

Sth Workshop on High p-T

Underlying Event Studies for LHC Energies

A.G. Agócs^{1,2}, <u>G.G. Barnaföldi</u>¹, P. Lévai¹

¹KFKI RMKI of the HAS, Budapest Hungary ²Eötvös University, Budapest Hungary

30.09.2010. ICN-UNAM

Outline

0. Motivation

I. Definition for Underlying Event

- The CDF method
- SB a new method for UE studies

II. Test SB method by jets & hadron correlation

- Underlying Event analysis with jets
- Hadron correlation with 'set-selections'
- **π**, K and p-triggered correlations
- III. Summary & Outlook

Refs.: AG Agócs, P Lévai: PoS EPS-HEP 2009 472 AG Agócs, GGB, P Lévai: Proc. for HQ2010

0. Motivation

What should be more motivative than this...?

I. The Underlying Event

Definition of Underlying Event

CDF definition of UE

- Developed to subtract the UE as a background.
- There is no dependence contrary to the cone-like shape of jets.
- "The transverse region is perpendicular to the plane of the hard 2->2 scattering and is very sensitive to the UE component of the QCD MC models."

CDF Col.: PRD65 092002

Generalization of UE

A new method for UE

- Based on surrounding cones, ring-shaped subregions can be defined: Surrounding Belts (SB) of the UE.
 They grasp the border region between the UE and jets.
- Inner and outer SB, for both near-side and away-side jets.

UE is defined as everything outside the jet cones. The geometry is more "liquid", in both Φ and η .

AGA & PL: PoS EPS-HEP 2009 472

Comparison of CDF & SB UE

Common

- Similar for back-toback di-hadron corr.
- Test areas are fix in both cases.
- SB is generalization of CDF, so a huge size SB looks CDF-like.
- Even small statistic is enough to evaluate.

Differences

- SB can handle 2 -> 3 and good for *n*-jets.
- Depends on jet cone size (or jet finder alg.).
- Taking more SBs leads to differential test of UE properties.
- Requires higher statistic (in SBs).

Sth Workshop on High p-T Physics at LHC 2010

II. Test SB method by jets and hadron-hadron correlation

Geometrical structure of UE

Proton-proton @ 14 TeV

- Analysis:
 - 100 k PYTHIA 6.4 CSC
 - UA1 jet finder, R=0.7
 - Q > 100 GeV/c
 - P₁ < 3 GeV/c
 - SB: δR=0.1
- Polar plot for charged hadron p_{-} -distribution with:
 - Intermediate multiplicity: $50 < N_{ch} < 60$

AGA & PL: PoS EPS-HEP 2009 472

G.G. Barnaföldi, MTA KFKI RMKI

9

Geometrical structure of UE

Proton-proton @ 14 TeV

- Analysis:
 - 100 k PYTHIA 6.4 CSC
 - UA1 jet finder, R=0.7
 - Q > 100 GeV/c
 - P_T < 3 GeV/c
 - SB: δR=0.1
- Polar plot for charged hadron p_{τ} -distribution with:
 - High multiplicity: 80 < N_{ch} < 90

09/30/10

AGA & PL: PoS EPS-HEP 2009 472

UE study with mean- p_T vs. N_{UE2}

From jets to di-hadron correlation

High- p_{τ} tests:

Jets: full geometry reconstruction

Jet analysis

Hadron-hadron correlation (Φ direction)

Simplify: jet \rightarrow di-hadron correlation

• Assume to have identified jets or 'jet-like' objects at near side and away side.

Defining Surrounding Belts (SB1)

- Assume to have identified jets or 'jet-like' objects at near side and away side.
- Define the projection of 1^{st} surrounding cone (SC1) minus jet cone \Rightarrow Result: surrounding belt (SB1) on the near and away side (width: $\delta \Phi$).

Defining Surrounding Belts (SB2)

- Assume to have identified jets or 'jet-like' objects at near side and away side.
- Define the projection of 1^{st} surrounding cone (SC1) minus jet cone \Rightarrow Result: surrounding belt (SB1) on the near and away side (width: $\delta \Phi$).
- Define a 2^{nd} cone (SC2), then substract SC1 \Rightarrow Result: SB2 on the near and away side (chosen width: $\delta\Phi$).

Physical observables for SBs

SB studies are similar to CDF UE:

- p_{T} spectra for the SB
- Multiplicity in each SB
- Mean p_{τ} for inner and outer SB
- PID-triggered study

Comparison between SBs can be make also:

- Ratio of SB's p₁-spectra
- Jet-side effects, jet enviroment studies, etc.

Technical details of the simulation

The events are generated

PYTHIA 6.4 ATLAS-CSC tune

For hadron correlation studies we use

- Minimum-bias events, $|\eta| < 0.35$
- 100M events @ \sqrt{s} =200 GeV
- 100M events @ \sqrt{s} = 2.36 TeV
- 45M events @ \sqrt{s} = 7 TeV

PID-triggered angular correlations

Proton triggered angular corr.

Pion+ triggered angular corr.

- PID triggered angular correlations @ 7TeV pp
- Trigger in p_T [2 GeV/c ; 4 GeV/c]
- Hadron flavor dependence is seen.

Ratios of p_{T} spectra π -triggered π

- Near side spectra / UE
- Away side spectra / UE
- Near / Away side spectra

Selections for SB with size-vary

 Based on definitions of SB1 & SB2, we defined 3 'sets' testing UE via the new SB method.

Selection	SB angle	$R_{effective}$ $R_{effective} = \sqrt{\Delta \Phi^{2} + \Delta \eta^{2}}$	Belt width $\delta \Phi_{_{SB}} \& \delta R$	
CDF-set	120°	2.3	6° & 0.1	
R-set				
σ-set	$\sigma_{near} = 16^{\circ}$ $\sigma_{away} = 19^{\circ}$	R _{near} = 0.75 R _{away} = 0.77	6° & 0.1	

Results on p-triggered SB_{near}/SB_{away}

G.G. Barnaföldi, MTA KFKI RMKI

Comparing p- and π -triggered cases

PID triggered SB_{near} / SB_{away} spectra ratios

- Quantum numbers are conserved (C, I, S, B)
- Strong effect on baryon number, B (and S also)

- HMPID or VHMPID may measure this, using PID 09/30/10 G.G. Barnaföldi, MTA KFKI RMKI

III. Summary & Outlook

- UE defined by the Surrounding Belt :
 - Similar like CDF UE, but more physical observables.
 - In case of hadron-hadron correlation in pp SB1 and SB2 are similar.
 - Triggered hadron-hadron correlation, led to test e.g.: baryon/anti-baryon or strangeness balance.
- Outlook:
 - More detailed study with jets (different algorithms)
 - Similar analysis on PbPb is ongoing (UE modification)
 - Simulations for using PID detector capabilities

Sth Workshop on High p-T

BACKUP SLIDES

An ancient red pottery story

An ancient red pottery story

09/30/10

Angular and p_{\perp} distribution

New method in pp collisions at 2.36 TeV:

09/30/10

G.G. Barnaföldi, MTA KFKI RMKI