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Fundamental Physics Frontiers

• Precision Frontier: Measure particle properties 
with sensitive tools or high statistics, 


• Energy Frontier: Explore sub-atomic world with 
accelerators (LHC, currently),


• Cosmic Frontier: Explore the cosmos to test 
fundamental physics laws,


   * Has DM with m=1.5 TeV, been detected?


• Computational Frontier? (Snowmass, IA, 
Quantum Comp.); Conceptual Frontier?
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1) Precision Frontier - Muon AMM

• Since early days of QED, AMM 
have been a great precision test,


• There seems to be a discrepancy 
between the SM prediction and 
experimental value for muon 
AMM (FNAL) (See P. Roig, RMF), 


• At loop-levels there are hadronic 
contributions hard to calculate,


• Lattice calculations claim that SM 
is consistent with muon AMM,

• However, there seems 
to be  some controversy 
with the lattice result for 
the value of R,



• Thus, more work needed to settle 
this issue, …, as far as I understand,

• QCD is asymptotically free, i.e. it becomes 
weak  in the UV, but non-pert. in the IR,



2. Energy Frontier: LHC is one fo the most successful 
experiments ever!

• One of the main goals  of LHC was to detect and study the Higgs boson!



SM Higgs boson decays and Csx



2.2) Lessons from LHC for Higgs signals

• The Higgs boson discovery is one 
of its greatest  achievement,


• Many modes have been measured


• Higgs profile is consistent with the 
SM, so far ..


• Recently, the decay h->ZA (one-
loop mode) has been detected, 


• Within SM: BR(h->ZA) = 10^(-3)



All Higgs Couplings at LHC (FC case)
Kappa Parametrization:



Couplings with light quarks and self-coupling

• Other properties needed to confirm the 
Higgs profile:


 - Higgs self-coupling (hhh): Higgs pair 
production,


   - Four-point interactions (hhVV, hhhh)


• More recently, Higgs pair production has 
been considered to probe light Higgs 
couplings.

• In summary: Higgs couplings 
with 3rd generation (evidence of  
coupling with muons) has been 
detected at LHC,


• Higgs coupling with charm may 
be done at HL-LHC,


• But not clear with up, down and 
strange quark, & electron,



 2c) Higgs signals Beyond the SM
• Invisible Higgs decay,


• Higgs decays into light scalars,


• Exotics (h->gravitinos+gammas),


• LFV Higgs decays,


• Higgs portal (DM), etc, Run 2
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• But so much agreement between the SM with data is also intriguing,

• The SM is passing all tests at LHC —> The SM is great!



BSM - New Physics
• The SM is great, but there are open issues: 


- Why19 SM parameters?, why 3 families?, 


  - How to include gravity?


• Hints of New Physics: Neutrino masses and 
mixing, DM, DE, BAU, Bigbang,


• Many BSM extensions: NHDM, extra forces, 
more fermions, extra dims (L, XL), etc


• SUSY, GUT´s and String theory,



LHC SEARCH FOR NEW PHSICS: None

CMS Exotica Physics Group Summary – ICHEP, 2016!
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• All right, so far there are no signals of 
BSM at LHC, but we must keep looking 
…


• Actually models just include nice ideas 
that need further experimental input,


• Many BSM models can be consider  as 
generators of signatures, ex.


  - mSUGRA & LSP -> missing ET, DM, 


  - GMM -> missing Et + photons, 


  - EW Gravitino DM -> long lived sparticles, 


  - 2HDM -> H, A, H^+,


• Need to look closer at patterns and 
events, surprises may be around the 
corner,

So far, no signal of BSM; then what?



3. From LHC to QCD, Amplitudes and Gravity

  What a humble theorist can do?


- Do complicated calculations (for real) l! 


        or … 


- Have a great idea!
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3.A) QCD probes at LHC - QFT in action!

• For instance, R-ratio can be evaluated with pert-QCD, but need to take care of IR and UV divergences, …



3.3) Amplitudes & Constructible QFT´s 
•  But traditional methods, have its 

limitations, 

•  Amplitudes in QCD can be evaluated  

using Helicity Methods,

•Simple results suggested more 

efficient methods should be possible,

• Indeed: On-shell Constructible QFT, 



• The master-equation for the 3-point amplitude:

• For tensor particles (h=+-2), such as the graviton, we find:

• For vector particles (gluons, with h=+-1) we obtain :

• Seems that:     
GR= YM x YM !!



3.4) Non-Pert. Methods in QFT

• QCD Corrections to Higgs decay h-> bb:  (Baikov et al, PRL96 (2006)

• The final result looks a lot simpler than the intermediate steps, so that 
one wonders if  there be other ways to calculate amplitudes in QFT?



• Non-perturbative methods in QFT: Lattice QCD, 
Instantons, Solitons, …


• Could one calculate QFT Amplitudes, not only for Strong 
QCD, but also for weakly-interacting ones,


• Towards a  non-perturbative definition of the S-matrix, 
Pade Approximants,


• Algorithms from quantum computers, Cellular Automaton 
(t Hooft)?,

• New Ideas? QFT in a new guise?



4. The Higgs boson as the Master of the Universe?

• Hierarchy Problem: Is nature fine-
tuned? SMEFT


• The nature of Electro-Weak Phase 
Transition and its connection with 
BAU,


• Higgs and gravity - pQG,


• Deep issues about vacuum and 
CC, etc …



4.1) Is the SM a Natural  Theory?

• Previous  thoughts on 
natural vs-unnatural 
physics:


• Since no PBSM showed 
up, with M=O(1) TeV,         
is  the SM valid up to:       
E >> O(1TeV);


•  Is the SM still a Natural 
theory?

We understand better these questions, like what is  QFT & renormalization, 
from a modern point of view  -> Effective QFT (K. Wilson, 1970-80´s)



• Suppose a QFT has a 
heavy and a light fields:


  (With masses: M & m) 


• For E> M, the theory is 
described by:


• For E<M, QFT only 
includes light fields, and 
it is described by:


• The parameters (H&L) 
are different in general,

�H and �L

LH = LH(�H ,�L;~gH)

LL = LL(�L;~gL)

~gH 6= ~gL

In the EFT, the heavy field is integrated out & the 
parameters change with Energy (Scale, RGE): gi = gi(M)

4.2) What is an Effective QFT?



(Bottom-up) Effective SM  (nu-masses & Gravity, J. Dognohue) 

• The SM, as an EFT, includes all 
higher-dimensional terms:

• For instance, the dim-5 terms include 
neutrino masses:

• One often hears that the SM can 
not include gravity, or that there is 
not quantum theory of gravity …

• But GR can be considered as a 
quantum EFT (=pQG), and it 
works in the IR,

• Renormalizability means that a theory is 
valid up to very high scales, while a non-
renorm. theory is valid up to some scale:

M  ⇤ (= MPl)



Wilson Criteria for Naturalness & Fine-tuning  (J.Wells)

• When a threshold (M) is crossed, heavy particles are integrated our, 


• Then, the low-energy parameters have a dependency on the heavy masses,

• Thus, we can define the max. degree of fine-tuning, as follows:

• Within the SM, the max. fine-
tuning, appears in the Higgs 
mass, as function of the top 
mass:

• But this fine-tuning is only of Level- 0.3, 


• Thus, there is no problem in the SM!



•Higgs boson discovery and absence of BSM 
physics at O(1) TeV  ->  new paradigm,

•SM masses & couplings show amazingly 
deep conspiracy -> SM vacuum stable up to 
the Planck scale,

•At higher energy (below Planck scale), 
there is a phase transition from Higgs phase 
(SSB) to symmetric one, 

• In the disordered phase, four physical Higgs 
scalars are very heavy -> provide enormous 
Dark Energy (DE). 

• C1 has a zero, at about 
E=10^(17) GeV, for 
mh=125 GeV.



5) Conclusions
• SM is not a theory of everything, but it 

could be more subtle than we thought,


• LHC has provided valuable data, in 
particular for Higgs physics,


• We must keep working towards   
completing the Higgs profile (LHC or ??),


• Surprises may be waiting for the one that 
looks for anything,



What could come after the SM? (DiazCruz)

• Is the New Physics still 
consistent with QM & Relativity   Holy ghost! We are in trouble …

No

Yes

  Is it a consistente QFT?  Try String Theory or LQG or …
No

Yes

Yes

  Is there a new gauge boson?  Try extra U(1) or LR or GUTs …

  Is the same Repr. as in the SM?
No

  It is still Rock & Roll to me … keep calling it the SM-X

Yes

No
 Try extra U(1) or LR or SUSY 
or GUTs …



3.2 La Frontera de precisión
• Para observar un proceso muy 

raro, como un decaimiento de 
un núcleo radiactivo, se 
necesitan muchos núcleos, N 
= N_0 exp(-T/tau)


• Kamiokande, IMB: neutrinos, 
proton decay,


• Reactores nucleares: 
momentos eléctricos y 
magnéticos (neutrons, 
electrons, muons), neutrinos,


• Fuentes de b, taus, muon 
(Belle, …)



3.3 La Frontera Cósmica

• La exploración del universo nos ha 
permitido medir su edad, origen y 
composición,


• La expansión del universo nos permite 
inferir que su edad es de aprox. 13.8 
mil millones de años  (Big-Bang)


• Ese origen dejó una huella: la 
Radiación cósmica de fondo (CMB),


• ¿Está el universo hecho de los mismo 
que nosotros? ¿Son las leyes físicas 
las mismas en la tierra que en el cielo?



Gracias!  


