Novel QCD Phenomena at the LHC (II)

UNIVERSIDAD NACIONALAUTONOMADEMÉXICO

Sth Workshop on High p-T

- Anti-Shadowing is Universal
- ISI and FSI are higher twist effects and universal
- High transverse momentum hadrons arise only from jet fragmentation -- baryon anomaly!
- heavy quarks only from gluon splitting
- renormalization scale cannot be fixed
- QCD condensates are vacuum effects
- Infrared Slavery
- Nuclei are composites of nucleons only
- Real part of DVCS arbitrary

Deep Inelastic Electron-Proton Scattering

UNAM October 1, 2010

Novel QCD Phenomena at the LHC 3

Deep Inelastic Electron-Proton Scattering

Conventional wisdom:
Finat-state interactions of struck quark can be neglected

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC

Stan Brodsky, SLAC

UNAM October 1, 2010

Final-State Interactions Produce Pseudo T-Odd (Sívers Effect)

Hwang, Schmidt, sjb Collins

- Leading-Twist Bjorken Scaling!
- Requires nonzero orbital angular momentum of quark

$$
\mathbf{i} \vec{S} \cdot \vec{p}_{j e t} \times \vec{q}
$$

- Arises from the interference of Final-State QCD Coulomb phases in S- and Pwaves;
- Wilson line effect -- gauge independent
- Relate to the quark contribution to the target proton anomalous magnetic moment and final-state QCD phases
- QCD phase at soft scale!
- New window to QCD coupling and running gluon mass in the IR

- QED S and P Coulomb phases infinite -- difference of phases finite!
- Alternate: Retarded and Advanced Gauge: Augmented LFWFs Pasquini, Xiao, Yuan, sjb Mulders, Boer Qiu, Sterman

October 1, 2010

UNAM Novel QCD Phenomena at the LHC

can interfere

and produce a T-odd effect! (also need $L_{z} \neq 0$) Hermes coll., A. Airapetian et al., Phys. Rev. Lett. 94 (2005) 012002.

Sivers asymmetry from HERMES

- First evidence for non-zero Sivers function!
- \Rightarrow presence of non-zero quark orbital angular momentum!
- Positive for π^{+}... Consistent with zero for π^{-}...

Gamberg: Hermes data compatible with BHS model

Schmidt, Lu: Hermes charge pattern follow quark contributions to anomalous moment
UNAM October 1, 2010

Novel QCD Phenomena at the LHC
7

Anomalous effect from Double ISI in Massive Lepton Production

Boer, Hwang, sjb
$\cos 2 \phi$ correlation

- Leading Twist, valence quark dominated
- Violates Lam-Tung Relation!
- Not obtained from standard PQCD subprocess analysis
- Normalized to the square of the single spin asymmetry in semiinclusive DIS
- No polarization required
- Challenge to standard picture of PQCD Factorization

Predict Opposite Sign SSA ín DY!

Collins;

Single Spin Asymmetry In the Drell Yan Process
$\vec{S}_{p} \cdot \overrightarrow{\bar{p}} \times \vec{q}_{\gamma^{*}}$
Quarks Interact in the Initial State
Interference of Coulomb Phases for S and P states
Produce Single Spin Asymmetry [Siver's Effect]Proportional
to the Proton Anomalous Moment and α_{s}.
Opposite Sign to DIS! No Factorization

Key QCD Experiment

Collins;
Hwang, Schmidt. sjb

Measure single-spin asymmetry A_{N} in Drell-Yan reactions

Leading-twist Bjorken-scaling A_{N} from S, P-wave initial-state gluonic interactions

Predict: $A_{N}(D Y)=-A_{N}(D I S)$ Opposite in sign!

$$
\bar{p} p_{\uparrow} \rightarrow \ell^{+} \ell^{-} X
$$

$\vec{S} \cdot \vec{q} \times \vec{p}$ correlation

Transversity

T-odd:
Require ISI or FSI

Boer-Mulders Function

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC II

Stan Brodsky, SLAC

DY $\cos 2 \phi$ correlation at leading twist from double ISI
$\begin{aligned} & \text { Product of Boer - } \\ & \text { Mulders Functions }\end{aligned} \quad h_{1}^{\perp}\left(x_{1}, \boldsymbol{p}_{\perp}^{2}\right) \times \bar{h}_{1}^{\perp}\left(x_{2}, \boldsymbol{k}_{\perp}^{2}\right)$

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 12

Stan Brodsky, SLAC

Drell-Yan angular distribution Unpolarized DY

Lam - Tung SR : $1-\lambda=2 \nu$
NLO pQCD : $\lambda \approx 1 \mu \approx 0 \nu \approx 0$

- Experimentally, a violation of the Lam-Tung sum rule is observed by sizeable cos 2Φ moments
- Several model explanations
- higher twist
- spin correlation due to non-triva QCD vacuum
- Non-zero Boer Mulders function
$\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{3}{4 \pi} \frac{1}{\lambda+3}\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right)$

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 13

Double Initial-State Interactions

Drell-Yan planar correlations

generate anomalous $\cos 2 \phi: \quad$ Boer, Hwang, sjb

$$
\begin{array}{r}
\frac{1}{\sigma} \frac{d \sigma}{d \Omega} \propto\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right) \\
\text { PQCD Factorization (Lam Tung): } 1-\lambda-2 \nu=0
\end{array}
$$

$$
\pi N \rightarrow \mu^{+} \mu^{-} X \mathrm{NAlO}_{+}
$$

Violates Lam-Tung relation!

Model: Boer,

UNAM October 1, 2010

Novel QCD Phenomena at the LHC

DY $\cos 2 \phi$ correlation at leading twist from double ISI

Product of Boer -

$$
h_{1}^{\perp}\left(x_{1}, \boldsymbol{p}_{\perp}^{2}\right) \times \bar{h}_{1}^{\perp}\left(x_{2}, \boldsymbol{k}_{\perp}^{2}\right)
$$

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC
Stan Brodsky, SLAC 15

Measurement of Angular Distributions of Drell-Yan Dimuons in $p+d$ Interaction at $800 \mathrm{GeV} / \mathrm{c}$
(FNAL E866/NuSea Collaboration)

Parameter ν vs. p_{T} in the Collins-Soper frame for three Drell-Yan measurements. Fits to the data using Eq. 3 and $M_{C}=2.4 \mathrm{GeV} / \mathrm{c}^{2}$ are also shown.

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 16

Stan Brodsky, SLAC

Important Corrections from Initial and Final State Corrections

Sívers \& Collins Odd-T Spin Effects, Co-planarity Correlations

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 17

Problem for factorization when both ISI and FSI occur

Novel QCD Phenomena at the LHC 18

Factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions

John Collins, Jian-Wei Qiu . ANL-HEP-PR-07-25, May 2007.

The exchange of two extra gluons, as in this graph, will tend to give non-factorization in unpolarized cross sections.

$\cos 2 \phi$ correlation for quarkonium production at leading twist from double ISI
Enhanced by gluon color charge

Novel QCD Phenomena at the LHC

Stan Brodsky, SLAC

DDIS

- In a large fraction ($\sim 10-15 \%$) of DIS events, the proton escapes intact, keeping a large fraction of its initial momentum
- This leaves a large rapidity gap between the proton and the produced particles
- The t-channel exchange must be color singlet $\rightarrow \mathrm{a}$ pomeron??

Diffractive Deep Inelastic Lepton-Proton
Scattering

Remarkable observation at HERA

Fraction r of events with a large rapidity gap, $\eta_{\max }<1.5$, as a function of Q_{DA}^{2} for two ranges of x_{DA}. No acceptance corrections have been applied.
M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993)

UNAM October 1, 2010

Diffractive Structure Function $F_{2}{ }^{D}$

Diffractive inclusive cross section

$$
\frac{\mathrm{d}^{3} \sigma_{N C}^{\text {diff }}}{\mathrm{d} x_{\mathbb{P}} \mathrm{d} \beta \mathrm{~d} Q^{2}} \propto \frac{2 \pi \alpha^{2}}{x Q^{4}} F_{2}^{D(3)}\left(x_{\mathbb{P}}, \beta, Q^{2}\right)
$$

$$
F_{2}^{D}\left(x_{\mathbb{P}}, \beta, Q^{2}\right)=f\left(x_{\mathbb{P}}\right) \cdot F_{2}^{\mathbb{P}}\left(\beta, Q^{2}\right)
$$

extract DPDF and $x g(x)$ from scaling violation
Large kinematic domain $3<Q^{2}<1600 \mathrm{GeV}^{2}$
Precise measurements sys 5%, stat $5-20 \%$

Diffractive Deep Inelastic Scattering

Diffractive DIS ep $\rightarrow e p X$ where there is a large rapidity gap and the target nucleon remains intact probes the final state interaction of the scattered quark with the spectator system via gluon exchange.

Diffractive DIS on nuclei $e A \rightarrow e^{\prime} A X$ and hard diffractive reactions such as $\gamma^{*} A \rightarrow V A$ can occur coherently leaving the nucleus intact.

Final-State Interaction Produces Díffractive DIS

Low-Nussinov model of Pomeron

UNAM October 1, 2010

Quark Rescattering

Hoyer, Marchal, Peigne, Sannino, SJB (BHMPS)

Novel QCD Phenomena at the LHC 25

QCD Mechanism for Rapidity Gaps

Reproduces lab-frame color dipole approach

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 26

Stan Brodsky, SLAC

Final State Interactions in QCD

Feynman Gauge
Light-Cone Gauge
Result is Gauge Independent

Novel QCD Phenomena at the LHC

Predict: Reduced DDIS/DIS for Heavy Quarks

Kopeliovitch, Schmidt, sj

Reproduces lab-frame color dipole approach

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 28

Stan Brodsky, SLAC

Integration over on-shell domain produces phase i
Need Imaginary Phase to Generate Pomeron and DDIS
Need Imaginary Phase to Generate T-Odd Single-Spin Asymmetry
Physics of FSI not in Wavefunction of Target

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 29

Stan Brodsky, SLAC

Nuclear Shadowing in QCD

Shadowing depends on understanding leading twist-diffraction in DIS
Nuclear Shadowing not included in nuclear LFWF !
Dynamical effect due to virtual photon interacting in nucleus

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 30

Stan Brodsky, SLAC

UNAM October 1, 2010

Novel QCD Phenomena at the LHC

UNAM October 1, 2010

Novel QCD Phenomena at the LHC
32

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} :
$1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}$.

If the scattering on nucleon N_{1} is via pomeron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \bar{q} flux reaching N_{2}.
\rightarrow Shadowing of the DIS nuclear structure functions.
Observed HERA DDIS produces nuclear shadowing

Shadowing depends on leading-twist DDIS

Integration over on-shell domain produces phase i
Need Imaginary Phase to Generate Pomeron
Need Imaginary Phase to Generate T-
Odd Single-Spin Asymmetry
Physics of FSI not in Wavefunction of Target Antishadowing (Reggeon exchange) is not universat! Schmidt, Yang, sjb

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 34

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} :

$$
1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}
$$

Reggeon
If the scattering on nucleon N_{1} is via pomoron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminionimy the \bar{q} flux reaching N_{2}.

Anti- Shadowing of the DIS nuclear structure functions.

$\begin{array}{ccc}\text { Now-singlet } 10^{-2} & 10^{-1} & \begin{array}{c}\text { Kuti-Weisskopf } \\ \text { behavior }\end{array}\end{array}$ Exchange

UNAM October 1, 2010

Novel QCD Phenomena at the LHC 36

Origin of Regge Behavior of Deep Inelastic Structure Functions

$$
F_{2 p}(x)-F_{2 n}(x) \propto x^{1 / 2}
$$

Antiquark interacts with target nucleus at energy $\widehat{s} \propto \frac{1}{x_{b j}}$

Regge contribution: $\sigma_{\bar{q} N} \sim \widehat{s}^{\alpha_{R}-1}$

Nonsinglet Kuti-Weisskoff $F_{2 p}-F_{2 n} \propto \sqrt{x}_{b j}$
 at small $x_{b j}$.

Landshoff, Polkinghorne, Short
Shadowing of $\sigma_{\bar{q} M}$ produces shadowing of nuclear structure function.

Close, Gunion, sjb
Schmidt, Yang, Lu, sjb

Reggeon
 Exchange

Phase of two-step amplitude relative to one step:
$\frac{1}{\sqrt{2}}(1-i) \times i=\frac{1}{\sqrt{2}}(i+1)$
Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of $\gamma^{*}, Z^{0}, W^{ \pm}$

Criticaltest: Tagged Drell-Yan

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} :

$$
1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}
$$

Reggeon
If the scattering on nucleon N_{1} is via pomoron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminionimy the \bar{q} flux reaching N_{2}.

Anti- Shadowing of the DIS nuclear structure functions.

$$
Q^{2}=5 \mathrm{GeV}^{2}
$$

Scheinbein, Yu, Keppel, Morfin, Olness, Owens

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 40

Schmidt, Yang; sjb

Nuclear Antishadowing not universal!

UNAM October 1, 2010

Novel QCD Phenomena at the LHC 41

Shadowing and Antishadowing of DIS Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, "Nuclear Antishadowing in Neutrino Deep Inelastic Scattering," Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

Modifies
 NuTeV extraction of

 $\sin ^{2} \theta_{W}$Test in flavor-tagged lepton-nucleus collisions

UNAM October 1, 2010

Novel QCD Phenomena at the LHC 42

Predicted nuclear shadowing and and antishadowing at $Q^{2}=1 \mathrm{GeV}^{2}$
S. J. Brodsky, I. Schmidt and J. J. Yang, "Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,
Phys. Rev. D 70, 116003 (2004)
UNAM
October 1, 2010
[arXiv:hep-ph/0409279].
Novel QCD Phenomena at the LHC
Stan Brodsky, SLAC

- Shadowing: Destructive Interference of Two-Step and One-Step Processes Pomeron Exchange
- Antishadowing: Constructive Interference of Two-Step and One-Step Processes! Reggeon and Odderon Exchange
- Antishadowing is Not Universal! Electromagnetic and weak currents: different nuclear effects!

Jian-Jun Yang Ivan Schmidt Hung Jung Lu sjb

Can explain NuTeV result

$$
Q^{2}=5 \mathrm{GeV}^{2}
$$

Scheinbein, Yu, Keppel, Morfin, Olness, Owens

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC Stan Brodsky, SLAC 45

LHC p-A Collisions

Leading-Twist Contribution to Hadron Production on Nuclei

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 46

Physics of Rescattering

- Sivers Asymmetry and Diffractive DIS: New Insights into Final State Interactions in QCD
- Origin of Hard Pomeron
- Structure Functions not Probability Distributions!
Not square of LFWFs
- T-odd SSAs, Shadowing, Antishadowing
- Diffractive dijets/ trijets, doubly diffractive Higgs
- Novel Effects: Color Transparency, Color Opaqueness, Intrinsic Charm, Odderon

Novel QCD Phenomena at the LHC 47

Stan Brodsky, SLAC

Static

Dynamic

- Square of Target LFWFs
- No Wilson Line
- Probability Distributions
- Process-Independent
- T-even Observables
- No Shadowing, Anti-Shadowing
- Sum Rules: Momentum and J ${ }^{2}$
- DGLAP Evolution; mod. at large x
- No Diffractive DIS

Modified by Rescattering: ISI \& FSI
Contains Wilson Line, Phases
No Probabilistic Interpretation
Process-Dependent - From Collision
T-Odd (Sivers, Boer-Mulders, etc.)
Shadowing, Anti-Shadowing, Saturation
Sum Rules Not Proven
DGLAP Evolution
Hard Pomeron and Odderon Diffractive DIS

Formation of Relativistic Anti-Hydrogen

Measured at CERN-LEAR and FermiLab

Munger, Schmidt, sjb

Coalescence of off-shell co-moving positron and antiproton
Wavefunction maximal at small impact separation and equal rapidity "Hadronization" at the Amplitude Level

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 49

Stan Brodsky, SLAC

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 50

Hadronization at the Amplitude Level

Baryon Production

$$
\psi\left(x, \vec{k}_{\perp}, \lambda_{i}\right)
$$

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

UNAM October 1, 2010

Novel QCD Phenomena at the LHC
Stan Brodsky, SLAC

Features of LF T-Matrix Formalism

"Event Amplitude Generator"

- Same principle as antihydrogen production: off-shell coalescence
- coalescence to hadron favored at equal rapidity, small transverse momenta
- leading heavy hadron production: D and B mesons produced at large z
- hadron helicity conservation if hadron LFWF has $\mathbf{L}^{x}=0$
- Baryon AdS/QCD LFWF has aligned and anti-aligned quark spin

Novel QCD Phenomena at the LHC
Stan Brodsky, SLAC

Hadronization at the Amplitude Level

Higher Fock State Coalescence $\quad \mid u u d s \bar{s}>$

Asymmetric Hadronization! $\quad D_{s \rightarrow p}(z) \neq D_{s \rightarrow \bar{p}}(z)$
B-Q Ma, sjb

Novel QCD Phenomena at the LHC 53

- Quarks and Gluons: Fundamental constituents of hadrons and nuclei
- Quantum Chromodynamics (QCD)
- New Insights from higher space-time dimensions: $A d S / Q C D$
- Light-Front Holography
- Hadronization at the Amplitude Level
- Light Front Wavefunctions: analogous to the Schrodinger wavefunctions of atomic physics

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

Each element of flash photograph

 illuminated at same LF time$$
\tau=t+z / c
$$

Evolve in LF time

$$
P^{-}=i \frac{d}{d \tau}
$$

Eigenstate - independent of τ

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

$$
\begin{aligned}
& x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} \\
& \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \\
& \hline \text { Invariant under boosts! Independent of } P^{\mu} \\
& P^{+}, \vec{P}_{\perp} \\
& \sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}
\end{aligned}
$$

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 56

Angular Momentum on the Light-Front

$$
\begin{gathered}
J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z} . \quad \text { LF Fock state by Fock State } \\
l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\partial}{\partial k_{j}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{j}^{1}}\right) \quad \text { n-I orbital angular momenta }
\end{gathered}
$$

Nonzero Anomatous Moment $->$ Nonzero orbital angular momentum

UNAM October 1, 2010

Novel QCD Phenomena at the LHC
Stan Brodsky, SLAC

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau=t+z / c$

$$
\psi\left(x, k_{\perp}\right) \quad \underset{x=\frac{t+}{p+}}{ }
$$

Invariant under boosts. Independent of P^{μ}

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Dírect connection to QCD Lagrangian Remarkable new insights from AdS/CFT, the duality between conformal field theory and Ante-de Sitter Space

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 58

Goal: an analytic first approximation to QCD

- As Simple as Schrödinger Theory in Atomic Physics
- Relativistic, Frame-Independent, ColorConfining
- QCD Coupling at all scales
- Hadron Spectroscopy
- Light-Front Wavefunctions
- Form Factors, Hadronic Observables, Constituent Counting Rules
- Insight into QCD Condensates
- Systematically improvable de Teramond, Deur, Shrock, Roberts,Tandy

Applications of AdS/CFT to QCD

Changes in physical length scale mapped to evolution in the 5th dimension z

in collaboration with Guy de Teramond

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 60

Stan Brodsky, SLAC

- Light-Front Holography

UNAM October 1, 2010

Novel QCD Phenomena at the LHC

Boost Invariant 3+1 Light-Front Wave Equations $J=0,1,1 / 2,3 / 2$ plus L
Hadron Spectra, Wavefunctions, Dynamics

Novel QCD Phenomena at the LHC 62

$$
\begin{gathered}
L F(3+1) \\
\psi\left(x, \vec{b}_{\perp}\right) \\
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \\
\left(x, \vec{b}_{\perp}\right) \xrightarrow{A d S_{5}} \text { (z) }(1-x) \\
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta)
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of LF and AdS formula for current matrix elements

UNAM
October 1, 2010

Light-Front Holography: Map AdS/CFT to 3+1 LF Theory

Relativistic LF radial equation Frame Independent

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)} \\
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2} \\
\underbrace{}_{\vec{b}_{\perp}} \\
(1-x)
\end{gathered}
$$

G. de Teramond, sjb

$$
U(\zeta)=\kappa^{4} \zeta^{2}
$$

soft wall confining potential:

Novel QCD Phenomena at the LHC 64

$H_{Q E D}$

QED atoms: positronium

 and muonium$\left(H_{0}+H_{i n t}\right)|\Psi>=E| \Psi>$
$\left[-\frac{\Delta^{2}}{2 m_{\mathrm{red}}}+V_{\text {eff }}(\vec{S}, \vec{r})\right] \psi(\vec{r})=E \psi(\vec{r})$
Effective two-particle equation Includes Lamb Shift, quantum corrections

$$
V_{e f f} \rightarrow V_{C}(r)=-\frac{\alpha}{r}
$$

SphericalBasis r, θ, ϕ
Coulomb potentiat
Bohr Spectrum
Semiclassical first approximation to QED

$H_{Q C D}^{L F}$

QCD Meson Spectrum

$\left(H_{L F}^{0}+H_{L F}^{I}\right)\left|\Psi>=M^{2}\right| \Psi>$
$\left.\frac{\vec{k}_{\perp}^{2}}{x(1-x)}+m_{\text {eff }}^{2 L}\right] \psi_{L F\left(x, \vec{k}_{\perp}\right)}=M^{2} \psi_{L F}\left(x, \vec{k}_{\perp}\right)$

Coupled Fork states

Effective two-particle equation

$$
\zeta^{2}=x(1-x) b_{\perp}^{2}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{-1+4 L^{2}}{\zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta) \text { A zimuthat Basis } \zeta, \phi
$$

$$
U(\zeta, S, L)=\kappa^{2} \zeta^{2}+\kappa^{2}(L+S-1 / 2)
$$

Fig: Orbital and radial AdS modes in the soft wall model for $\kappa=0.6 \mathrm{GeV}$.

Soft Wall Model

Light meson orbital (a) and radial (b) spectrum for $\kappa=0.6 \mathrm{GeV}$.

UNAM October 1, 2010

Novel QCD Phenomena at the LHC 67

Soft-wall model

- Effective LF Schrödinger wave equation
$\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)\right] \phi_{S}(z)=\mathcal{M}^{2} \phi_{S}(z)$ with eigenvalues $\mathcal{M}^{2}=2 \kappa^{2}(2 n+2 L+S)$. Same slope in \boldsymbol{n} and L
- Compare with Nambu string result (rotating flux tube): $M_{n}^{2}(L)=2 \pi \sigma(n+L+1 / 2)$.

Kirchbach: Conformal symmetry

- Glueballs in the bottom-up approach: (HW) Boschi-Filho, Braga and Carrion (2005); (SW) Colangelo, De Facio, Jugeau and Nicotri(2007).

Spacelike pion form factor from AdS/CFT

Data Compilation
Baldini, Kloe and Volmer
_ Soft Wall: Harmonic Oscillator Confinement
— Hard Wall: Truncated Space Confinement
One parameter - set by pion decay constant de Teramond, sjb
See also: Radyushkin

UNAM

Novel QCD Phenomena at the LHC 69

- We write the Dirac equation

$$
(\alpha \Pi(\zeta)-\mathcal{M}) \psi(\zeta)=0
$$

in terms of the matrix-valued operator Π

$$
\nu=L+1
$$

$$
\Pi_{\nu}(\zeta)=-i\left(\frac{d}{d \zeta}-\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{5}-\kappa^{2} \zeta \gamma_{5}\right)
$$

and its adjoint Π^{\dagger}, with commutation relations

$$
\left[\Pi_{\nu}(\zeta), \Pi_{\nu}^{\dagger}(\zeta)\right]=\left(\frac{2 \nu+1}{\zeta^{2}}-2 \kappa^{2}\right) \gamma_{5}
$$

- Solutions to the Dirac equation

$$
\begin{aligned}
& \psi_{+}(\zeta) \sim z^{\frac{1}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu}\left(\kappa^{2} \zeta^{2}\right) \\
& \psi_{-}(\zeta) \sim z^{\frac{3}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu+1}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Eigenvalues

$$
\mathcal{M}^{2}=4 \kappa^{2}(n+\nu+1)
$$

Kirchbach:
Conformal symmetry

- Baryon: twist-dimension $3+L \quad(\nu=L+1)$

$$
\mathcal{O}_{3+L}=\psi D_{\left\{\ell_{1}\right.} \ldots D_{\ell_{q}} \psi D_{\ell_{q+1}} \ldots D_{\left.\ell_{m}\right\}} \psi, \quad L=\sum_{i=1}^{m} \ell_{i}
$$

$$
\mathcal{M}^{2}=4 \kappa^{2}(n+L+1)
$$

Proton Regge Trajectory $\quad \kappa=0.49 \mathrm{GeV}$

- Δ spectrum identical to Forkel and Klempt, Phys. Lett. B 679, 77 (2009)

$$
\begin{aligned}
& 4 \kappa^{2} \text { for } \Delta n=1 \\
& 4 \kappa^{2} \text { for } \Delta L=1 \\
& 2 \kappa^{2} \text { for } \Delta S=1
\end{aligned}
$$

$$
\mathcal{M}^{2}
$$

Parent and daughter 56 Regge trajectories for the N and Δ baryon families for $\kappa=0.5 \mathrm{GeV}$

E. Klempt et al.: Δ^{*} resonances, quark models, chiral symmetry and AdS/QCD
H. Forkel, M. Beyer and T. Frederico, JHEP 0707 (2007)
077.
H. Forkel, M. Beyer and T. Frederico, Int. J. Mod. Phys.

E 16 (2007) 2794.

Other Applications of Light-Front Holography

- Light baryon spectrum
- Light meson spectrum
- Nucleon form-factors: space-like region
- Pion form-factors: space and time-like regions
- Gravitational form factors of composite hadronss
- n-parton holographic mapping
- Heavy flavor mesons

Space-Like Dirac Proton Form Factor

- Consider the spin non-flip form factors

$$
\begin{aligned}
F_{+}\left(Q^{2}\right) & =g_{+} \int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{-}\left(Q^{2}\right) & =g_{-} \int d \zeta J(Q, \zeta)\left|\psi_{-}(\zeta)\right|^{2}
\end{aligned}
$$

where the effective charges g_{+}and g_{-}are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^{z}=+1 / 2$. The two AdS solutions $\psi_{+}(\zeta)$ and $\psi_{-}(\zeta)$ correspond to nucleons with $J^{z}=+1 / 2$ and $-1 / 2$.
- For $S U(6)$ spin-flavor symmetry

$$
\begin{aligned}
F_{1}^{p}\left(Q^{2}\right) & =\int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{1}^{n}\left(Q^{2}\right) & =-\frac{1}{3} \int d \zeta J(Q, \zeta)\left[\left|\psi_{+}(\zeta)\right|^{2}-\left|\psi_{-}(\zeta)\right|^{2}\right]
\end{aligned}
$$

where $F_{1}^{p}(0)=1, F_{1}^{n}(0)=0$.

- Scaling behavior for large $Q^{2}: \quad Q^{4} F_{1}^{p}\left(Q^{2}\right) \rightarrow$ constant \quad Proton $\tau=3$

SW model predictions for $\kappa=0.424 \mathrm{GeV}$. Data analysis from: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).

- Scaling behavior for large $Q^{2}: Q^{4} F_{1}^{n}\left(Q^{2}\right) \rightarrow$ constant \quad Neutron $\tau=3$

SW model predictions for $\kappa=0.424 \mathrm{GeV}$. Data analysis from M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).

UNAM

Spacelike Pauti Form Factor
From overlap of $L=1$ and $L=0$ LFWFs

UNAM
October r, 2010

Novel QCD Phenomena at the LHC 78

Prediction from AdS/CFT: Meson LFWF

Novel QCD Phenomena at the LHC

Stan Brodsky, SLAC

Second Moment of Pion Distribution Amplitude

$$
<\xi^{2}>=\int_{-1}^{1} d \xi \xi^{2} \phi(\xi)
$$

$$
\xi=1-2 x
$$

$$
\begin{array}{lc}
<\xi^{2}>_{\pi}=1 / 5=0.20 & \phi_{\text {asympt }} \propto x(1-x) \\
<\xi^{2}>_{\pi}=1 / 4=0.25 & \phi_{A d S / Q C D} \propto \sqrt{x(1-x)}
\end{array}
$$

Lattice (I) $<\xi^{2}>_{\pi}=0.28 \pm 0.03$
Lattice (II) $<\xi^{2}>_{\pi}=0.269 \pm 0.039$

Donnellan et al.
Braun et al.

Novel QCD Phenomena at the LHC 80

Stan Brodsky, SLAC

Chiral Features of Soft-Wall AdS/QCD Model

- Boost Invariant
- Trivial LF vacuum.
- Massless Pion
- Hadron Eigenstates have LF Fock components of different L^{x}
- Proton: equal probability $S^{z}=+1 / 2, L^{z}=0 ; S^{z}=-1 / 2, L^{z}=+1$
- Self-Dual Massive Eigenstates: Proton is its own chiral partner.
- Label State by minimum L as in Atomic Physics
- Minimum L dominates at short distances
- AdS/QCD Dictionary: Match to Interpolating Operator Twist at z $-->0$

QCD and the LF Hadron Wavefunctions

AdS/QCD Light-Front Holography LF Schrodinger Eqn

Heavy Quark Fock States Intrinsic Charm

Initial and Final State Rescattering DDIS, DDIS, T-Odd

Non-Universal Antishadowing

Features of Soft-Wall AdS/QCD

- Single-variable frame-independent radial Schrodinger equation
- Massless pion $\left(\mathrm{m}_{\mathrm{q}}=0\right)$
- Regge Trajectories: universal slope in n and L
- Valid for all integer J \& S.
- Dimensional Counting Rules for Hard Exclusive Processes
- Phenomenology: Space-like and Time-like Form Factors
- LF Holography: LFWFs; broad distribution amplitude
- No large Nc limit required
- Add quark masses to LF kinetic energy
- Systematically improvable -- diagonalize H_{LF} on AdS basis

Result: Soft-Wall LFWF for massive constituents

$$
\begin{gathered}
\psi\left(x, \mathbf{k}_{\perp}\right)=\frac{4 \pi c}{\kappa \sqrt{x(1-x)}} e^{-\frac{1}{2 \kappa^{2}}\left(\frac{\mathbf{k}_{\perp}^{2}}{x(1-x)}+\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x}\right)} \\
L F W F \text { in impact space: soft-wall model } \\
\text { with massive quarks }
\end{gathered} \begin{gathered}
\psi\left(x, \mathbf{b}_{\perp}\right)=\frac{c \kappa}{\sqrt{\pi}} \sqrt{x(1-x)} e^{-\frac{1}{2} \kappa^{2} x(1-x) \mathbf{b}_{\perp}^{2}-\frac{1}{2 \kappa^{2}}\left[\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x}\right]} \\
z \rightarrow \zeta \rightarrow \chi \\
\chi^{2}=b^{2} x(1-x)+\frac{1}{\kappa^{4}}\left[\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x}\right]
\end{gathered}
$$

UNAM October 1, 2010

Novel QCD Phenomena at the LHC 84

Stan Brodsky, SLAC October 1, 2010

Novel QCD Phenomena at the LHC 85

$$
\begin{aligned}
\mid \pi^{+}> & =\mid u \bar{d}> \\
m_{u} & =2 \mathrm{MeV} \\
m_{d} & =5 \mathrm{MeV}
\end{aligned}
$$

$$
m_{s}=95 \mathrm{MeV}
$$

$$
\left|D^{+}>=\right| c \bar{d}>
$$

$$
m_{c}=1.25 \mathrm{GeV}
$$

$$
\left|\eta_{c}>=\right| c \bar{c}>
$$

$\left|\eta_{b}>=\right| b \bar{b}>$

$$
\kappa=375 \mathrm{MeV}
$$

Stan Brodsky, SLAC

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 8_{7}

Stan Brodsky, SLAC

Hadronization at the Amplitude Level

Baryon Production

$$
\psi\left(x, \vec{k}_{\perp}, \lambda_{i}\right)
$$

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 88

Hadronization at the Amplitude Level

AdS/QCD
Capture if $\zeta^{2}=x(1-x) b_{\perp}^{2}>\frac{1}{\Lambda_{Q C D}^{2}}$ HardWall i.e.,
Confinement: $\mathcal{M}^{2}=\frac{k_{\perp}^{2}}{x(1-x)}<\Lambda_{Q C D}^{2}$

Hadronization at the Amplitude Level

Higher Fock State Coalescence $\mid u u d s \bar{s}>$
Asymmetric Hadronization! $\quad D_{s \rightarrow p}(z) \neq D_{s \rightarrow \bar{p}}(z)$
B-Q Ma, sjb

UNAM October 1, 2010

Novel QCD Phenomena at the LHC 90

Physics of Rescattering

- Sivers Asymmetry and Diffractive DIS: New Insights into Final State Interactions in QCD
- Origin of Hard Pomeron, DDIS
- Structure Functions not Probability Distributions! Not square of LFWFs
- T-odd SSAs, Shadowing, Antishadowing
- Diffractive dijets/ trijets, doubly diffractive Higgs
- Novel Effects: Color Transparency, Color Opaqueness, Intrinsic Charm, Odderon

Novel QCD Phenomena at the LHC 9I

Stan Brodsky, SLAC

Applications of Nonperturbative Running Coupling from $A d S / Q C D$

- Sivers Effect in SIDIS, Drell-Yan
- Double Boer-Mulders Effect in DY
- Diffractive DIS
- Heavy Quark Production at Threshold

All involve gluon exchange at small momentum transfer

Deur, Korsch, et al.

UNAM October 1, 2010

Novel QCD Phenomena at the LHC 93

Running Coupling from Light-Front Holography and AdS/QCD Analytic, defined at all scales, IR Fixed Point

Deur, de Teramond, sjb

Deur, de Teramond, sjb

An analytic first approximation to QCD
AdS/QCD + Light-Front Holography

- As Simple as Schrödinger Theory in Atomic Physics
- LF radial variable ζ conjugate to invariant mass squared
- Relativistic, Frame-Independent, Color-Confining
- QCD Coupling at all scales: Essential for Gauge Link phenomena
- Hadron Spectroscopy and Dynamics from one parameter κ
- Wave Functions, Form Factors, Hadronic Observables, Constituent Counting Rules
- Insight into QCD Condensates: Zero cosmological constant!
- Systematically improvable with DLCQ Methods

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC 96

Stan Brodsky, SLAC

Features of AdS/QCD LF Holography

- Based on Conformal Scaling of Infrared QCD Fixed Point
- Conformal template: Use isometries of AdS5
- Interpolating operator of hadrons based on twist, superfield dimensions
- Finite Nc = 3: Baryons built on 3 quarks -- Large Nc limit not required
- Break Conformal symmetry with dilaton
- Dilaton introduces confinement -- positive exponent
- Origin of Linear and HO potentials: Stochastic arguments (Glazek); General 'classical' potential for Dirac Equation (Hoyer)
- Effective Charge from $\mathbf{A d S} / Q C D$ at all scales
- Conformal Dimensional Counting Rules for Hard Exclusive Processes

"O ne of the gravest puzzles of theoreticalphysics"

DARK ENERGY AND
THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE

Department of Physics, University of California, Santa Barbara, CA 93106, USA
Kavil Institute for Theoretical Physics, University of California,
Santa Barbara, CA 93106, USA
zee@kitp.ucsb.edu

$$
\begin{array}{ll}
\left(\Omega_{\Lambda}\right)_{Q C D} \sim 10^{45} \\
& \Omega_{\Lambda}=0.76(\text { expt }) \\
\left(\Omega_{\Lambda}\right)_{E W} \sim 10^{56} &
\end{array}
$$

QCD Problem Solved if Quark and Gluon condensates reside

within hadrons, not vacuum!

R. Shrock, sjb
arXiv:0905.1151 [hep- th], Proc. Nat'l. Acad. Sci., (in press);
"Condensates in Quantum Chromodynamics and the Cosmological Constagy

Chiral magnetism (or magnetohadrochironics)

Aharon Casher and Leonard Susskind Tel Aviv University Ramat Aviv, Tel-Aviv, Israel (Received 20 March 1973)

I. INTRODUCTION

The spontaneous breakdown of chiral symmetry in hadron dynamics is generally studied as a vacuum phenomenon. ${ }^{1}$ Because of an instability of the chirally invariant vacuum, the real vacuum is "aligned" into a chirally asymmetric configuration. On the other hand an approach to quantum field theory exists in which the properties of the vacuum state are not relevant. This is the parton or constituent approach formulated in the infinitemomentum frame. ${ }^{2}$ A number of investigations have indicated that in this frame the vacuum may

Light-Front
Formatism be regarded as the structureless Fock-space vacuum. Hadrons may be described as nonrelativistic collections of constituents (partons). In this framework the spontaneous symmetry breakdown must be attributed to the properties of the hadron's wave function and not to the vacuum. ${ }^{3}$

Simple physical argument for "in-hadron" condensate

Roberts, Shrock, Tandy, sjb

Gribov pairs

B-Meson

Use Dyson-Schwinger Equation for bound-state quark propagator: find confined condensate

$$
<B|\bar{q} q| B>\text { not }<0|\bar{q} q| 0>
$$

UNAM October 1, 2010

Novel QCD Phenomena at the LHC 100

Bethe-Salpeter Analysis

$$
\left.\left.f_{H} P^{\mu}=Z_{2} \int^{\Lambda} \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{2}\left[T_{H} \gamma_{5} \gamma^{\mu} \mathcal{S}\left(\frac{1}{2} P+q\right)\right) \Gamma_{H}(q ; P) \mathcal{S}\left(\frac{1}{2} P-q\right)\right)\right]
$$

Maris, Roberts, Tandy

$$
f_{H} \text { Meson Decay Constant }
$$

T_{H} flavor projection operator,
$Z_{2}(\Lambda), Z_{4}(\Lambda)$ renormalization constants
$S(p)$ dressed quark propagator
$\Gamma_{H}(q ; P)=F . T .\langle H| \psi\left(x_{a}\right) \bar{\psi}\left(x_{b}\right)|0\rangle$

$\left.\left.i \rho_{\zeta}^{H} \equiv \frac{-\left\langle q \bar{q}_{\zeta}^{H}\right.}{f_{H}}=Z_{4} \int^{\Lambda} \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{2}\left[T_{H} \gamma_{5} \mathcal{S}\left(\frac{1}{2} P+q\right)\right) \Gamma_{H}(q ; P) \mathcal{S}\left(\frac{1}{2} P-q\right)\right)\right]$
In-Hadron Condensate!

$$
\begin{gathered}
f_{H} m_{H}^{2}=-\rho_{\zeta}^{H} \mathcal{M}_{H} \quad \mathcal{M}_{H}=\sum_{q \in H} m_{q} \\
m_{\pi}^{2} \propto\left(m_{q}+m_{\bar{q}}\right) / f_{\pi} \quad \text { GMOR }
\end{gathered}
$$

Higher Light-Front Fock State of Pion
Símulates DCSB

$$
i \rho_{\pi}=<0\left|\bar{q} \gamma^{5} q\right| \pi>
$$

Higher Fock state acts like mass insertion

PHYSICAL REVIEW C 82, 022201(R) (2010)

New perspectives on the quark condensate

Stanley J. Brodsky, ${ }^{1,2}$ Craig D. Roberts, ${ }^{3,4}$ Robert Shrock, ${ }^{5}$ and Peter C. Tandy ${ }^{6}$
${ }^{1}$ SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA
${ }^{2}$ Centre for Particle Physics Phenomenology: CP ${ }^{3}$-Origins, University of Southern Denmark, Odense 5230 M, Denmark
${ }^{3}$ Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{4}$ Department of Physics, Peking University, Beijing 100871, China
${ }^{5}$ C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, New York 11794, USA
${ }^{6}$ Center for Nuclear Research, Department of Physics, Kent State University, Kent, Ohio 44242, USA

(Received 25 May 2010; published 18 August 2010)

We show that the chiral-limit vacuum quark condensate is qualitatively equivalent to the pseudoscalar meson leptonic decay constant in the sense that they are both obtained as the chiral-limit value of well-defined gaugeinvariant hadron-to-vacuum transition amplitudes that possess a spectral representation in terms of the currentquark mass. Thus, whereas it might sometimes be convenient to imagine otherwise, neither is essentially a constant mass-scale that fills all spacetime. This means, in particular, that the quark condensate can be understood as a property of hadrons themselves, which is expressed, for example, in their Bethe-Salpeter or light-front wave functions.

Determinations of the vacuum Gluon Condensate

$$
<0\left|\frac{\alpha_{s}}{\pi} G^{2}\right| 0>\left[\mathrm{GeV}^{4}\right]
$$

-0.005 ± 0.003 from τ decay.
Davier et al. $+0.006 \pm 0.012$ from τ decay. Geshkenbein, Ioffe, Zyablyuk $+0.009 \pm 0.007$ from charmonium sum rules

UNAM
Novel QCD Phenomena at the LHC 104

Stan Brodsky, SLAC October 1, 2010

Ioffe, Zyablyuk
Consistent with zero vacuum condensate

Quark and Glwon condensates reside within hadrons, not vacuum

Casher and Susskind Maris, Roberts, Tandy Shrock and sjb

- Bound-State Dyson Schwinger Equations
- AdS/QCD
- Analogous to finite size superconductor
- Implications for cosmological constant -Eliminates 45 orders of magnitude conflict
R. Shrock, sjb

ArXiv:0905.|II I

"O ne of the gravest puzzles of theoreticalphysics"

DARK ENERGY AND
THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE

Department of Physics, University of California, Santa Barbara, CA 93106, USA
Kavil Institute for Theoretical Physics, University of California,
Santa Barbara, CA 93106, USA
zee@kitp.ucsb.edu

$$
\begin{array}{ll}
\left(\Omega_{\Lambda}\right)_{Q C D} \sim 10^{45} \\
& \Omega_{\Lambda}=0.76(\text { expt }) \\
\left(\Omega_{\Lambda}\right)_{E W} \sim 10^{56} &
\end{array}
$$

QCD Problem Solved if Quark and Gluon condensates reside

within hadrons, not vacuum!

R. Shrock, sjb
arXiv:0905.1151 [hep- th], Proc. Nat'l. Acad. Sci., (in press);
"Condensates in Quantum Chromodynamics and the Cosmological Constant' ${ }^{\prime}$

- Color Confinement: Maximum Wavelength of Quark and Gluons
- Conformal symmetry of QCD coupling in IR
- Conformal Template (BLM, CSR, BFKL scale)
- Motivation for AdS/QCD
- QCD Condensates inside of hadronic LFWFs
- Technicolor: confined condensates inside of technihadrons -- alternative to Higgs
- Simple physical solution to cosmological constant conflict with Standard Model

Roberts, Shrock, Tandy, and sjb

- Anti-Shadowing is Universal
- ISI and FSI are higher twist effects and universal
- High transverse momentum hadrons arise only from jet fragmentation -- baryon anomaly!
- heavy quarks only from gluon splitting
- renormalization scale cannot be fixed
- QCD condensates are vacuum effects
- Infrared Slavery
- Nuclei are composites of nucleons only
- Real part of DVCS arbitrary

UNAM
October 1, 2010

Novel QCD Phenomena at the LHC
Stan Brodsky, SLAC

