1)$ H(q) $Z_{\mu}(p_1)$ G^{\pm} $\mathcal{J}^{Z_{\mu}(p_1)}$ $\sim \sim \sim Z_{\nu}(p_2)$ H(q)H(q) G^0, H $\bigvee Z_{\nu}(p_2)$ $\mathcal{T}_{Z_{\nu}(p_2)}$ $Z_{\mu}(p_1)$ $Z_{\mu}(p_1)$ $Z_{\mu}(p_1)$ H(q) u^-, u^+ H(q)H(q) W^{\pm} $\swarrow Z_{\nu}(p_2)$ $\bigvee_{Z_{\nu}(p_2)}$ $\mathcal{V}_{Z_{\nu}(p_2)}$ More diagrams.

One-loop contributions to the real (left plot) and absorptive (right plot) parts of the form factor h_2^H as functions of the Higgs boson transfer momentum ||q||: fermion (\mathscr{F}), W gauge boson (\mathscr{W}), H - Z bosons ($\mathscr{H}\mathscr{Z}$) and total contributions.

BOUNDS ON ANOMALOUS COUPLINGS

A. I. Hernández-Juárez, G. Tavares-Velasco, and A. Fernández-Téllez,, arXiv:2301.13127. Accepted for publication in PRD.

Allowed intervals of the real and absorptive parts of the CP-violating form factor of the H^*ZZ coupling for a few values of the transfer momentum:

	<i>q</i>	$\operatorname{Re}\left[a_{3}^{ZZ}\right]$	$\operatorname{Re}\left[\tilde{b}_{Z}\right]$	$\operatorname{Re}\left[\tilde{c}_{zz}\right]$	$\text{Im}[a_3^{ZZ}]$	$\operatorname{Im}[\tilde{b}_Z]$	$\operatorname{Im}\left[\tilde{c}_{xx}\right]$
1	90	[-0.024, 0.009]	[-0.0045, 0.012]	[-0.033, 0.088]	[-0.026, 0.01]	[-0.005, 0.013]	[-0.037, 0.096]
2	85	[-0.0029, 0.0011]	[-0.00055, 0.0014]	[-0.004, 0.01]	[-0.018, 0.0069]	[-0.0034, 0.009]	[-0.025, 0.066]
4	00	[-0.00053, 0.0014]	[-0.0007, 0.00026]	[-0.0051, 0.0019]	[-0.012, 0.0044]	[-0.0022, 0.006]	[-0.016, 0.044]
8	00	[-0.00069, 0.0018]	[-0.0009, 0.00034]	[-0.0066, 0.0025]	[-0.0039, 0.0015]	[-0.00075, 0.0019]	[-0.0055, 0.014]
15	500	[-0.00036, 0.00095]	[-0.00047, 0.00018]	[-0.0034, 0.0013]	[-0.0015, 0.00057]	[-0.00028, 0.00075]	[-0.002, 0.0055]
~	-	•• • - /	`	/ • •		-	
_	q	$\operatorname{Re}\left[k_{1}^{ZZ} ight]$	$\left(\operatorname{Re}\left[\hat{c}_{Z}\right]\right)$	$\operatorname{Re}\left[c_{z\Box}\right]$	$\operatorname{Im}\left[k_{1}^{ZZ}\right]$ ($\operatorname{Im}\left[\hat{c}_{Z}\right]$	$\operatorname{Im}[c_{z\Box}]$
	190	[-0.002	[4, 0.0046]	$\left[-0.0058, 0.011 ight]$	[-0.0026]	6, 0.005]	[-0.0063, 0.012]
	285	[-0.0002	[8, 0.00055]	$\left[-0.00068, 0.0013 ight]$	[-0.0018]	, 0.0035]	$\left[-0.0043, 0.0085 ight]$
	400	[-0.0002	7, 0.00014]	$\left[-0.00065, 0.00034 ight]$	[-0.0012]	, 0.0023]	$\left[-0.0029, 0.0055 ight]$
	800	[-0.0003	4, 0.00017]	$\left[-0.00082, 0.00041\right]$	[-0.00038]	, 0.00075]	$\left[-0.00092, 0.0018 ight]$
	1500	[-0.0001]	19,0.0001]	$\left[-0.00046, 0.00024 ight]$	[-0.00015]	, 0.00029]	[-0.00036, 0.0007]

We study the process:

We considere the anomalous couplings as complex

 $h_i^V = \operatorname{Re}[h_i^V] + i\operatorname{Im}[h_i^V]$

We study the process:

 $gg \rightarrow H^* \rightarrow ZZ \rightarrow 4l$

 $\Gamma_{H^* \to ZZ} = \Gamma_{H^* \to Z_+Z_+} + \Gamma_{H^* \to Z_-Z_-} + \Gamma_{H^* \to Z_0Z_0}$

We considere the anomalous couplings as complex

 $h_i^V = \operatorname{Re}[h_i^V] + i\operatorname{Im}[h_i^V]$

We study the process:

$$gg \rightarrow H^* \rightarrow ZZ \rightarrow 4l$$

$$\Gamma_{H^* \to ZZ} = \Gamma_{H^* \to Z_+ Z_+} + \Gamma_{H^* \to Z_- Z_-} + \Gamma_{H^* \to Z_0 Z_0}$$

We considere the anomalous couplings as complex

$$h_i^V = \operatorname{Re}[h_i^V] + i\operatorname{Im}[h_i^V]$$
Asymmetry
$$\mathscr{A}_{LR} = \frac{\Gamma_{H^* \to Z_L Z_L} - \Gamma_{H^* \to Z_R Z_R}}{\Gamma_{H^* \to Z_L Z_L} + \Gamma_{H^* \to Z_R Z_R}}$$

We study the process:

$$gg \rightarrow H^* \rightarrow ZZ \rightarrow 4l$$

$$\Gamma_{H^* \rightarrow ZZ} = \Gamma_{H^* \rightarrow Z_+ Z_+} + \Gamma_{H^* \rightarrow Z_- Z_-} + \Gamma_{H^* \rightarrow Z_0 Z_0}$$
We considere the anomalous couplings as complex

$$h_i^V = \operatorname{Re}[h_i^V] + i\operatorname{Im}[h_i^V]$$
Asymmetry
$$\mathcal{A}_{LR} = \frac{4m_Z^2 ||q|| \sqrt{q^2 - 4m_Z^2} \left(\operatorname{Re}[h_1^H]\operatorname{Im}[h_3^H] - \operatorname{Re}[h_3^H]\operatorname{Im}[h_1^H]\right)}{q^2 \left(q^2 - 4m_Z^2\right) \left(\operatorname{Re}[h_3^H]^2 + \operatorname{Im}[h_3^H]^2\right) + 4m_Z^4 \left(\operatorname{Im}[h_1^H]^2 + \operatorname{Re}[h_1^H]^2\right)}$$

We study the process:

$$gg - H^* \rightarrow ZZ \rightarrow 4l$$

$$\Gamma_{H^* \rightarrow ZZ} = \Gamma_{H^* \rightarrow Z_+ Z_+} + \Gamma_{H^* \rightarrow Z_- Z_-} + \Gamma_{H^* \rightarrow Z_0 Z_0}$$
We consider the anomalous couplings as complex
$$h_i^V = \operatorname{Re}[h_i^V] + i\operatorname{Im}[h_i^V]$$

$$Asymmetry \quad \text{CP-violation}$$

$$\mathcal{A}_{LR} = \frac{4m_Z^2 ||q|| \sqrt{q^2 - 4m_Z^2} \left(\operatorname{Re}[h_1^H]\operatorname{Im}(h_3^H) - \operatorname{Re}(h_3^H)\operatorname{Im}[h_1^H]\right)}{q^2 \left(q^2 - 4m_Z^2\right) \left(\operatorname{Re}[h_3^H]^2 + \operatorname{Im}[h_3^H]^2\right) + 4m_Z^4 \left(\operatorname{Im}[h_1^H]^2 + \operatorname{Re}[h_1^H]^2\right)}$$

We study the process:

$$gg - H^* \rightarrow ZZ \rightarrow 4l$$

$$\Gamma_{H^* \rightarrow ZZ} = \Gamma_{H^* \rightarrow Z_+ Z_+} + \Gamma_{H^* \rightarrow Z_- Z_-} + \Gamma_{H^* \rightarrow Z_0 Z_0}$$
We considere the anomalous couplings as complex
$$h_i^V = \operatorname{Re}[h_i^V] + i\operatorname{Im}[h_i^V]$$

$$Asymmetry \quad \text{CP-violation}$$

$$\mathcal{A}_{LR} = \frac{4m_Z^2 ||q|| \sqrt{q^2 - 4m_Z^2} \left(\operatorname{Re}[h_1^H |\operatorname{Im} h_3^H) - \operatorname{Re}[h_3^H |\operatorname{Im} h_1^H]\right)}{q^2 (q^2 - 4m_Z^2) \left(\operatorname{Re}[h_3^H]^2 + \operatorname{Im}[h_3^H]^2\right) + 4m_Z^4 (\operatorname{Im}[h_1^H]^2 + \operatorname{Re}[h_1^H]^2)}$$

Imaginary parts

We study the process:

$$gg \to H^* \to ZZ \to 4l$$

$$\Gamma_{H^* \to ZZ} = \Gamma_{H^* \to Z_+ Z_+} + \Gamma_{H^* \to Z_- Z_-} + \Gamma_{H^* \to Z_0 Z_0}$$

$$\mathcal{A}_{LR} = \frac{4m_Z^2 ||q|| \sqrt{q^2 - 4m_Z^2} \left(\operatorname{Re} \left[h_1^H \right] \operatorname{Im} \left[h_3^H \right] - \operatorname{Re} \left[h_3^H \right] \operatorname{Im} \left[h_1^H \right] \right)}{q^2 \left(q^2 - 4m_Z^2 \right) \left(\operatorname{Re} \left[h_3^H \right]^2 + \operatorname{Im} \left[h_3^H \right]^2 \right) + 4m_Z^4 \left(\operatorname{Im} \left[h_1^H \right]^2 + \operatorname{Re} \left[h_1^H \right]^2 \right)} \right)}{\sqrt{2}}$$

$$\mathcal{A}_{LR} = 0 \text{ at tree-level the SM}$$

$$A. \text{ Soni and R. M. Xu, Probing CP violation via Higgs decays to four leptons, Phys. Rev. D 48, 5259 (1993).}$$
The CP-violating form factor h_3^H is supposed to be induced at three-loop level in the SM, with a value of the order of 10^{-11} .

$$\mathscr{A}_{LR}^{SM} \approx 10^{-8} - 10^{-9}$$
.

 \mathscr{A}_{LR} asymmetry as a function of the transfer momentum of the Higgs boson ||q||.

 $\Gamma_{H^* \to Z_L Z_L}, \Gamma_{H^* \to Z_R Z_R}$

Partial decay widths of the processes $H^* \to Z_L Z_L / Z_R Z_R$ as functions of the Higgs boson transfer momentum ||q||.

We expect to observe $\mathscr{A}_{LR}^{\bullet}$ effects in the 4l final state.

The same space phase to the discussed in previously (see C.S. Kim and Juan Márquez talks)

$$\frac{d\Gamma_{H^* \to ZZ \to 2\ell_1 2\ell_2}}{ds_1 ds_2 d\theta_1 d\theta_2 d\phi} \to \frac{d\Gamma_{H^* \to ZZ \to 2\ell_1 2\ell_2}}{dM_{4\ell}}$$

We expect to observe $\mathscr{A}_{LR}^{\bullet}$ effects in the 4*l* final states.

We expect to observe $\mathscr{A}_{LR}^{\bullet}$ effects in the 4*l* final states.

We observe new physics effects in

 $\frac{d\Gamma_{H^* \to Z_{L/R} Z_{L/R} \to 2\ell_1 2\ell_2}}{dM_{4\ell}}$

We expect to observe $\mathscr{A}_{LR}^{\bullet}$ effects in the 4*l* final states.

Summary

- Complex anomalous couplings can be obtained from offshell couplings.
- The imaginary parts may be relevant in some process, which are not well-understood.
- Polarizations of gauge bosons are sensitive to the imaginary part and also to CP-violation.
- New physics effects can be tested at the LHC through 4 leptons production.

Gracias!

We must to compute off-shell observables

We must to find a way to obtain well-behaved observables

An approach to obtain well-behaved off-shell Green functions out of which valid observable quantities can be extracted

Diagrammatic method that combines self-energy, vertex and box diagrams related to a physical process to remove any gauge dependent term

Pinch technique

Background field method Feynman-t Hooft gauge $(\xi_Q = 1)$

The Optical Theorem

Peskin and Schroeder. An introduction to QFT. 1995

The Optical Theorem for Feynman Diagrams

Let us now investigate how this identity for the imaginary part of an S-matrix element arises in the Feynman diagram expansion. It is easily checked (in QED, for example) that each diagram contributing to an S-matrix element \mathcal{M} is purely real unless some denominators vanish, so that the $i\epsilon$ prescription for treating the poles becomes relevant. A Feynman diagram thus yields an imaginary part for \mathcal{M} only when the virtual particles in the diagram go on-shell. We will now show how to isolate and compute this imaginary part.

For $q \ge 2m_f$ the two fermions go on-shell