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History
1950: Alan Turing creates the “Turing Test”
1957: Frank Rosenblatt: the first neural network for computers 
(the perceptron), which simulate the thought processes of the 
human brain.
1959: Arthur Samuel, IBM: Machine Learning
1967: The first general, working learning algorithm for 
supervised, deep, feedforward, multilayer perceptrons by A. G. 
Ivakhnenko and V. G. Lapa
1986: First mention of Deep Learning by Rina Dechter (Learning 
While Searching in Constraint-Satisfaction Problems)
1989: Yann LeCun et al: standard backpropagation algorithm for 
recognizing handwritten ZIP codes on mail
1997: “A computer program is said to learn from experience E 
with respect to some class of tasks T and performance 
measure P if its performance at tasks in T, as measured by P, 
improves with experience E.” - Tom M. Mitchell: Machine 
Learning
1997: IBM’s Deep Blue beats  Garri Kaszparov (the world 
champion at chess). Computing capacity: 11.38 GFLOPS, TOP500: 
259th  (comparison: Nvidia RTX 4090: 82.6 TFLOPS)

https://researcher.watson.ibm.com/researcher/view_page.php?id=6814Wikipedia

arXiv:1911.05289
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History
2009: ImageNet by prof. Fei-Fei Li a database of 14 million 
labeled images in 2009

2011: IBM’s Watson: winner of game show Jeopardy!

2011: Google Brain: cats in Youtube videos 

2012: AlexNet by Alex Krizhevsky: first CNN

2013: Word2vec algorithms: foundations for language models

2014: DeepFace by Facebook 

2014: Generative adversarial networks (GAN) by Ian Goodfellow

2016:  AlphaGo by Deepmind

2016: Face2Face (baseline for ‘DeepFake’)

2017: Waymo: first self-driving car company to operate without 
human intervention

2018: AlphaFold by Deepmind

2020: GPT-3 by OpenAI to generate human-like text. Trainable 
parameters: 175 billion

Wikipedia

Artificial Intelligence:
Mimicking the intelligence or  
behavioural pattern of humans  
or any other living entity.

Machine Learning:
A technique by which a computer 
can "learn" from data, without 
using a complex set of different 
rules. This approach is mainly  
based on training a model from  
datasets.

Deep Learning:
A technique to perform  
machine learning 
inspired by our brain's 
own network of 
neurons.



 

4

History
CNN (image classification, object detection, recommender 
systems)...

Recurrent/recursive neural networks (RNNs): Sequence 
modeling, next word prediction, translating sounds to words, 
human language translation...

Generative models: anomaly detection, pattern recognition, 
reinforced learning

Various frameworks for training and inference:

https://towardsdatascience.com/onnx-preventing-framework-lock-in-9a798fb34c92
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Motivaton - data, data, more data
Autonomous driving
Medical imaging
Predictive maintenance
Anomaly detection, fake news detection
Search of BSM physics
Stock price prediction
Natural Language Processing
Virtual Assistants
Virtual reality
Colorization of Black and White Images
Content generation, examples:

https://infiniteconversation.com/
https://huggingface.co/spaces/stabilityai/stable-diffusion

Robotics
...

https://infiniteconversation.com/
https://huggingface.co/spaces/stabilityai/stable-diffusion
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Motivaton - data, data, more data

128 MB 128 GB

2020
1 TB

1956
5 MB

LHC in numbers: 2013 and now:
Data: 15   PB/year vs 200+ PB/year
Tape: 180 PB   vs 740+ PB 
Disk: 200 PB   vs 570+ PB
HS06: 2M   vs 100+ B

Storing and distributing the data is only one side 
of the challange

→ analysis, simulations
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Approaches
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Main ingredients
Perceptrons:
● Input value(s)
● Weight: the connection between the units
● Bias: the intercept added in a linear equation
● Activation Function

https://sefiks.com/2020/02/02/dance-moves-of-deep-learning-activation-functions/

Other important components: pooling layers, regularization and 
normalization, recurrent layers...
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Main ingredients
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Main ingredients
The learning part: optimizing “somehow” the weights (Curse of dimensionality)

Loss function: 

The gradient descent method:

1) Start with random weights

2) Evaluate the loss

3) Figure out which direction the loss function steeps downward the most (with 
respect to changing the parameters)

4) Repeat from 2)

Gradient of the loss function with respect to all of the parameters
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Popular architectures

ResNet: Residual blocks with “skip connections” (SOTA image classifier of 2015)

Stacking more layers: solve complex problems more efficiently, get highly accurate results
BUT:
Vanishing/exploding gradients

3x3 conv.  N F

3x3 conv.  N F
ReLU

+
ReLU

Batch norm.

Batch norm.

Padding   38x38x3

7x7 conv. 19x19x64

Avg. pooling 1x1x512

Input         32x32x3

Flattening 1x512 

Dense 1x512

ResNet Block 10x10x64

ResNet Block 10x10x64

ResNet Block 10x10x64

ResNet Block 5x5x128 x4

ResNet Block 3x3x256 x6

ResNet Block 2x2x512 x3

Dense (output) 1x45



Machine Learning in HEP

2021 May: 417 references
2021 November: 568 references

2022 October: 724 references

Today: 759 references

12

● Track reconstruction
● Quark/gluon jet separation
● Jet reconstruction
● Tuning Monte Carlo event generators
● GAN of detectors
● ...

https://iml-wg.github.io/HEPML-LivingReview/

Matthew Feickert, Benjamin Nachman, arXiv:2102.02770

A Living Review of Machine Learning 
for Particle Physics

https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/search/hep-ph?searchtype=author&query=Feickert%2C+M
https://arxiv.org/search/hep-ph?searchtype=author&query=Nachman%2C+B


Nature Reviews Physics 3, 73 (2021)

1. Hard scattering
2. Parton shower

3. Hadronization

Hadron
Hadron

4. Underlying event

Parton shower and hadronization



Hadronization
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Partons → hadrons
Non-perturbative process
Lund-fragmentation (Comput.Phys.Commun. 27 (1982) 243)



Inspiration

J.W. Monk: Deep Learning as a Parton Shower (arXiv:1807.03685)
Dataset:  500 000 QCD pp event @ 7 TeV, 
generated by Sherpa
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Inspiration

J.W. Monk: Deep Learning as a Parton Shower (arXiv:1807.03685)
Dataset:  500 000 QCD pp event @ 7 TeV, 
generated by Sherpa

Long journey: we’ve found many ways how NOT TO do it
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Train and validation sets
Monte Carlo data: Pythia 8.303
Monash tune
Rescattering and decays turned off
ISR, FSR, MPI: turned on (*)
Selection: 
 All final particles with
 At least 2 jets

 Anti-kT
 R=0.4
 pT>40 GeV

Event number:
 Train: 750 000, √s = 7 TeV
 Validation and test: 100 000
 ~20 GB raw data

Input:
Parton level
Discretized in the           plane: pT, m, multiplicity 

32 bins
                  ,       32 bins

Hadron level output:

Eigenvalues:

Sphericity:

Transverse sphericity:

(Charged) event multiplicity, (tr-)sphericity, mean jet pT, -mass, -
width, -multiplicity

17
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Padding   38x38x3

7x7 conv. 19x19x48

Avg. pooling 2x2x192

Input        32x32x3

Flattening  1x768

Dense 1x256

ResNet Block 10x10x48

ResNet Block 10x10x48

ResNet Block 5x5x96 x2

ResNet Block 3x3x192 x2

Dense (output) 1x45

Padding   38x38x3

7x7 conv. 19x19x64

Avg. pooling 1x1x512

Input         32x32x3

Flattening 1x512 

Dense 1x512

ResNet Block 10x10x64

ResNet Block 10x10x64

ResNet Block 10x10x64

ResNet Block 5x5x128 x4

ResNet Block 3x3x256 x6

ResNet Block 2x2x512 x3

Dense (output) 1x45

Model S Model L
Trainable 

parameters 1.7 M 20 M

Used hardwares: Nvidia Tesla T4, GeForce GTX 1080 
@ Wigner Scientific Computing Laboratory

Framework: Tensorflow 2.4.1, Keras 2.4.0

Stacking more layers: solve complex problems more efficiently, get highly accurate results
BUT:
Vanishing/exploding gradients

Residual blocks with “skip connections”
ResNet:

18

Models



Results



Proton-proton @ 7 TeV, Training + Validation
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Charged hadron multiplicity at various rapidity windows
Comparison to reference MC model
Good agreement for both models
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21

Charged hadron transverse momentum
0.1 GeV ≤ pT ≤ 50 GeV

Event transverse sphericity
The smaller model performs better



Proton-proton @ 7 TeV, Training + Validation
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Jets:
● Mean pT ≤ 400 GeV
● Mean mass pT ≤ 400 GeV
● Mean multiplicity
● Mean width

The smaller model 
performs better

https://news.fnal.gov/2014/05/what-is-a-jet/
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(*) What about the partonic processes?

MPI
http://home.thep.lu.se/~torbjorn/talks/cern18cosmic.pdf

Qualitative agreement → the models adopted the hadronization properties
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Proton-proton @ 0.9-13 TeV, Predictions

● So far: everything at √s = 7 TeV → the ONLY energy,  where 
the models were trained
● Good agreement for all observable quantities as 

predictions for other LHC energies
● Multiplicity scaling?



KNO-scaling
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The collapse of multiplicity distributions Pn 
onto a universal scaling curve:

The scale parameters governed by leading 
particle effects and the growth of average 
multiplicity

Violation of the scaling at high CM energies: 
not fully understood (relation to MPI?)

Nuclear Physics B 40 (1972), 317–334.
(Nucl. Phys. B Proc. Suppl. 92 (2001). 122–129)



Test of KNO-scaling for the predictions
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Scaling function for multiplicities at various energies:

Charged hadron multiplicities in jetty events: good overlap and agreement

Mean jet multiplicities: different scaling for the models 
Nucl.Phys.B Proc.Suppl. 92 (2001) 122-129 



                            A NEW GENERATION OF HEAVY-ION MONTE CARLO  Heavy
    Ion
    Jet
INteraction
 Generator

[ Hé –yì –jīng ]

”Nuclear change theory”; Book of Changes, ”Originally a divination manual in the Western 
Zhou period (1000–750 BC)”
First, FORTRAN version: 1991, X.N. Wang, M. Gyulassy, Phys. Rev. D 44, (1991) 3501.
Computational challenge: more than 600 million collision in each second → HiLumiLHC: 
even more
Requirements for a new version: multithreaded mode, maintainability, intuitive usage

(C++ version)



Test of KNO-scaling for the predictions - Hijing++
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Scaling function for multiplicities at various energies:

Charged hadron multiplicities in jetty events: good overlap and agreement

Mean jet multiplicities: different scaling for the models 
Nucl.Phys.B Proc.Suppl. 92 (2001) 122-129 



Thank you for your attention!Thank you for your attention!
The research was supported by OTKA grants K135515, NKFIH 2019-2.1.6-NEMZKI-2019-00011, 2019-2.1.11-TÉT-2019-00078, 2019-2.1.11-TÉT-2019-00050, 
2020-2.1.1-ED-2021-00179, the Wigner Scientific Computating Laboratory (former Wigner GPU Laboratory) and RRF-2.3.1-21-2022-00004 within 
the framework of the Artificial Intelligence National Laboratory.

Prospects

Developed hadronization models with different complexities
Traditional computer vision algorithms capture the main features of high-energy event 
variables successfully → training only at a single c.m. energy, predictions at other energies
Generalization to other CM energies: KNO scaling in jetty events
Valuable input for MC developments

Architecture variations (hyperparameter fine-tuning)
Heavy ion (centralities, collective effects)

   Summary
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Popular architectures
U-Net: biomedical image segmentation
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Popular architectures
(Conditional (Variational)) autoencoders

Dimension reduction

Denoising data

Latent space conditioning

 https://arxiv.org/pdf/2204.05397.pdf
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Popular architectures
Diffusion models: https://huggingface.co/spaces/stabilityai/stable-diffusion
Gradually perturbate he input data over several steps by adding Gaussian noise
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Popular architectures
GAN: data generation via competing generator-discriminator
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Popular architectures
GAN: data generation via competing generator-discriminator
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Popular architectures
Attention and 
Transformers :
A revolution in 
natural language 
processing

https://arxiv.org/abs/1706.03762
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Popular architectures
Graph Neural Networks



Track reconstruction

https://www.kaggle.com/c/trackml-particle-identification

Machine Learning in HEP
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Quark/gluon jet separation

arXiv:1803.03589

https://doi.org/10.1007/JHEP01(2017)110

Machine Learning in HEP
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Jet reconstruction

https://doi.org/10.1103/PhysRevC.99.064904

https://doi.org/10.22323/1.364.0312

Machine Learning in HEP
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Tuning Monte Carlo event generators

https://doi.org/10.1103/PhysRevLett.120.042003

https://doi.org/10.1016/j.cpc.2021.107908

Machine Learning in HEP

Sampling the 
parameters

Run MC 
simulations

Parametrization
of the histograms,

χ2 miniization

Visualization,
validation
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Dimensionality 
Input:
Parton level
Discretized in the           plane: pT,m, multiplicity 
                  ,   32 bins
                  ,   32 bins
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Total pixels 

vs
Pixels with information

0 50 100 150 200 250

0.00

0.01

0.02

0.03

0.04

0.05 Average: 80.651Reduction with Singular Value Decomposition:

Data-Driven Science and Engineering (S. L. Brunton, J. N. Kutz)

do
i:1

0.
10

07
/B

F
02

2
88

36
7

● Unitarity
● Ordered by importance
● Guaranteed to exist, unique

Reduce the input to 

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2FBF02288367


Dimensionality  (work in progress)
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