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HOW TO GO BSM?

➤ Many ways to go BSM 

➤ Usually:  add symmetries, add particles, add interactions 

➤ All of the above 

➤ Messy… 

➤ I will concentrate on masses  
and mixings 

➤ And the possibility of dark matter 
(and perhaps leptogenesis…)



SOME ASPECTS OF THE FLAVOUR PROBLEM

➤ Quark and charged lepton masses very different, very hierarchical 
 
 
 
 
 

➤ Neutrino masses unknown, only difference of squared masses.  

➤ Type of hierarchy (normal or inverted) also unknown 

➤ Higgs sector under study

mu : mc : mt ⇠ 10�6 : 10�3 : 1

md : ms : mb ⇠ 10�4 : 10�2 : 1

me : mµ : m⌧ ⇠ 10�5 : 10�2 : 1



➤ Quark mixing angles 
 
 

➤ Neutrino mixing angles 
 
 

➤ Small mixing in quarks, large mixing in neutrinos. 
Very different 

➤ Is there an underlying symmetry?

✓12 ⇡ 13.0o

✓23 ⇡ 2.4o

✓13 ⇡ 0.2o

?
⇥12 ⇡ 33.8�

⇥23 ⇡ 48.6�

⇥13 ⇡ 8.6�



HOW DO WE CHOOSE A FLAVOUR SYMMETRY?

➤ Several ways: 

➤ Look for inspiration in a high energy extension of SM, i.e. strings 
or GUTs 

➤ Look at low energy phenomenology 

➤ At some point they should intersect… 

➤ In here: 

➤ Find the smallest flavour symmetry suggested by data 

➤ Explore how generally it can be applied (universally) 

➤ Follow it to the end 

➤ Compare it with the data



Logarithmic plot of quark massesPlot of mass ratios

Suggests a 2⊕1 structure



3HDM

➤ Without symmetry ⟹ 54 real parameters in 
potential 

➤ Complemented with additional symmetry(ies) 

➤ Studies started in the 70’s, hope to find global 
symmetry that explains the mass and mixing patterns 

➤ The first symmetries to be added were the 
permutational groups S3 and S4 

➤ Different modern versions of these models exist 
                            



3HDM WITH S3

➤ Low-energy model 

➤ Extend the concept of flavour to the Higgs sector 
by adding two more eW doublets 

➤ Add symmetry:  permutation symmetry of three 
objects, symmetry operations (reflections and 
rotations) that leave an equilateral triangle 
invariant 

➤ 3HDM with symmetry S3: 
8 couplings in the Higgs potential
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S3
➤ Smallest non-Abelian discrete group 

➤ Has irreducible representations, 2, 1S and 1A 

➤ We add three right-handed neutrinos to implement the see-
saw mechanism 

➤ We apply the symmetry “universally” to quarks, leptons 
and Higgs-es 

➤ First two families in the doublet 

➤ Third family in symmetric singlet 

➤ Three sectors related, we treat them simultaneously



PREDICTIONS, ADVANTAGES?

A. Mondragón, M. M., F. González, E. Peinado, U. Saldaña, O. Félix, E. 
Rodríguez, A. Pérez, H. Reyes…; Das, Dey et al; Teshima et al; 

➤ Possible to reparametrize 
mixing matrices in terms of 
mass ratios, successfully 

➤ CKM has NNI and Fritzsch 
textures 

➤ PMNS → fix one mixing 
angle, predictions for the 
other two within 
experimental range 

➤ Reactor mixing angle  
𝛳13 ≠ 0 

➤ Some FCNCs suppressed by 
symmetry 

➤ Higgs potential has 8 
couplings 

➤ Underlying symmetry in 
quark, leptons and Higgs 
→ residual symmetry of 
a more fundamental one? 

➤ Lots of Higgses:  
3 neutral, 4 charged,  
2 pseudoscalars 

➤ Further predictions will 
come from Higgs sector:  
decays, branching ratios



FERMION MASSES 

➤ The Lagrangian of the model 
 
 

➤ The general form of the fermion mass matrices in the 
symmetry adapted basis is  
 
 
 
 
 
where m1,3 = Y1,3v3 and m1,2,4,5 = Y1,2,4,5 (v1 or v2)

Note that rS′ is not an S3 invariant, while rS is.
After the short description of S3 given above, it is straightforward to extend the SM: In

addition to the SM Higgs fields HS, we introduce an S3-doublet Higgs HD. The quark, lepton
and Higgs fields are

QT = (uL, dL) , uR , dR , LT = (νL, eL) , eR , νR , H (5)

with obvious notation. All of these fields have three species, and we assume that each forms
a reducible representation 1S + 2. The doublets carry capital indices I and J , which run
from 1 to 2, and the singlets are denoted by Q3, u3R, d3R, L3 , e3R , ν3R , HS. Note that
the subscript 3 has nothing to do with the third generation. The most general renormalizable
Yukawa interactions are given by

LY = LYD
+ LYU

+ LYE
+ LYν

, (6)

where

LYD
= −Y d

1 QIHSdIR − Y d
3 Q3HSd3R

−Y d
2 [ QIκIJH1dJR + QIηIJH2dJR ]

−Y d
4 Q3HIdIR − Y d

5 QIHId3R + h.c., (7)

LYU
= −Y u

1 QI(iσ2)H
∗
SuIR − Y u

3 Q3(iσ2)H
∗
Su3R

−Y u
2 [ QIκIJ(iσ2)H

∗
1uJR + ηQIηIJ(iσ2)H

∗
2uJR ]

−Y u
4 Q3(iσ2)H

∗
I uIR − Y u

5 QI(iσ2)H
∗
I u3R + h.c., (8)

LYE
= −Y e

1 LIHSeIR − Y e
3 L3HSe3R

−Y e
2 [ LIκIJH1eJR + LIηIJH2eJR ]

−Y e
4 L3HIeIR − Y e

5 LIHIe3R + h.c., (9)

LYν
= −Y ν

1 LI(iσ2)H
∗
SνIR − Y ν

3 L3(iσ2)H
∗
Sν3R

−Y ν
2 [ LIκIJ(iσ2)H

∗
1νJR + LIηIJ(iσ2)H

∗
2νJR ]

−Y ν
4 L3(iσ2)H

∗
I νIR − Y ν

5 LI(iσ2)H
∗
I ν3R + h.c., (10)

and

κ =

(

0 1
1 0

)

and η =

(

1 0
0 −1

)

. (11)

Furthermore, we introduce the Majorana mass terms for the right-handed neutrinos

LM = −M1ν
T
IRCνIR − M3ν

T
3RCν3R, (12)

where C is the charge conjugation matrix.
Because of the presence of three Higgs fields, the Higgs potential VH(HS, HD) is more

complicated than that of the SM. But we may assume that all the VEV’s are real and that
⟨H1⟩ = ⟨H2⟩.4 They also satisfy the constraint ⟨HS⟩2 + ⟨H1⟩2 + ⟨H2⟩2 ≃ (246 GeV)2/2. Then

4See, for instance, Ref. [7] in which a potential with three Higgs fields of S3 is considered.

3

from the Yukawa interactions (7)–(10) and (12) one derives the mass matrices, which have the
general form

M =

⎛

⎜

⎝

m1 + m2 m2 m5

m2 m1 − m2 m5

m4 m4 m3

⎞

⎟

⎠ . (13)

The Majorana masses for νL can be obtained from the see-saw mechanism[10], and the cor-
responding mass matrix is given by Mν = MνD

M̃−1(MνD
)T , where M̃ = diag(M1, M1, M3).

All the entries in the mass matrices can be complex; there is no restriction coming from S3.
Therefore, there are 4 × 5 = 20 complex parameters in the mass matrices, which should be
compared with 4 × 9 = 36 of the SM with the Majorana masses of the left-handed neutrinos.
The mass matrices are diagonalized by the unitary matrices as

U †
d(u,e)LMd(u,e)Ud(u,e)R = diag(md(u,e), ms(c,µ), mb(t,τ)), (14)

UT
ν MνUν = diag(mν1

, mν2
, mν3

). (15)

The mixing matrices are then defined as 5

VCKM = U †
uLUdL , VMNS = U †

eLUν . (16)

3 The leptonic sector and Z2 symmetry

To achieve further reduction of the number of parameters, we introduce a Z2 symmetry. The
Z2 assignment in the leptonic sector is given in the Table I.

Table I. Z2 assignment in the leptonic sector.

− +
HS, ν3R HI , L3, LI , e3R, eIR, νIR

The Z2 symmetry forbids certain couplings:

Y e
1 = Y e

3 = Y ν
1 = Y ν

5 = 0. (17)

[The Z2 assignment above is not the unique assignment to achieve (17).] Since me
1 = me

3 = 0
due to the Z2 symmetry, all the phases appearing in (13) can be removed by a redefinition of
LI , L3 and e3R. Then, we calculate the unitary matrix UeL from

U †
eLMeM

†
eUeL = diag(|me|2, |mµ|2, |mτ |2), (18)

where

MeM
†
e =

⎛

⎜

⎝

2(me
2)

2 + (me
5)

2 (me
5)

2 2me
2m

e
4

(me
5)

2 2(me
2)

2 + (me
5)

2 0
2me

2m
e
4 0 2(me

4)
2

⎞

⎟

⎠ . (19)

5We denote the physical neutrino masses by mνi
, but νiL are not the mass eigenstates.
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QUARKS
3HDM: GSM ⌦ S3

 f

L
 f

R
Mass matrix Possible mass textures

A 2, 1S 2, 1S

0

B@
µ
f

1 + µ
f

2 µ
f

4 µ
f

6

µ
f

4 µ
f

1 � µ
f

2 µ
f

7

µ
f
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f

9 µ
f
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1
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0
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2
�

0

µ
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�
3� t

2
�

�2µf

2 c
2
�
1� 3t2

�
µ
f

7/c

0 µ
f⇤
7 /c µ
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3 � µ
f

1 � µ
f

2 c
2(1� 3t2)

1

CA

A
0

0

BB@

0 2p
3
µ
f

2 0
2p
3
µ
f

2 0 2p
3
µ
f

7

0 2p
3
µ
f

9 µ
f

3 � µ
f

1

1

CCA

B 2, 1A 2, 1A

0

B@
µ
f

1 + µ
f

2 µ
f

4 µ
f

7

µ
f

4 µ
f

1 � µ
f

2 �µ
f

6

�µ
f

9 µ
f

8 µ
f

3

1

CA

0

B@
0 �µ

f

4 c
2
�
1� 3t2

�
0

�µ
f

4 c
2
�
1� 3t2

�
2µf

4sc
�
3� t

2
�

�µ
f

6/c

0 �µ
f⇤
6 /c µ

f

3 � µ
f

1 + |µf

4sc(3� t
2)

1

CA

B
0

0

B@
0 �2µf

4 0

�2µf

4 0 �2µf

6

0 2µf

8 µ
f

3 � µ
f

1

1

CA

Table 2: Mass matrices in S3 family models with three Higgs SU(2)L doublets: H1 and H2, which occupy
the S3 irreducible representation 2, and HS , which transforms as 1S for the cases when both the left- and
right-handed fermion fields are in the same assignment. The mass matrices shown here follow a normal ordering
of their mass eigenvalues (mf

1 ,m
f
2 ,m

f
3 ). We have denoted s = sin ✓, c = cos ✓ and t = tan ✓. The third column

of this table corresponds to the general case, while the fourth column to a case where we have rotated the
matrix to a basis where the elements (1, 1), (1, 3) and (3, 1) vanish. The primed cases, A’ or B’, are particular
cases of the unprimed ones, A or B, with ✓ = ⇡/6 or ✓ = ⇡/3, respectively.
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Mass matrices reproduce the NNI or the Fritzsch forms (rotation + shift) 
                                                   F. González et al, Phys.Rev. D88 (2013) 096004

NNI

NNI



HIGGS SECTOR - TESTS FOR THE MODEL

Higgs Potencial with S3 symmetry

Author’s Name

29 de noviembre de 2017

Resumen

We study the Higgs potential of a general S3-symmetry three-Higgs-

doublet Model (3HDM). This models contains three Higgs SU(2) doublets

fields an CP invariant. We supose the three vevs v1, v2, v3 different zero

and reals, we rewrite them in spherical coordinates v1 = v sin ✓ sin', v2 =
v sin ✓ cos', v3 = v cos ✓. Using the lightest Higgs Boson of Standard Mo-

del had a mass, mh0 = 125GeV , we realize a scan in the parameter space,

where we impose unitary and stability conditions on the scalar potential,

to compute the Higgs masses imposing a decoupling limit.

1. Introduction

The S3 extension of the SM has been used previously to calculate neutrino

masses and mixings, as well as lepton masses and flavour changing neutral cu-

rrents. The scalar sector is also interesting since there is an economy of para-

meters compared to a more generic 3HDM [1–3].

2. The Higgs Sector

The most general Higgs potential invariant under SU(3)c⇥SU(2)L⇥U(1)Y ⇥
S3 is

V = µ
2
1

⇣
H

†
1H1 +H

†
2H2

⌘
+ µ

2
0

�
H

†
s
Hs

�
+ a

�
H

†
s
Hs

�2
+ b

�
H

†
s
Hs

� ⇣
H

†
1H1 +H

†
2H2

⌘

+c

⇣
H

†
1H1 +H

†
2H2

⌘2
+ d

⇣
H

†
1H2 �H

†
2H1

⌘2
+ efijk

⇣�
H

†
s
Hi

� ⇣
H

†
j
Hk

⌘
+ h.c.

⌘

+f

n�
H

†
s
H1

� ⇣
H

†
1Hs

⌘
+

�
H

†
s
H2

� ⇣
H

†
2Hs

⌘o
+ g

⇢⇣
H

†
1H1 �H

†
2H2

⌘2
+

⇣
H

†
1H2 +H

†
2H1

⌘2
�

+h

n�
H

†
s
H1

� �
H

†
s
H1

�
+

�
H

†
s
H2

� �
H

†
s
H2

�
+

⇣
H

†
1Hs

⌘⇣
H

†
1Hs

⌘
+
⇣
H

†
2Hs

⌘⇣
H

†
2Hs

⌘o
(1)

1

➤ The minimum of potential can be parameterised in  
spherical coordinates, two angles and v

➤ Minimisation fixes 

➤ e = 0 massless scalar, residual continuous S2 symmetry

➤ Conditions for normal vacuum already studied, also for CP breaking ones  
Felix-Beltrán, Rodríguez-Jáuregui, M.M (2007); Barradas et al (2015); Costa et al (2016)  
                                                

Derman and Tsao (1979); Sugawara and Pawasa (1978); Kubo et al (2004); Felix-Beltrán, Rodríguez-Jáuregui, M.M (2009), 
Das and Dey (2014),  Barradas et al (2014), Costa, Ogreid, Osland and Rebelo (2016), etc

General Potential:

v21 = 3v22

for this general potential we obtain 10 free parameters. We may relate the vevs

with the new variables (3) as

hxli = v
2
l

for l = 1, 2, 3,

hx4i = v1v2, hx5i = v1v3,

hx6i = v2v3, and hx8i = hx7i = hx9i = 0. (5)

We are able to rewrite the vevs in spherical coordinates

v1 = v cos' sin ✓, v2 = v sin' sin ✓ v3 = v cos ✓. (6)

The use of this spherical parametrization is helpful to visualize the relation

within the vevs. The angle ✓ gives the amount of mixing between the vev of the

singlet and the vevs of the doublets. We may obtain a relation between v1 and

v2 and v3 as

tan' =
v2

v1
(7)

tan ✓ =
v2

v3 sin'
(8)

Moreover, the minimization conditions of the potential (??) enables a fixing the

relation between v1 and v2 i.e. the value of '. We assume all the vevs with

positive sign (otherwise we should consider a phase between two vevs). so this

implies ' = ⇡/6 then tan' =
1p
3

thus we get

tan' = 1/

p
3 ) sin' =

1

2
& cos' =

p
3

2
(9)

tan ✓ =
2v2

v3
) sin ✓ =

2v2

v
& cos ✓ =

v3

v
(10)

With the spherical parameterization also can be set ' =
7⇡
6 ,

11⇡
6 , then there

would be a change of signs, v2 = � 1
2v sin ✓ and v3 = v cos ✓.

Matriz de masa

Para hallar la masa de los bosones de Higgs se debe diagonalizar la matriz

de 12⇥ 12 dada por la siguiente expresión:

(M2
H
)ij =

1

2

@
2
V

@�i@�j

����
min

, (11)
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6.3.3. Condiciones de positividad

La condiciones de positividad que aseguran un vacío estable son las siguientes:

�8 > 0 (6.94)
�1 + �3 > 0 (6.95)

�5 > �2

p
(�1 + �3)�8 (6.96)

�5 + �6 � 2|�7| >
p

(�1 + �3)�8 (6.97)
�1 � �2 > 0 (6.98)

�1 + �3+ | 2�4 | +�5 + 2�7 + �8 > 0 (6.99)
�13 > 0 (6.100)

�10 > �2

p
(�1 + �3)�13 (6.101)

�10 + �11 � 2|�12| >
p

(�1 + �3)�13 (6.102)

�14 > �2

p
�8�13. (6.103)

Para obtener las condiciones necesarias para que el potencial esté acotado por
abajo, se parametrizaron los campos en coordenadas hiperesféricas, de manera
análoga a lo hecho en [110] para el modelo con tres dobletes:

H1 = r cos � sin ✓s sin ✓aĤ1 (6.104)

H2 = r sin � sin ✓s sin ✓aĤ2 (6.105)

Hs = r cos ✓s⇢s exp i�sĤs (6.106)

Ha = r sin ✓s cos ✓aĤa. (6.107)

Donde r � 0, � 2 [0,⇡/2], ✓s = [0,⇡/2] y ✓a = [0,⇡/2].

El producto entre dos espinores unitarios diferentes será un número complejo
con módulo no mayor a uno, en nuestro caso tenemos

Ĥ
†
2 · Ĥ1 = ⇢12e

i✓12 , Ĥ
†
s
· Ĥ2 = ⇢s2e

i✓s2 , Ĥ
†
1 · Ĥs = ⇢s1e

i✓s1 , (6.108)

Ĥ
†
a
· Ĥ2 = ⇢a2e

i✓a2 , Ĥ
†
1 · Ĥs = ⇢s1e

i✓s1 , Ĥ
†
s
· Ĥa = ⇢sae

i✓sa . (6.109)

Observando los límites en el espacio de coordenadas hiperesféricas de dos en dos,
obtenemos las siguientes condiciones necesarias (los resultados son análogos a los
obtenidos en [110, 109] para el caso con 3 dobletes). Para esto, solo los términos
cuárticos son relevantes, por lo que omitiremos los términos µ

2
i
.

Para ✓a = ⇡/2 y ✓s = 0, el potencial es

V = �8 > 0. (6.110)

Donde obtenemos la condición:

�8 > 0. (6.111)

60

6.3.4. Condiciones de unitariedad

Das y Dey [109] calcularon las condiciones de unitariedad de la matriz-S para
el modelo con tres dobletes, acotando los eigenvalores de la matriz como:

| a±
i
|, | bi |6 16⇡, para i = 1, 2, ...6. (6.131)

Aunque el cálculo de las condiciones de unitariedad para el modelo de cuatro
dobletes proveería restricciones más exactas, se usaron las condiciones obtenidas
para tres dobletes como una primera aproximación, las cuales se escriben a
continuación:
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(6.132)

a
±
5 = (5�1 � �2 + 2�3 + 3�8)

±
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(5�1 � �2 + 2�3 + 3�8)
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b2 = �5 � 2�7

b3 = 2(�1 � 5�1 � 2�3)

b4 = 2(�1 � �1 � 2�3)

b5 = 2(�1 + �1 � 2�3)

b6 = �5 � �6.

(6.133)
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Das and Dey (2014)

UNITARITY CONDITIONS

      

      



HIGGS MASSES

➤ After electroweak symmetry breaking (Higgs mechanism) we 
are left with 9 massive particles 
 
 
 

This rotation to obtain the mass matrix coming directly from the intaraction

basis is given as
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0
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where ZM =
p
(M

2
b
)2 + (M2
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)2. So again we can see that cos �s =
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9 and 19 we can see that � = ' and �s =
3⇡
2 + ↵, we’re going to work with the

angles ↵ and ' for that reason the rotation matrix has the next form
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Por lo tanto expresando las masas de los bosones de Higgs en término de

estos ángulos tenemos:
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2
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5

doesn’t couple to gauge bosons: Z2 symmetry  
massless when e=0, S2 symmetry

H1 or H2  can be  the SM Higgs boson
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The rotation matrix Ra,c which diagonalizes M2
A

and M2
C
, for this model

is given as:
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So, we can see that cos �a,c =
2v2
v
, sin �a,c = � v3

v
, sin � =

1
2 and cos � =

p
3
2 ,

if we compare with 9 and 10 we can see that � = ' and �a,c =
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2 + ✓, we’re

going to work with the angles ✓ and ' for that reason the rotation matrix has
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While for the diagonalization of the mass matrix of scalar bosons M2
S
we

will have the following rotation matrix:
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but first we’re going to define the next angle
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where, in terms of the parameters of the potential in the interaction basis,

considering also the spherical parameterization we have
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RESIDUAL Z2 SYMMETRY
➤ After eW symmetry breaking, S3 breaks -> residual Z2 symmetry                                         

Das and Dey (2014), Ivanov (2017) 
➤ h0 decoupled from gauge bosons 

➤ There are 2 “alignment” limits   👀 

➤ H2 is the SM Higgs → H1 decoupled from  gauge bosons 

➤ H1 is the SM Higgs → H2 decoupled from gauge bosons 
mH2 < mH1  

➤ Z2 parity:  
                                    h0, A1, H1± parity -1,  
                                    H1, H2 parity +1  
                                    H2±, A2 parity +1                              Das and Dey (2014) 

➤ This forbids certain couplings



NEUTRAL SCALAR MASSES

Figure 1: Dependence of the neutral scalar masses, mh0 and mH1,2 , on tan ✓ for scenario A
(left) and B (right). The magenta points comply with the unitarity and stability conditions,
the maroon points comply further with the alignment conditions in each scenario. Finally,
the green ones have the SM-like mass restricted to mH2,1 = 125± 5 GeV, respectively.
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➤ Magenta satisfy 
stability and unitarity 
bounds 

➤ Maroon satisfy 
alignment limit at 
10% 
→ upper bound to the 
scalar masses 
consistent with Das & Day (2014) 

➤ Green restricted to  
A: mH2 = 125±5 GeV 
B: mH1 = 125±5 GeV



PSEUDO SCALARS AND CHARGED SCALARS

In the graphs we show only the masses which are affected by the precision of the values in
(↵� ✓). The black points are within 10% of the alignment limit and the yellow ones within
1%. The restriction to an alignment limit with 1% precision only appears as a noticeable
difference for values of log(tan ✓) > 1, where the values of the masses are constrained to
be below ⇠ 1 TeV. The rest of the masses in scenario A and the masses in scenario B are
affected only very slightly by changing the precision in the alignment limit.

Figure 3: Dependence of the two pseudoscalar masses mA1,2 (upper panel) and charged
scalars m

H
±
1,2

(lower panel) on tan ✓. The points shown comply with the constraints of
previous figures plus the bounds on the SM-like Higgs boson mass for each scenario.

Finally in Figure 3, we show the pseudoscalar masses mA1,2 , and charged Higgs masses
m

H
±
1,2

dependence on tan ✓, after all constraints have been applied, including when one of
the neutral scalars is restricted to be the SM-like Higgs boson. As already mentioned, points
where m

H
±
1,2

< 80 GeV have already been excluded in every figure. The figures are shown
with a precision of 10% in the alignment limits. The first two graphs correspond to the
masses of the pseudoscalars in each scenario (A in the left, B in the right), the orange points
represent the mass of A2 and the purple ones represent the mass of A1. The last two graphs
correspond to the masses of the charged scalars in each scenario, the cyan points represent
the mass of H±

2 and the pink ones represent the mass of H±
1 . From this figure we can see

19

Points shown pass all constraints  
we assume conservative limit mH±>80 GeV



SCENARIO A AT    1% AND 10%

Figure 2: Dependence of the masses mH1 , mH
±
2
, and mA2 on tan ✓ for scenario A, applied with

a 10% uncertainty (black points) and 1% uncertainty (yellow points) on (↵� ✓). The points
shown comply with the unitarity and stability conditions, and the restriction of mH2 = 125±5
GeV.
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➤ Black alignment 
limit at 10% 

➤ Yellow satisfy 
alignment limit 
at 1% 
on (𝛼-𝜃)

➤ Experimental  limit at 
10% 

➤ → upper bound to the 
scalar masses 

➤ Other masses not 
affected 

➤ Scenario B not affected



MASSES — TREE LEVEL

➤ Scenario A, H2 SM Higgs 

➤ Upper bound for masses 
mh0 ≲ 900 GeV ,  mH1 ≲ 3 TeV  
mA1 ≲ 1 TeV, mA2 ≲ 3 TeV  
mH1 ≲ 1 TeV, mH2 ≲ 3 TeV 

➤ Taking (𝛼-𝜃) 1%  lowers mH1, mA2, MH2 ≲ 1 TeV 

➤ Scenario B, H1 SM Higgs 

➤ Upper bound for masses 
mh0 ≲ 600 GeV,  mH1 ≲ 120 GeV (by construction) 
mA1, mA2, mH1, mH2 ≲ 1 TeV 

➤ Both scenarios allow for a neutral scalar lighter than SM Higgs 
h0 in A, H2 in B 

➤  Some of scalar masses are almost degenerate → oblique parameters



HIGGS BASIS AND TRILINEAR COUPLINGS
➤ In the Higgs basis, only one Higgs has vev  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Base del Higgs

Desde la perspectiva del rompimiento de simetŕıa de la teoŕıa electrodébil y

la f́ısica del sabor, hay una base del Higgs que es particularmente interesante.

Se define como la base en la cual uno de los campos de Higgs tiene el valor de

expectación completo, �vev, y los otros campos de Higgs son perpendiculares

a este,  1, 2 [?,?,?,?]. Aśı la base del Higgs se define de la siguiente manera

para nuestro caso:
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ó

0

@
H1

H2

H3

1

A =

0

@
cos' sin ✓ � sin' � cos' cos ✓

sin' sin ✓ cos' � sin' cos ✓

cos ✓ 0 sin ✓

1

A

0

@
�vev

 1

 2

1

A . (44)

La matriz que realiza la rotación corresponde con la matriz transpuesta que

rota a los eigenestados de masas de los Higgs cargados y seudoescalares. Aśı los

dobletes en la bases del Higgs están dados de la siguiente manera:
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y G
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son los bosones de Goldstone que serán absorbidos por las

componentes longitudinales de los bosones W
±
y Z. En este caso H

±
1 , H

±
2 , A1 y

A2 corresponde a los eigenestados de masa. Mientras que fH1,
fH2 y eh no son los

eigenestados de masa y hay que hacer la rotación correspondiente para hallarlos,

la cual es la siguiente:
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Base del Higgs

Desde la perspectiva del rompimiento de simetŕıa de la teoŕıa electrodébil y

la f́ısica del sabor, hay una base del Higgs que es particularmente interesante.

Se define como la base en la cual uno de los campos de Higgs tiene el valor de

expectación completo, �vev, y los otros campos de Higgs son perpendiculares

a este,  1, 2 [?,?,?,?]. Aśı la base del Higgs se define de la siguiente manera

para nuestro caso:
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eigenestados de masa y hay que hacer la rotación correspondiente para hallarlos,
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Por otro lado el término cinético en esta base está dado de la siguiente

manera:
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haciendo la rotación de los camposW
3
µ
y Bµ a los campos Aµ y Zµ de la siguiente

manera:
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se obtiene la expresión completa de la derivada covariante en término de los

bosones vectoriales. Por lo tanto haciendo actuar los nuevos dobletes de Higgs

y calculando el término cinético podemos hallar los acomplamientos trilineales

que existen entre los bosones vectoriales y los campos de Higgs, en particular

nos interesa el acoplamiento trilineal entre los bosones de Higgs cargados con

el fotón, por lo tanto después de realizar los cálculos se hallaron los siguientes

acoplamientos trilineales [?,?]:
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Por otro lado presento un resumen de los acoplamientos de h0, H1 y H2, con

un dos bosones vectoriales y con bosón vectorial-escalar, los estados finales son

proporcionales a sin(✓ � ↵) o cos(✓ � ↵), como se muestra abajo:

8



TRILINEAR HIGGS-GAUGE COUPLINGS
➤ In the exact alignments limits only H2 (H1) has couplings to 

the gauge bosons 
 
 
 
 
 

➤ h0 has no trilinear gauge couplings, only: 
 

➤ h0 has no Yukawa couplings: Dark Matter candidate!

  In accordance with Z2 symmetry
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Por otro lado hay acoplamientos de h0 con los bosones vectoriales sin em-

bargo no son proporcionales a cos(↵� ✓) o sin(↵� ✓). Los acoplamientos que

existen son los siguientes
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y H1.
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2
H1

) cos(3(↵� ✓)) +

9m
2
H1

(2 cos(3↵� ✓) + 6 cos(↵+ ✓) + cos(3↵+ ✓) + 3 cos(↵+ 3✓))
�

(52)

H1H1H1 = � 1

144v sin ✓ cos3 ✓

�
3(4m

2
h0

+ 9m
2
H2

) sin(↵� ✓)� (4m
2
h0

+ 9m
2
H2

) sin(3(↵� ✓))�

9m
2
H2

(2 sin(3↵� ✓)� 6 sin(↵+ ✓) + sin(3↵+ ✓)� 3 sin(↵+ 3✓))
�

(53)

h0h0H1 =
1

v
(m

2
h0

cos↵

cos ✓
+

sin↵

sin ✓
(m

2
h0

+m
2
H2

)) (54)

h0h0H2 =
1

v
(m

2
h0

sin↵

cos ✓
� cos↵

sin ✓
(m

2
h0

+m
2
H1

)) (55)
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cos(↵� ✓) sin(↵� ✓)

H1W
+
W

�
H2W

+
W

�

H1ZZ H2ZZ

ZA2H2 ZA2H1

W
±
H

⌥
2 H2 W

±
H

⌥
2 H1

ZW
±
H

⌥
2 H2 ZW

±
H

⌥
2 H1

�W
±
H

⌥
2 H2 �W

±
H

⌥
2 H1

Por otro lado hay acoplamientos de h0 con los bosones vectoriales sin em-

bargo no son proporcionales a cos(↵� ✓) o sin(↵� ✓). Los acoplamientos que

existen son los siguientes

ZA1h0, ZW
±
H

⌥
1 h0, W

±
H

⌥
1 h0 y �W

±
H

⌥
1 h0 como se puede ver no existen

acoplamientos trilineales con los bosones de norma, lo que excluye a h0 como

candidato al Higgs del modelo estándar y deja como posibles candidatos a H2

y H1.

Trilineales

h0h0h0 = 0 (51)

H2H2H2 = � 1

144v sin ✓ cos3 ✓

�
3(4m

2
h0

+ 9m
2
H1

) cos(↵� ✓) + (4m
2
h0

+ 9m
2
H1

) cos(3(↵� ✓)) +

9m
2
H1

(2 cos(3↵� ✓) + 6 cos(↵+ ✓) + cos(3↵+ ✓) + 3 cos(↵+ 3✓))
�

(52)

H1H1H1 = � 1

144v sin ✓ cos3 ✓

�
3(4m

2
h0

+ 9m
2
H2

) sin(↵� ✓)� (4m
2
h0

+ 9m
2
H2

) sin(3(↵� ✓))�

9m
2
H2

(2 sin(3↵� ✓)� 6 sin(↵+ ✓) + sin(3↵+ ✓)� 3 sin(↵+ 3✓))
�

(53)

h0h0H1 =
1

v
(m

2
h0

cos↵

cos ✓
+

sin↵

sin ✓
(m

2
h0

+m
2
H2

)) (54)

h0h0H2 =
1

v
(m

2
h0

sin↵

cos ✓
� cos↵

sin ✓
(m

2
h0

+m
2
H1

)) (55)
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Differs from Barradas et al, 
consistent with Z2 symmetry 

what are the upper bounds for these masses, and that for small values of tan ✓ they will be
constrained to be below ⇠ 1 TeV. It can also be seen that there are regions in parameter
space where the masses can be very close in value. This is relevant when calculating the
values of the trilinear and quartic couplings, as well as the possible contributions to the
oblique parameters, as will be discussed in next section.

We want to highlight here that these are tree level masses, radiative corrections will
change their actual theoretical value, which in the case of the one identified as the SM
Higgs, we have taken into account with a conservative uncertainty of ±5 GeV. A next-to-
leading order (NLO) calculation of the masses should be done in order to give more accurate
theoretical predictions, that could be tested at the LHC or future colliders. Work in this
direction is proposed in [99]. NLO analytical expressions for the scalar contributions are
given in 4.4. In order to perform a numerical calculation for these loop corrections, we need
to establish the parameter dependence for the trilinear and quartic Higgs couplings, which
we have calculated and whose expressions are given in section 4.2 and in Appendix A.

An analysis of the scalar sector of a similar model with 4 Higgs doublets (S3-4H) [75],
where the fourth doublet is inert and with some considerations in the Yukawa sector, shows
that the region that satisfies the bounds on extra scalar searches [100], prefers values of
tan ✓ . 5. As we will see in next section, this might also apply here.

4 Higgs couplings

In this section we calculate the trilinear and quartic couplings among the Higgs bosons, as
well as with the gauge bosons, and give the analytical expressions in terms of the physical
parameters. We analyse the contributions of these couplings to the neutral one-loop scalar
mass matrix. We give the explicit expressions for scenario A.

4.1 Gauge-Higgs couplings

We expand the scalar kinetic Lagrangian term, Eq. (51), to calculate the couplings to the
EW gauge bosons, performing the usual EW rotation on the gauge fields W 3

µ
and Bµ.

The residual Z2 symmetry manifests itself also in the gauge-Higgs couplings. We show
here the couplings of gauge bosons with the three neutral scalars, the rest of the couplings
are given in appendix A, in this expression we have not taken into account the combinatorial
factor from two identical particles in the Lagrangian term. Notice that h0 does not couple
in a single scalar coupling with the gauge bosons but it does in pairs with gauge bosons:

gh0W
±W⌥ = 0, gh0ZZ = 0; (56)

gH1W
±W⌥ =

2M2
W
cos(↵� ✓)gµ⌫

v
, gH2W

±W⌥ =
2M2

W
sin(↵� ✓)gµ⌫

v
; (57)

gH1ZZ =
M2

Z
cos(↵� ✓)gµ⌫

v
, gH2ZZ =

M2
Z
sin(↵� ✓)gµ⌫

v
; (58)

20
gh0h0W

±W⌥ =
M2

W
gµ⌫

v2
, gh0h0ZZ =

M2
Z
gµ⌫

2v2
; (59)

gH1H1W
±W⌥ =

M2
W
gµ⌫

v2
, gH2H2W

±W⌥ =
M2

W
gµ⌫

v2
; (60)

gH1H1ZZ =
M2

Z
gµ⌫

2v2
, gH2H2ZZ =

M2
Z
gµ⌫

2v2
. (61)

The form of the cubic couplings reflects the residual Z2 symmetry. The couplings of the
gauge bosons with h0 vanish, as expected. The expressions for the gauge couplings to the
other two neutral scalars H1,2 are similar to the ones in the 2HDM [30], reflecting the fact
that these two scalars decouple from h0 due to the Z2 symmetry.

For the trilinear couplings, in the exact alignment limit, only the ones corresponding to
the SM-like Higgs boson in each scenario will be different from zero.

4.2 Higgs-Higgs couplings

The trilinear and quartic Higgs couplings will be important to estimate radiative corrections,
in particular for the SM Higgs, as well as possible loop contributions to physical processes.
Previously, the trilinear couplings for the neutral scalars in the 3HDM with S3 symmetry
were reported in [67], nevertheless our results differ from the ones calculated there. On the
other hand, our expressions for the trilinear couplings do coincide with the presence of a
residual Z2, as reported in [66]. Besides the confirmation of this residual symmetry, we
additionally show that the couplings reduce to the SM ones for the particular alignment
limits.

The self-couplings given in the Higgs potential, Eq. (2) can be obtained in terms of
physical parameters using the rotation matrices. The angle ↵ given in Eq. (36) can be
re-written using the relations we obtained in Eq. (41). Thus, we can write Eq. (35) in
terms of the physical Higgs masses and rotation angle ↵. Moreover, also using Eqs. (30)-
(33) and Eqs.(40)-(41), we obtain expressions for the self-couplings in the scalar potential,
Eq. (2), given in terms of the physical parameters i.e. masses, vevs, and rotation angles
(v,m2

h0
,m2

H1
,m2

H2
,m2

A1
,m2

A2
,m2

H
±
1
,m2

H
±
2
, tan↵, tan ✓), as

a =
1

v2 cos2 ✓


m2

H1
cos2 ↵ +m2

H2
sin2 ↵�

1

9
m2

h0
tan2 ✓

�
, (62)

b =
1

v2


sin 2↵

sin 2✓
(m2

H1
�m2

H2
) +

m2
h0

9 cos2 ✓
+ 2m2

H
±
2

�
, (63)

c =
1

v2 sin2 ✓


m2

H1
sin2 ↵ +m2

H2
cos2 ↵�

1

9
m2

h0
�m2

H
±
2
cos2 ✓ +m2

H
±
1

�
, (64)

d =
1

v2 sin2 ✓

h
(m2

H
±
1
�m2

A1
)� (m2

H
±
2
�m2

A2
) cos2 ✓

i
, (65)
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gH2H2H2H2 =
1

2v2s22✓

 
m2

h0
c3
↵�✓

(c↵�✓ + 2c↵+✓)

9c2
✓

+m2
H1

s22↵c
2
↵�✓

4
+m2

H2
(c2

↵
c↵�✓ � s↵s✓)

2

!
.

sin(↵� ✓) = 1 cos(↵� ✓) = 0

↵ ✓

sin↵ = cos ✓; cos↵ = � sin ✓; sin 2(↵� ✓) = 0;

cos(3↵� ✓) = sin 2✓; sin(↵ + ✓) = cos 2✓; cos(↵ + ✓) = � sin 2✓.

H2

�SM

gH2H2H2 =
1

v s2✓

⇥
m2

H2
s↵s✓

⇤
=

1

2v

s↵
c✓
m2

H2
=

m2
H2

2v
⌘ �SM .

H1

gH1H1H1 =
1

v s2✓


1

9c2
✓

m2
h0

� s2
✓
m2

H1

�
=

1

v s2✓c2✓


1

9
m2

h0
�

1

2
s2✓m

2
H1

�
.

H2

gH2H2H2H2 =
1

2v2s22✓
m2

H2
(�s3

✓
c✓ � c3

✓
s✓)

2 =
m2

H2

8v2
.

Z2

h0 Z2

h0

Z2 m
H

±
1
,mA1 > mh0

�i�ijkl =
�i@4V

@Hi@Hj@Hk@Hl

.

H1,2

gh0h0h0h0 =
1

24v2s2
✓

 
m2

h0
+ 3m2

H1
s2
↵
+ 3m2

H2
c2
↵

!
,

gH1H1H1H1 =
1

2v2s22✓

 
m2

h0
s3
↵�✓

(s↵�✓ + 2s↵+✓)

9c2
✓

+m2
H1
(s2

↵
s↵�✓ + c↵s✓)

2 +m2
H2

s22↵s
2
↵�✓

4

!
,

gh0h0H2 = �
1

v s2✓
(m2

h0
c↵+✓ +m2

H2
c↵c✓), (75)

gH1H1H2 = �
s↵�✓

vs2✓

 
m2

h0

✓
s2(↵�✓)

6c2
✓

◆
+m2

H1
s2↵ +

m2
H2
s2↵

2

!
, (76)

gH1H2H2 =
c↵�✓

vs2✓

 
m2

h0

✓
s2(↵�✓)

6c2
✓

◆
+

m2
H1
s2↵

2
+m2

H2
s2↵

!
, (77)

here we use the reduced notation sx ⌘ sin x, cx ⌘ cos x and tx ⌘ tan x.
In the following we show the analytical expressions for the trilinear couplings between

scalars and pseudoscalars, as well as with the Goldstone boson. The residual Z2 symmetry
is also evident in the allowed couplings with the pseudoscalars (the forbidden ones are not
present), which are given as:†

gA1A1H1 =
1

vs✓
(�m2

h0

s↵�✓

6c✓
+

1

2
m2

H1
s↵ +m2

A1
s↵ �m2

A2
c✓s↵�✓), (78)

gA1A1H2 =
1

vs✓
(
m2

h0
c↵�✓

6c✓
�

m2
H2
c↵

2
�m2

A1
c↵ +m2

A2
c✓c↵�✓), (79)

gA2A2H1 =
1

vs2✓

✓
m2

h0
s↵�✓

9c2
✓

+m2
H1

�
s↵c

3
✓
� c↵s

3
✓

�
+m2

A2
s2✓c↵�✓

◆
, (80)

gA2A2H2 =
1

vs2✓

✓
�
m2

h0
c↵�✓

9c2
✓

+m2
H2

�
s↵s

3
✓
� c↵c

3
✓

�
+m2

A2
s2✓s↵�✓

◆
, (81)

gA1A2h0 =
2

3vs2✓

�
�m2

h0
(c2✓ + c2

✓
) + 3m2

A1
c2
✓
� 3m2

A2
c2
✓

�
, (82)

gH2G0G0 =
m2

H2
s↵�✓

2v
, gH1G0G0 =

m2
H1
c↵�✓

2v
, (83)

gH2G0A2 =
c↵�✓

v
(m2

H2
�m2

A2
), gH1G0A2 =

s↵�✓

v
(�m2

H1
+m2

A2
), (84)

†The couplings with the Goldstone boson may be important depending on the renormalization procedure
used.
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e = �
4m2

h0

9v2 sin 2✓
, (66)

f =
1

v2


m2

h0

9 cos2 ✓
+m2

A2
� 2m2

H
±
2

�
, (67)

g =
1

v2 sin2 ✓


4

9
m2

h0
+m2

H
±
2
cos2 ✓ �m2

H
±
1

�
, (68)

h =
1

v2


m2

h0

9 cos2 ✓
�m2

A2

�
. (69)

This parameterization of the scalar potential self-couplings differs slightly from the ones
presented in other works, as in [66, 67], due to our normalization of the couplings in the
scalar potential.

From the scalar potential we can get the trilinear scalar couplings as usual, where all
possible combinations are given from the terms considered in the potential.

�i�ijk =
�i@3V

@Hi@Hj@Hk

. (70)

As we already mentioned, the Z2 residual symmetry present will imply a vanishing tri-
linear h0h0h0 due to its odd charge under Z2, we explicitly confirmed this and also obtain
the other trilinear and quartic scalar couplings. These couplings are essential in order to
determine experimentally the shape of the actual Higgs potential. To this end, a one-loop
calculation of the self-energy corrections and vertices should be performed. Moreover, it is
possible to restrict parameters from the SM Higgs boson mass corrections, as we are going
to consider in next section.

The following analytical expressions are the scalar-scalar couplings written in the physical
basis and in terms of the physical parameters: ∗

gh0h0h0 = 0, (71)

gH2H2H2 = �
1

v s2✓


m2

h0

c3
↵�✓

9c2
✓

+m2
H2

�
c2
↵
c↵�✓ � s↵s✓

��
, (72)

gH1H1H1 =
1

v s2✓


m2

h0

s3
↵�✓

9c2
✓

�m2
H1

�
c2
↵
s↵�✓ � s↵c✓

��
, (73)

gh0h0H1 =
1

v s2✓
(m2

h0
s↵+✓ +m2

H1
s↵c✓), (74)

∗As we mentioned in the previous section the symmetry factor n! has to be added in front of the couplings
for n identical particles in the vertex.
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EXACT ALIGNMENT LIMIT A

➤ In the exact alignment limit A (SM Higgs the lightest scalar) 

➤ “Our” SM Higgs trilinear and quartic couplings reduce 
exactly to SM real ones

+m2
H1

s22↵c
2
↵�✓

4
+m2

H2
(c2

↵
c↵�✓ � s↵s✓)

2

!
. (89)

4.3 Couplings in scenario A

We show here how the scalar couplings are reduced in the alignment limit of scenario A.
Recalling that the alignment limit is given as, sin(↵�✓) = 1, cos(↵�✓) = 0, the trigonometric
functions for ↵ and ✓ satisfy the following relations

sin↵ = cos ✓; cos↵ = � sin ✓; sin 2(↵� ✓) = 0;

cos(3↵� ✓) = sin 2✓; sin(↵ + ✓) = cos 2✓; cos(↵ + ✓) = � sin 2✓. (90)

In scenario A in the alignment limit, the Higgs boson H2 trilinear coupling coincides
exactly with the trilinear coupling of the SM Higgs boson �SM ,

gH2H2H2 =
1

v s2✓

⇥
m2

H2
s↵s✓

⇤
=

1

2v

s↵
c✓
m2

H2
=

m2
H2

2v
⌘ �SM . (91)

And the H1 trilineal couplings reduces to

gH1H1H1 =
1

v s2✓


1
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✓

m2
h0

� s2
✓
m2

H1

�
=

1

v s2✓c2✓


1

9
m2

h0
�

1

2
s2✓m

2
H1

�
. (92)

The H2 quartic coupling (88) also reduces exactly to the SM one in the alignment limit,

gH2H2H2H2 =
1

2v2s22✓
m2

H2
(�s3

✓
c✓ � c3

✓
s✓)

2 =
m2

H2

8v2
. (93)

The H2 � h0 quartic coupling reduces in this limit to

gH2H2h0h0 =
1

v2s2✓

 
1

6
m2

h0
3s2✓ +

1

4
m2

H2
s2✓

!
=

1

4v2
(2m2

h0
+m2

H2
) . (94)

Some of the reduced scalar couplings for scenario A depend only on the masses involved,
and are given as

gH2h0h0 =
1

2v
(m2

H2
+ 2m2

h0
), gH2A1A1 =

1
2v (m

2
H2

+ 2m2
A1
), gH2A2A2 =

1

2v
(m2

H2
+ 2m2

A2
),

g
H2H

±
1 H

⌥
1
=

1

v
(m2

H2
+ 2m2

H
±
1
), g

H2H
±
2 H

⌥
2
= 1

v
(m2

H2
+ 2m2

H
±
2
), gH2H2H2H1 = gH1H1H1H2 = 0.

(95)

From these expressions, a lower bound for all the scalar masses (other than H1, which
is always heavier than H2 in this scenario), can be set at & 63 GeV, since there is no
experimental observation of decays of the SM-Higgs boson to other scalars. This is in natural
agreement with the current bounds for charged scalars, which set their masses above ⇠ 80
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4.3 Couplings in scenario A

We show here how the scalar couplings are reduced in the alignment limit of scenario A.
Recalling that the alignment limit is given as, sin(↵�✓) = 1, cos(↵�✓) = 0, the trigonometric
functions for ↵ and ✓ satisfy the following relations
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In scenario A in the alignment limit, the Higgs boson H2 trilinear coupling coincides
exactly with the trilinear coupling of the SM Higgs boson �SM ,
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The H2 quartic coupling (88) also reduces exactly to the SM one in the alignment limit,
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From these expressions, a lower bound for all the scalar masses (other than H1, which
is always heavier than H2 in this scenario), can be set at & 63 GeV, since there is no
experimental observation of decays of the SM-Higgs boson to other scalars. This is in natural
agreement with the current bounds for charged scalars, which set their masses above ⇠ 80
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LIMITS ON MASSES — TREE LEVEL

➤ Some couplings depend only on masses in alignment limit 

➤ Allows to put lower bounds on these masses, through the absence of 
corresponding decays 
 
 
 

➤ Sets a limit for all scalar masses (other than H1 and H2) at tree level 
of  
                                       mHi ≳ 63 GeV  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. (89)

4.3 Couplings in scenario A

We show here how the scalar couplings are reduced in the alignment limit of scenario A.
Recalling that the alignment limit is given as, sin(↵�✓) = 1, cos(↵�✓) = 0, the trigonometric
functions for ↵ and ✓ satisfy the following relations

sin↵ = cos ✓; cos↵ = � sin ✓; sin 2(↵� ✓) = 0;

cos(3↵� ✓) = sin 2✓; sin(↵ + ✓) = cos 2✓; cos(↵ + ✓) = � sin 2✓. (90)

In scenario A in the alignment limit, the Higgs boson H2 trilinear coupling coincides
exactly with the trilinear coupling of the SM Higgs boson �SM ,
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And the H1 trilineal couplings reduces to
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The H2 quartic coupling (88) also reduces exactly to the SM one in the alignment limit,
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The H2 � h0 quartic coupling reduces in this limit to
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Some of the reduced scalar couplings for scenario A depend only on the masses involved,
and are given as
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(95)

From these expressions, a lower bound for all the scalar masses (other than H1, which
is always heavier than H2 in this scenario), can be set at & 63 GeV, since there is no
experimental observation of decays of the SM-Higgs boson to other scalars. This is in natural
agreement with the current bounds for charged scalars, which set their masses above ⇠ 80
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ALIGNMENT NOT EXACT — LIMITS ON PARAMETERS

➤ Higgs-gauge couplings have been determined with 5% 
precision → 𝜅𝜆 scaling factor 

➤ -1.8 < 𝜅𝜆 < 9.2                                    Degrassi, Di Micco, Giardino, Rossi (2021) 

➤ If the alignment limit is not exact we can parameterize 
deviations from SM  
 
 
 

➤ The max value for mh0 sets constraints on tan𝜃 
e.g. for 𝛿 ∼ 0.1 → tan𝜃 ≤ 15

GeV [92, 93]. The recent signal for the rare three-body decay of the SM Higgs boson to
photon and dileptons [101], will put extra constraints in the values of the allowed trilinear
couplings.

The couplings of the gauge bosons to the SM Higgs have been determined with a ⇠

5% precision [25, 26, 102]. From our tree level expressions for the gauge-Higgs couplings,
Eqs. (57,58) we can parameterize a deviation of the SM value by

cos(↵� ✓) = cos(
⇡

2
� ✏) = sin ✏ ⌘ �, (96)

where in the exact alignment limit � = 0 = ✏. A value of � . 0.1 is compatible with the
current experimental measurements and is consistent with our assumption of a 10% deviation
of the alignment limit in (↵� ✓) in Fig. 1.

On the other hand, a deviation in the SM trilinear self-coupling �SM will have an impact
in di-Higgs production at tree-level [103, 104], single Higgs boson production and decays at
one-loop level [105], as well as in electroweak precision observables at two-loop level [106].
In our case, we can describe a small deviation of the alignment limit at tree level in terms
of �, ✓ and mh0 as

gH2H2H2 ⌘ �SM� =
m2

H2

2v


(1 + 2�2)

p
1� �2 + �3(tan ✓ � cot ✓)�

m2
h0

m2
H2

�3

9s✓c3✓

�
, (97)

where the term in square brackets �, is the scaling factor that parameterizes the deviation
of the SM Higgs trilinear self-coupling, in this case at tree level. The value of the trilinear
self coupling has already been constrained experimentally [102, 107]. In here, we will make
use of the modifier or  framework [108] and the results in [109], where they set limits to �,
assuming the rest of the SM Higgs couplings to fermions and gauge bosons are the same or
very close to the SM. In our case, the value of � will depend on �, mh0 and ✓. From Figure 1
we can see the dependence on mh0 on tan ✓, which for a given � allows us to determine the
value of �. As an example we take � ⇠ 0.1 and we fix mh0 to its possible maximum value
for a given tan ✓. In order to satisfy the bounds �1.8 < � < 9.2, as determined in [109],
tan ✓ . 15. For smaller values of � larger values of tan ✓ are allowed.

In case the alignment limit is exact, �SM will still get corrections, but at loop level. In
that case the factor � will have a different expression, and depending on how complicated
it is and what other restrictions are taken into account it might be possible to restrict the
parameter space through it.

Analogous expressions for the couplings can be found for scenario B. In this case, the
SM-like Higgs boson would be H1 and the other neutral Higgs, H2, would be lighter than
the SM-like, at tree level. As we already discussed, we cannot fully discard this possibility
since in this alignment scenario, H2 would not have couplings to the gauge bosons, and it
could escape experimental detection.

We do not consider the most general case, without any alignment, since it implies that
both neutral Higgs bosons couple to the gauge bosons, which is highly restricted from the
experimental data.
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FORM OF ONE-LOOP CORRECTIONS TO MASSES

scalars, H1 and H2. Moreover, we can see from the gauge couplings with h0 given in 4.1, that
there are only corrections to the h0 mass but no mixing with other neutral Higgs bosons.
Thus, the decoupling is kept at one-loop level, as expected, with the consequence that the
one-loop neutral scalar mass matrix will attain a block diagonal form

⌃�(s) + ⌃V (s) =

0

BBB@

⌃�,V

h0
(s) 0 0

0 ⌃�,V

H1
(s) ⌃�,V
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0 ⌃�,V

H2H1
(s) ⌃�,V

H2
(s)

1

CCCA
. (100)

We see from the above expression, that even at one-loop the h0 scalar is decoupled from the
other two, so the mass matrix structure of the other two neutral scalars is similar to the
2HDM. Nevertheless, there will be loop corrections to the H1,2 masses due to h0, as can be
seen from the couplings (74) and (75). On the other hand, h0 will also receive corrections to
its mass via the gauge boson loop, due to the allowed couplings (59).

The general scalar and gauge bosons contributions to the square mass terms for H2 and
H1 are given as:

⌃�,V

Hn
=

X

i

gHnHn�
0
i�

0
i

16⇡2
A0(m2

�
0
i
) +

X

i,j

g2
Hn�

0
i�

0
j

8⇡2
B0(p2,m2

�
0
i
,m2

�
0
j
) +

X

k

g2
Hn�

±
k �

⌥
k

8⇡2
B0(p2,m2

�
±
k
,m2

�
±
k
)

+
X

i

gHnHnViVi

16⇡2
A0(m2

Vi
) +

X

i

g2
HnViVi

8⇡2
B0(p2,m2

Vi
,m2

Vi
), (101)

with n = 1, 2.‡ For the mixing term H12 we get
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where �0
i(j) = h0, H1, H2, A1, A2, G0, �±

k
= H±

1,2, G
± and Vi = W±, Z0. In these expressions,

A0 and B0 are the Passarino-Veltman functions of the masses involved [113]. The radiative
contributions to the mixing of ⌃�,V

H1H2
(s) reduce when we apply the alignment limit. For

scenario A, the couplings reduce such that the one-loop corrections to the mixing term are
given as follows
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‡The terms where gauge bosons are involved show only the coupling contributions, the actual calculation
will have to involve the gauge fixing.
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‡The terms where gauge bosons are involved show only the coupling contributions, the actual calculation
will have to involve the gauge fixing.
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ONE-LOOP POSSIBILITIES…

➤ Check for benchmarks where off-diagonal terms vanish, i.e. 
loop contributions extremely small (gauge and Higgs only) 
 
 
                                                                                          
                                                                                          🙂  
 

➤ For N-Higgs doublet models: oblique parameters OK in 
compact almost degenerate spectrum  Grimus et al (2008); Cárcamo et al (2015) 

➤ You can also fix mH_SM mass as finite at tree level and 
renormalize the rest (on-shell ran)                                                     

Scalar benchmarks Masses (GeV) tan ✓

light spectrum mh0 = 80, mH1 = 200, mA1,2 = 80, m
H

±
1,2

= 100 1

heavy spectrum mh0 = 800, mH1 = 800, mA1,2 = 800, m
H

±
1,2

= 800 2.1

Table 2: Parameter values in scenario A that make the one-loop mixing parameter vanish,
⌃�

H1H2
= 0, taking into account only the scalar and gauge contributions.

in this case we will only have �0
i
= h0, A1, A2, �±

k
= H±

1,2, since all the terms involving gauge
and Goldstone bosons vanish, so we simplify the notation to ⌃�

H1H2
. This is taking into

account only the scalar and gauge contributions to the one-loop corrections. An equivalent
expression can be found for scenario B.

We explore the structure of the loop contributions to the h0, H1 and H2 masses coming
from the gauge bosons and all scalars (neutral scalars and pseudoscalars, and charged scalars)
by fixing the tree level masses and varying the ✓ parameter.

A mixing term for H1 and H2 in the mass matrix, Eq. (100), would imply that they are
not the true eigenstates. At one-loop level, we would expect this mixing parameter to be
small, as the tree level should be the dominant order. Formally, we should take the poles of
the propagator of the mass matrix at the order we are calculating to obtain the masses of the
particles, in order to define two different states the mass matrix should be diagonalized at
n-loop order [112]. Keeping this corrections small, is another condition we could consider to
constrain the free parameters of the model. Although complete NLO corrections should be
taken into account (including fermions), our goal here is to show the importance of having
the explicit form of the cubic and quartic couplings in order to be able to calculate loop
corrections, which are functions of the model’s parameters.

In Table 2 we present two example sets of parameters for these corrections under scenario
A. The choice of the benchmark points where these mixing parameters vanish, is meant to
exemplify that there are regions of parameter space where indeed these one-loop corrections
may be small. These examples correspond to points in parameter space where the mixing
term in the mass matrix Eq. (100) vanishes.

For the light scalar spectrum we achieve ⌃�

H1H2
(s) = 0 with tan ✓ = 1, but the scalar

masses are different, so the condition to keep the contributions to the oblique parameters
S, T , small might not be met. On the other hand, we find a spectrum with heavier scalar
masses, where ⌃�

H1,2
(s) = 0 and tan ✓ ⇠ 2. A complete numerical exploration of these

corrections could restrict more the parameter space, as they should be kept small. Our goal
here is only to show the possible loop corrections that will be present in their general form.
The small value of tan ✓ found in these two examples indicates a maximal mixing between
the S3 singlet and doublet (see Eqs.(44,45)). It is also consistent with a numerical study of
the S3-4H model (basically the S3-3H with one extra inert Higgs doublet), where compliance
with the experimental Higgs bounds was found for small values of tan ✓, assuming certain
conditions on the Yukawa couplings [75].

Results in Table 2 are not conclusive, since we should take into account the fermionic
contributions to have a more accurate estimation of the radiative corrections to scalar masses.
In particular, the top quark contribution is expected to be sizeable, due to its large Yukawa
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IN YUKAWA SECTOR
➤ The Higgs Z2 residual symmetry will lead to zeroes in the CKM and 

PMNS matrices   😱                                      Das, Dey, Pal (2015), Ivanov (2017)                                                                

➤ To recover the good features of the symmetry: 
➤ Add S3 singlet                                Brown, Deshpande,Sugawara, Pakwasa (1984)                                       

➤ Break very softly the S3 symmetry with mass terms, recover original structure 
                                            e.g., Kubo, Okada, Sakamaki (2004), Das, Dey, Pal (2015) 

➤ Consider CP violation                          Costa, Ogreid, Osland, Rebelo(2014,2021) 

➤ Make S3 modular                                         Cerón, MM  (2021), M.Sc. Thesis 

➤ Second B-L sector at higher scale with some interaction  
                                                           Gómez-Izquierdo, MM  (2018), and L.E. Gutiérrez (now) 

➤ Add a fourth Higgs doublet                                  Espinoza, Garcés, MM, Reyes (2019) 

➤ Combinations of the above:  all introduce more parameters



4HDM -S3 WITH DM
➤ We add another doublet, inert, to have a DM candidate. We 

assign it to the 1A, and thus “saturate” the irreps 

➤ First two generations in a flavour doublet, third in a singlet, 
extra anti-symmetric singlet is inert → DM candidates 

➤ A lot of Higgses (13), but the good features of 3H-S3 remain 
Quark and lepton sectors remain unchanged 
DM candidate in inert sector 

➤ Add a Z2 symmetry to prevent the DM candidate to decay 

➤ S3 symmetry constrains strongly the allowed couplings  
                                                  C. Espinoza, E. Garcés, M.M., H. Reyes (2019)



HIGGS POTENTIAL 4H-S3
➤ We need to find the minima of the potential S3xZ2, which satisfy 

the stability and unitarity conditions 
 
 
 
 
 
 
 
 
 
 
 

de S3 [110, 8]:
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(6.8)

Notemos que (6.8) es igual a (6.7) + (6.6) más los términos que acoplan a los
singletes Ha y Hs: �14(H

†
s
HaH

†
a
Hs) + �15[(H

†
1Hs)(H

†
2Ha) + h.c.]

6.2. El lagrangiano de Yukawa.

6.2.1. El lagrangiano de Yukawa con 4 dobletes de Higgs

Existen cuatro posibilidades, tener ambas componentes izquierda y derecha de la
tercer familia en el singlete simétrico o ambas en el antisimétrico, o la izquierda
en el simétrico y la derecha en el antisimétrico, o viceversa, el izquierdo en el
antisimétrico y el derecho en el simétrico. Nos concentraremos, en el caso con
ambas componentes en el singlete simétrico, esta y el resto de las posibilidades
se exploran en [7].

El lagrangiano de Yukawa invariante bajo S3 más general, para el acoplamiento
de fermiones de Dirac acoplados a 4 Higgses, donde ambas componentes de la
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MASSES
➤ After electroweak symmetry breaking (Higgs mechanism) we 

are left with  
                 13 massive particles! 

➤ One has to be the SM Higgs boson, same as in S3-3H 

➤ Two can be DM particles 

➤ Check lightest one of neutral scalars



And the corresponding eigenvalues  are:

We choose the neutral scalar 
Pseudoscalar also possible



CONSTRAINTS
➤ In the Yukawa sector assume SM limit 

➤ Several constraints are imposed over the parameter space: 

➤ Usual vacuum stability conditions 

➤ Unitarity conditions for large s (LQT conditions) 

➤ Unitarity conditions for finite s 

➤ SM Higgs boson mass within 125 ± 3 GeV 

➤ Limits for Higgs searches at LEP, Tevatron and LHC 
 
Constraints implemented using FeynArts, FormCalc, 
SARAH+SPheno, HiggsBounds, MicrOmegas



DM MASS AND RELIC DENSITY

Figure 1: Mass of the DM candidate as a function of tan ✓ (left panel), and value of the

DM relic density as a function of the DM mass. The dark blue points (set A) are the

ones that comply with stability and unitarity constraints, the light blue points (set B) are

also compatible with the experimental bounds for extra scalar searches (see text), the red

points also satisfy the decoupling limit and the green points in the right panel lie within

the experimental Planck bound.

and u poles in the calculation of the scattering amplitudes, with hindsight we
chose the weakest limits described in [39] since already for this choice finding
physical points is computationally very expensive; the energy interval defined
for these computations is taken to be 500 to 5000 GeV. The generation of
SLHA [40, 41] input files for HiggsBounds [42–46] and MicrOMEGAS [47] is
done using the SARAH-SPheno [48–50] framework. We use HiggsBounds to
further filter points that do not comply with current experimental limits from
Higgs searches, and finally MicrOMEGAS is utilized to compute the value of the
relic density and annihilation cross section of the dark particle (the lightest
of the Z2-odd neutral scalars) for points that satisfy all the constraints. We
only show results for the case where the dark scalar h

n

a
is the dark matter

candidate and we take its mass in the range 10 to 5000 GeV; similar con-
clusions are obtained when the candidate is the pseudo-scalar hp

a
. All other

dark particle masses are taken randomly in the range & Mhn
a
to ⇠ 5000 GeV,

while the heavy scalar masses take values in the range & Mh to ⇠ 5000 GeV.
For the parameter µ2

2 due to the first equation in (17) we generate random
values for it in the interval (⇠ (�M

2
h
+
a
),⇠ M

2
h
+
a
), this should be a large inter-

val to probe and in any case the value of �10 will be limited by the unitarity
bounds and we don’t expect large di↵erences if this interval is enlarged. Fur-

when large amounts of points are being probed.
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Blue points → stability and unitarity  
Light blue  → also Higgs bounds  
Red points → also alignment limit 

The bounds apply to S3-3H too

Green points → DM Planck limits 

Small values of tanθ preferred 



DM ANNIHILATION CHANNELS

Figure 2: Histograms of the frequency of predominant annihilation channels (for a full

description see text).

thermore, this parameter also must satisfy the conditions (analogous to the
IDM) µ2

2/
p
�13 > Max{µ2

0/
p
�8, µ

2
1/
p
�1} in order to prevent the possibility

of tunnelling to a va 6= 0 vacuum [3], to achieve this we tune the value of �13

until the inequalities are satisfied, note that unphysical values of �13 will al-
ways be casted out by the subsequent filters. Finally the values of the rest of
the free parameters are taken in the ranges �14 2 [�4⇡, 4⇡], tan ✓ 2 (0, 100]
and ↵ 2 [�⇡/4, ⇡/4]. We present our results in figures (1) through (3).

The first observation that we want to make is that from the entire sample
of points probed, those that satisfy the first line of constraints (close to
105)4 i.e. stability and unitarity conditions, only a small proportion (around
10%) passed the HiggsBounds tests. While the size of this sample5 is rather
small compared to the size of a parameter space of such dimensionality (15
total free parameters), we believe that the main conclusions drawn from our
findings show important properties of the model.

In the left panel of figure (1) we present a scatter plot of the points in our
scan projected in the plane DM mass vs tan ✓. We refer to the points that
pass the first line of constraints as set A (dark blue points), while set B (light
blue points) are points that additionally satisfy the HiggsBounds limits; the
subset of B that satisfy the decoupling limit are shown in red color. From
this figure we observe that stability and unitarity constraints severely restrict

4
Note that the total number of scanned points is far greater than this number since

many of the randomly generated points are already discarded at the first line of constraints.
5
Larger sample sizes can easily become too expensive in computational time terms.
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➤ Frequency of dominant annihilation channels that contribute  
to DM relic density 

➤ All points below or at Planck limit 

➤ Similar to i2HDM



ANNIHILATION CROSS SECTION
➤ Annihilation cross 

section vs DM mass → 
relevant for indirect 
detection experiments 

➤ Likelihood function 
with respect to Planck 
limits 

➤ Pink points have relic 
density within 
experimental bounds

Figure 3: Annihilation cross section as a function of the DM mass for small DM masses,

the points are colored according to their (normalized) likelihood (with respect to the relic

density) value. Also shown is the FermiLAT dwarf spheroidal combined DM exclusion

curve.

pole in the annihilation amplitude (for example two DM particles annihilating
at rest will hit the resonance at around a mass of 62 GeV and thus the location
of the dip in the figure); note that resonances due to the additional diagrams
with heavy scalars do not appear as sharp dips because their masses are not
fixed like the SM Higgs mass. Higher order corrections will shift the locations
of the poles but these corrections are not taken into account by MicrOMEGAS.
In the large mass region the quartic interaction and the s-channel decays into
gauge bosons are dominant, followed by the quartic channel dominated decay
into charged scalars, s-channel dominated decay into top-anti-top pair, and
quartic channel dominated decay into pseudoscalars. With rising DM mass
the interplay between these decays, together with the values of the e↵ective
coupling �

±
X

and the heavy scalar masses, will lead to a slow increase of the
relic density with the dark matter candidate mass. In our case this increase
is less steep than in the i2HDM, and it reaches values close to the Planck
bound for masses ⇠ 5 TeV.

Finally in figure (3) we present the annihilation cross section (relevant
for Indirect Detection Experiments) as a function of the DM mass for points
with masses below 100 GeV; to highlight the points that lie within the Planck

13

There are points in parameter space which survive all constrains  
Tree level: results will shift with radiative corrections



OR MAKE IT MODULAR…(FANCY, BUT DOES IT HELP??)    MODULAR SYMMETRIES
➤ Related to moduli spaces, geometric spaces: solutions of geometric 

classification problems. Objects are identified (isomorphic) if they 
are the same geometrically. 

➤ Using modular symmetries as flavor symmetries: 
Inspiration from supersymmetric theories, initially with extra 
dimensions                     Feruglio, Altarelli (2006-2022); Petcov et al (2019, 2021, 2022) 
Magnetized branes, superstring theories  
                                         Cremades et al (2004); Kobayashi et al (2018) 

Superstring compactifications, especially from orbifold 
compactifications 
                            e.g. Kobayashi et al (2018, 2019); Chen, Ramos-Sánchez, Ratz (2022) 

➤ Usually applied in supersymmetric models, but now also in non-
supersymmetric models                      e.g. Nomura, Okada et al, (2019,2020) 



MODULAR GROUP
➤ Projective special linear group of 2x2 matrices and 

determinant; linear fractional transformations of upper half of 
complex plane 
 
 
 
The transformation 𝛾 over a parameter 𝜏 

➤ Modular forms of weight k, functions that transform under 𝛤 
with weight k 
 

[18, 19, 20, 21, 22, 23]. The symmetry group S3 mentioned in the previous section has given
good approaches to the solution of particle physics problems [9, 10, 11, 24]. In search of a new
symmetry to explain the mixing patterns, modular symmetry has been proposed as an alter-
native through the isomorphism between the finite modular group �2 and S3. In this section
a brief description will be made of the definition and properties of the modular group as well
as the modular forms and their relationship with S3. Some of the information mentioned here
can be found at [25, 26, 3, 27].

In order to define the finite modular groups, the modular group � must first be defined as

� = SL2(Z) =
⇢✓

a b
c d

◆
|a, b, c, d 2 Z, ad� bc = 1

�
. (1)

From this group, the inhomogeneous (fractional) transformation � over a parameter ⌧ is defined
as

�(⌧) =

✓
a b
c d

◆
(⌧) !

a⌧ + b

c⌧ + d
. (2)

with ⌧ 2 Ĉ (Ĉ = C � {1}). It should be noted that the matrices 12⇥2 and �12⇥2 lead to
the same transformation, so the matrices associated with � form the group � ⌘ PSL2(Z) =
SL2(Z)/{12⇥2,�12⇥2}. This group can be generated by

S : ⌧ ! �
1

⌧
,

T : ⌧ ! ⌧ + 1, (3)

which in � correspond to the matrices

T =

✓
1 1
0 1

◆
y S =

✓
0 1
�1 0

◆
, (4)

they must satisfy
S2 = 1 y (ST )3 = 1. (5)

An important feature of this transformation is that it applies only to the upper complex half-
plane H defined as

H = {⌧ 2 C : Im(⌧) > 0}. (6)

since ⌧ 2 H, then, Im[⌧ ] > 0. This allows concluding that Im[�(⌧)] > 0, that is � acts from H

to H.
To define the finite groups that will be used in this work, we must first define the subgroups
of the modular group known as congruence subgroups or also known as homogeneous principal

3
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There are certain holomorphic functions that depend on the modulus ⌧ , which under the group
� transform as

f(�⌧) = (c⌧ + d)kf(⌧), (14)

known as modular forms of weight k. Since the identity matrix and its negative are equivalent
to the same transformation on �, then k must be an even number. This is because for 1, the
modular form transforms as

f(⌧) = 1kf(⌧) (15)

and for �1 transform as

f(⌧) = (�1)kf(⌧). (16)

Since the transformation must be equivalent in both cases, then 1k = (�1)k, which is satisfied
if k satisfies the property of being even. The above property does not hold in general for �(N)
since �12⇥2 does not belong to �(N) for N > 2. Another property of modular forms is that the
constant functions in H are modular forms of zero weight and that zero functions are modular
forms of any weight. For TN , the modular forms transform as

f(TN⌧) = f(⌧ +N) = f(⌧), (17)

that is, f(⌧) is periodic in H, which allows us to expand in Fourier series [3, 25]

f(⌧) =
1X

n=0

anq
n, (18)

with q = e2⇡i⌧ . The set of modular forms forms a vector space denoted by dk(�(N)). The
dimension of the vector spaces for some quotient groups �N , is shown in the table 1 [5]. A
special type of modular forms are the cusp forms that are defined as the modular forms whose
first term a0 in its series expansion is zero. The Dedekind Eta function ⌘(⌧) is an example of
cusp form and is used to create new modular forms, as will be the case later. This function is
defined as

⌘(⌧) = q1/24
1Y

n=1

(1� qn), (19)

where q = e2⇡i⌧ .

Since the modular forms form a vector space, it can be shown that for a unitary represen-
tation of �N , the modular forms transform as [5, 28]

f(⌧) ! (c⌧ + d)k⇢(�)f(⌧), (20)

5

� 2 �



GAMMA AND POLYGONS
➤ Isomorphism between some finite modular groups and some groups 

associated to polygons (invariance under rotations and reflections) 
 
 
 

➤ Yukawa couplings expressed in terms of modular forms, i.e. functions of a 
complex scalar field 
 
 

➤ Fermions and scalar fields transform with a weight 
 
 

congruence groups of level N , �(N). They are defined by imposing a modularity constraint on
the entries of the arrays in �, that is

�(N) =

⇢✓
a b
c d

◆
2 � :

✓
a b
c d

◆
=

✓
1 0
0 1

◆
(mod N)

�
. (7)

Similarly, the corresponding inhomogeneous transformation �(N) can be defined whose associ-
ated matrices belong to �(N) = �(N)/{12⇥2,�12⇥2}. In the definition (7) it is observed that
for the particular case N = 1 the group � is obtained since all the matrices of � are equal to
the identity matrix modulo 1 and that for both N = 1 and N = 2, the identity matrix 12⇥2

and �12⇥2 are indistinguishable, that is, they lead to the same transformation in �(N).
Since �(N) is a normal subgroup of �, the finite modular group �N can be defined as the
quotient group

�N ⌘ �/�(N). (8)
It can be shown that there is an isomorphism between some finite modular groups and certain
groups of rotations of regular polygons. These isomorphisms are

�2 ' S3

�3 ' A4 (9)
�4 ' S4

�5 ' A5.

For N > 5, isomorphisms to symmetry groups become more complex to find [28]. The order of
different finite modular groups |�N | is presented in the table 1. These orders are determined
by the expression

|�N | =
1

2
N3

Y

p|N

✓
1�

1

p2

◆
, N > 2, (10)

with p a prime number. It is observed that for �(N), the generator T satisfies

TN
2 �(N). (11)

since
TN =

✓
1 N
0 1

◆
=

✓
1 0
0 1

◆
(mod N). (12)

Arithmetic modularity indicates that a = b(mod N) It is equivalent to a � b = kN , with k
being some integer. For TN this condition is satisfied even for the input (12), since N�0 = kN
if k = 1. In this way, a new condition arises on the generators for �. Now they must satisfy

S2 = 1

(ST )3 = 1 (13)
TN = 1.

4

Figure 1: Real (left) and imaginary (right) part of the modular form Y1(⌧). The orange color indicates

values that tend towards positive and the blue color indicates values that tend towards negative. Blanks

are part of the cut when calculating very small or very large amounts.

assignment that is made, the modular forms of weight four will be useful and are obtained from
the tensor product of the doublet of modular forms of weight two [4], therefore

✓
Y1

Y2

◆
⌦

✓
Y1

Y2

◆
= Y (4)

s +

 
Y (4)
1

Y (4)
2

!
, (31)

where the antisymmetric singlet vanishes. Furthermore, it has been defined

Y (4)
s = Y 2

1 + Y 2
2

Y (4)
1 = 2Y1Y2 (32)

Y (4)
2 = Y 2

1 � Y 2
2 .

3.3 Assignments under S3 and mass matrix

So far we have introduced the elements to build a model of three Higgs doublets under modular
S3 symmetry, that is, SU(3)C ⇥ SUL(2) ⇥ Uy(1) ⇥ �2. It is important to mention that it is
going to be assumed that the transformation under the modular group must also be imposed
for the quark fields in order to assign them a modular weight, that is,

� ! (c⌧ + d)k��, (33)
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S3 MODULAR SYMMETRY

➤ We will impose a modular S3 or 𝛤2 to a non-supersymmetric 
Lagrangian  
 

➤ 3HDM, 3 𝜈R, quarks and leptons:   
                                  first two generations in a doublet 
                                      third generation in a singlet  
same for 3 Higgses:   2 of them in a doublet, third in a singlet 

➤ We assign specific modular weights (again, some liberty 
there…) to get a NNI texture 

➤ We’ll take a big leap of faith and assume it stayed unbroken at 
low energies (problems with kinetic form and others…)
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are part of the cut when calculating very small or very large amounts.

assignment that is made, the modular forms of weight four will be useful and are obtained from
the tensor product of the doublet of modular forms of weight two [4], therefore

✓
Y1

Y2

◆
⌦

✓
Y1

Y2

◆
= Y (4)

s +

 
Y (4)
1

Y (4)
2

!
, (31)

where the antisymmetric singlet vanishes. Furthermore, it has been defined

Y (4)
s = Y 2

1 + Y 2
2

Y (4)
1 = 2Y1Y2 (32)

Y (4)
2 = Y 2

1 � Y 2
2 .

3.3 Assignments under S3 and mass matrix

So far we have introduced the elements to build a model of three Higgs doublets under modular
S3 symmetry, that is, SU(3)C ⇥ SUL(2) ⇥ Uy(1) ⇥ �2. It is important to mention that it is
going to be assumed that the transformation under the modular group must also be imposed
for the quark fields in order to assign them a modular weight, that is,

� ! (c⌧ + d)k��, (33)

9



THE ASSIGNMENT FOR THE MODEL

➤ We assign the fields the following weights 
 
 
 
 

➤ The Yukawa part of the Lagrangian is 

(Q1, Q2) (q1, q2) Q3 q3 (H1, H2) Hs (Y (2,4)
1 (⌧), Y (2,4)

2 (⌧)) Y (4)
s (⌧)

SU(2) 2 1 2 1 2 2 1 1
S3 2 2 1 1 2 1 2 1
k �2 �2 0 0 0 0 (2, 4) 4

Table 2: charges, assignments, and modular weights of SU(2) and S3. The superscript (2, 4) on

the modular forms indicates that they are of modular weight 2 or 4. The subscript s indicates the

symmetric singlet of the modular form of weight 4.

been used. To compress the notation, you can redefine the doublets of S3 as

Q =

✓
Q1

Q2

◆
; u =

✓
u1R

u2R

◆
; H =

✓
H1

H2

◆
;

(34)

Y (4) =

 
Y (4)
1

Y (4)
2

!
; Y (2) =

 
Y (2)
1

Y (2)
2

!
;

Thus, the lagrangian in the Yukawa sector is

L
(u)
y = C1Q⌦ u⌦ H̃ ⌦ Y (4) + C2Q⌦ u⌦ H̃ ⌦ Y (4)

s + C3Q⌦ u⌦ H̃s ⌦ Y (4)

+ C4Q⌦ u⌦ H̃s ⌦ Y (4)
s + C5Q⌦ u3R ⌦ H̃ ⌦ Y (2) + C6Q⌦ u3R ⌦ H̃s ⌦ Y (2)

(35)
+ C7Q3 ⌦ u⌦ H̃ ⌦ Y (2) + C8Q3 ⌦ u⌦ H̃s ⌦ Y (2) + C9Q3 ⌦ u3R ⌦ H̃s + h.c.

The expanded Lagrangian L
(u)
y is shown in apendix B.
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WHAT CAN WE DO?
➤ A lot of freedom!  too many parameters… 

➤ Can we do something about it? 

➤ But, look at the symmetries — geometry, of the problem 

➤ In the modular symmetry points parameters are identified or 
related: 
only few parameters remain 

➤ This way: possible to explain mixings, S4 and A5 studied                                                       
                                                 Novichkov, Penedo, Petcov (2021) 

➤ S3 studied too, but so far without exploiting these symmetric 
points                                        Kobayashi et al (2019,2020)



MODULAR SYMMETRIC POINTS 

Figure 3: Real (left) and imaginary (right) part of the given expression in M13 y M31, that is, Y (2)
2 (⌧)�

p
3Y (2)

1 (⌧). It is observed that Y (2)
2 (⌧)�

p
3Y (2)

1 (⌧) = 0, for both its real and imaginary parts, at the

point ⌧ = i, which guarantees that M13 = M31 = 0.

4.1 Setup 1

The matrix 37 is satisfied if

Re(�) = 0; C3 = 0; C4 = 0; C5 = C⇤
7 ;

C6 = �4(v2/vs)C5; C8 = �4(v2/vs)C7; ↵ = �C2 2 R (39)
⌧ = i; � = 0; C9, v1,2, vs 2 R; .

In the case of the condition M13 = M31 = 0, the equality is satisfied by using the conditions on
C6 and C8, the relation v21 = 3v22 that arises to minimize the potential and Y (2)

2 (⌧)�
p
3Y (2)

1 (⌧) =
0 at ⌧ = i (see equation 75 in A). When this condition is satisfied, the relations

y2 =
p

3y1
y(4)1 = 2

p

3y21

y(4)2 = �2y21
y(4)s = 4y21, (40)

with yk = Yk(i). The mass matrix takes the form

M̂ (u) =

0

@
0 C 0

2 + C 0
� 0

C 0
2 � C 0

� �
2p
3
C 0

2 C 0
5

0 C
0⇤
5 C 0

9

1

A , (41)
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VCKM  MATRIX
➤ Assuming the NNI form and a hierarchical structure for the 

mass matrices u and d, we can reparameterize them in terms 
of mass ratios  

➤ Exact analytical expression for the VCKM corresponding to the 
symmetry S3 with the NNI structure 

➤ Without loss of generality we can fix the values of 2 phases 
 

➤ Now only 4 free parameters to fit the VCKM  

➤ We perform a 𝜒2  analysis to find the numerical values of our 
parameters

where

C 0
2 = 4

p

3v2y
2
1C2,

C 0
� = 4

p

3v2y
2
1�,

C 0
5 = �4

p

3v2y1C5,

C 0
9 = C9vs

[10, 30] presents a method for diagonalizing a matrix of texture zeros as well as an expression
for the matrix elements of VCKM . Following the procedure, in the matrix M (u) two of its phases
can be extracted by means of a diagonal matrix with information about them, that is

Pf = diag(1, ei�1 , ei(�1��2)) (42)

where �1 is the phase of K2 +K� and �2 is the phase of K5. Therefore, a new matrix, M̄ (u), is
defined such that

M (u) = P †
f M̄

(u)Pf , (43)

Therefore,

M̄ (u) =

0

@
0 |C| 0
|C| �

2p
3
C cos(�1) |C 0

5|

0 |C 0
5| C 0

9

1

A , (44)

with C = C 0
2 + C 0

� y cos�1 = C 0
2/C. It should be noted that the total of parameters that

describe the matrix are five: |C|, |C 0
5|, |C 0

9|, �1 y �2.
Matrices have three invariants, that is, quantities independent of the representation. These are:
the trace, the determinant, and the trace of the square of the matrix. In the mass basis, the
matrix M (u) is diagonal, so the quark masses can be related to the matrix elements by means
of invariants. The eigenvalues of the mass matrix can be written in terms of the ratios of the
masses, that is, e�i = mi/m3 for both type up and type down. Therefore, in these expressions,
the diagonal mass matrix has the form MD = diag(e�1,�e�2, 1). From the invariants we can
obtain the following relations

|C| =

s
e�1e�2

C 0
9

cos�1 =

p
3

2
(C 0

9 � e�1 + e�2 � 1)

s
C 0

9

e�1e�2
(45)

|C 0
5| =

s
(1� C 0

9)(C
0
9 � e�1)(C 0

9 + e�2)

C 0
9

.
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VCKM FIT
➤ Excellent fit (too excellent…overfitted?) 

➤ Probably we have correlations among parameters → one too many?  

➤ Analytical expression successful
Values in the fit

C 0
9u 0.816393

C 0
9d 0.828604

�1u 1.63797
�1d 0
�2u 0.0981477
�2d 0
�2 0.00070

Table 6: Values of the free parameters for the adjustment with the values of the ratios of the masses

fixed in their central value and the respective obtaining of �2
.

6 Conclusions

From the modular symmetry and the finite modular group �2 ' S3, together with three Higgs
doublets, it has been possible to build an extension of the standard model with few total
free parameters. The model was made by introducing modular forms built from the function
⌘(⌧). Then, under the proposed symmetry and after making an assignment of the fields, the
Lagrangian of the Yukawa sector was calculated. After spontaneous symmetry breaking, the
total number of scalar bosons was nine and the quark mass arrays were found. Some of the
parameters were adjusted in such a way that mass matrices with texture zeros were obtained,
leaving a total of 10 free parameters between the matrices for type up, down and Vevs. In
the calculation of the mixing matrix, analytical expressions were used that allowed to reduce
to 4 total free parameters. These were fitted to nine observables of VCKM and the Jarlskog
invariant, obtaining the best fit of the free parameters at �2 = 0.00070. The inclusion of the
Higgs potential was possible due to the imposition on the zero modular weights of its couplings
and of the Higgs doublets. The freedom in the assignments, both in the symmetry of �2 and
in the modular invariance, is wide since more products are generated by the introduction of an
extra doublet of modular forms compared to a conventional S3 symmetry.

In the end, in this work, the choice of the particular assignment and the restriction of setting
it to texture zeros, resulted in 4 free parameters, including the VEVs of the Higgs potential.
Thus, assuming modular symmetry and using modular forms with the indicated parameter as-
sumptions allows one to find a fit of order one in �2

n with few total free parameters, indicating
that the additional symmetry gives a good approximation regarding the quark mixing pattern.

An extension to what is stated here is to consider other assignments under S3 and different
modular weights. The introduction of Higgs potentials, whose couplings have modular weight
and therefore are modular forms, could be useful in freedom to build mass matrices and obtain
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Center value and error
e�u 7.032⇥ 10�6

e�d 9.44⇥ 10�4

e�s 0.0190± 0.00046
e�c 0.00375± 0.00023

Table 5: Central values of the ratios of the masses.

setting, the mixing matrix is expressed as

V th
CKM =

0

@
0.97435 0.2250 0.00369
0.22486 0.97349 0.04182
0.00857 0.04110 0.999118

1

A , (56)

with J
th = 3.07⇥ 10�5.

It should be noted that the function �2 is sensitive to changes in both the errors and the
central values. Another factor to take into account is the total free parameters, because being
few, the possibilities of making an adequate adjustment to four experimental parameters have
been limited. The method to be used in the minimization considerably affects the minimum
value. Thus, under the appropriate conditions, a value with a �2 lower than the one presented
in this work could be found.
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NICE, BUT…
➤ Modular approach might be too unrealistic, although the role 

of the symmetries certainly very interesting 

➤ Now, break softly the S3-3H: 

➤ Introduce a soft breaking term in scalar potential V 

➤ Residual Z2 symmetry is broken 

➤ Recover the form of the mass matrices and VCKM 

➤ Re-do the analysis of V 

➤ BUT, possibility of testing realistically the model in  
HL-LHC through exotic Higges

Work in progress: Espinoza, Gómez-Bock, Heinemeyer, MM, Pérez-Martínez



GOING UP?

➤ You can embed the model (or a version of it) in a SUSY model with Q6 
symmetry 

➤ Grand Unified SU(5) x Q6 model already studied, preserves the nice features 
of S3 in quarks and leptons.  Mixing angles in good agreement with 
experiment, both hierarchies allowed.  
                                                     J.C. Gómez-Izquierdo, F. González-Canales, M.M. (2014) 

Neutrino masses: add singlets or non-renormalizable interactions or 
radiatively 

➤ Possible to have different assignments of Q6 in leptonic sector ⟹ breaking 
of mu-tau symmetry                                             J.C. Gómez-Izquierdo, M.M. (2017)  

➤ Flavour structure in trilinear soft SUSY breaking terms →  
LFV 𝝉→𝝻+𝛄, g-2 contributions through LFV in leptonic sector 
                                                                   F. Flores-Báez, M. Gómez-Bock, M.M. (2018) 

➤ Non-SUSY B-L model with S3, also breaking of mu-tau symmetry 
                                                                              J.C. Gómez-Izquierdo, M.M. (2019)



CONCLUSIONS
➤ S3 is a small symmetry that goes a long way 

➤ S3-3H models consistent with CKM and PMNS 
𝛳13 ≠ 0 naturally 
Possible to calculate all neutrino masses and mixings   

➤ In Higgs sector: 

➤ masses bounded from above and below 

➤ trilinear and quartic Higgs coupling are SM ones in 
alignment limits 

➤ Possible to have light “semi-invisible” Higgs in both 
scenarios, 
with different signals/characteristics 

➤ Simultaneous study of Higgs, fermionic sector and DM shows model is 
self-consistent:  
tanθ small solutions appear both in Higgs and DM sectors



CONCLUSIONS
➤ Regions of parameter space that pass all Higgs bounds: 

Extra Higgses sufficiently decoupled or inert possible 

➤ Good DM candidate(s) 

➤ 4th inert Higgs 

➤ h0 as DM candidate 

➤ possible to add R-handed neutrino as DM 

➤ Leptogenesis possible 

➤ Vacuum much more complicated than in SM, all checks necessary:   
Need to add one-loop corrections 

➤ Above all:  
Consistent with known physics 
New predictions 
Testable
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