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Univ of Science & Technology of China (USTC)

- The sole university in Chinese Academy of Sciences
g:AS ) and is the powerhouse of talents for hundreds of
AS Institutes. Top 5 in physics among 100 research
universities in china.

 Hosts one of the strongest research teams in
experimental and theoretical particle/nuclear physics in
China. Our experimentalists have involved in major
international collaborations ATLAS, BELLE, D0,STAR etc.
Our theorists are actively involved in related toplcs for
LHC physics.

- Located in Hefei, the capital city of Anhui Province, a
middle-sized clty in Yangtze river delta, about 350 km
west of Shanghai and 800 km south of Beijing. The
transportation to Hefei is convenient. It can be reached
from Beijing or Shanghai by air or by newly constructed
high speed railway (up to 350 km/hour).
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day from Beijing or
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Correlation in transverse plane

Talks: Kettlemann, Jalilian-Marian,
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Elliptic and triangular flow
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Alver, Roland, PRC81, 054905 (2010)






What is viscosity related to RHIC

viscosity = resistance of liquid to
shear forces (and hence to flow)

Viscosity: introduced by Claude Navier in 1822 into what would be later called the
Navier-Stokes equation.
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Shear viscosity in ideal gas and liquid

* idealgas, high T

1
o= gﬂplrmfps P~ \//T[T}, ﬂSTT
« liquid, low T

n o~ nellt (]), asT'T, E ~ activating energy ‘ Frenkel, 1955

* |lower bound by uncertainty principle
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Ratio of Shear Viscosity to entropy density
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Momentum fluctuation as tool to measure
shear viscosity (1)

Cylindrical coordinate

Xt = (t,z,r ¢)

Energy-Momentum tensor for fluid

Tw = (e+ Plutu” — Pgh" + 7%
u = Ap(l0,vp(z),0)
1
T =
Vv 1—vi(z)

EM conservation leads to equation for fluctuation

AT + 8. T*" =0
T = (e + P)vjvr(z)
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[Gavin, Abdel-Aziz,

PRL 2006]
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Momentum fluctuation as tool to measure

shear viscosity (2)

Diffusion equation for momentum density
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Diffusion equation for momentum density in rapidity

and proper time
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Momentum fluctuation as tool to measure
shear viscosity (3)

Covariance of momentum fluctuation

rg(z1 —x2) = (dgr(z1)dgr(22)) — (897 (1)) (097 (22))

r = (1Y)

Diffusion equation for covariance
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Ar, is broadened by diffusion driven by shear viscosity




Momentum fluctuation as tool to measure
shear viscosity (4)

Connection to observable

* i labels particles

1 2
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Shear viscosity can broaden the rapidity correlations of
the momentum current. This broadening can be observed
by measuring the transverse momentum

covariance as a function of rapidity acceptance.



Momentum fluctuation as tool to measure
shear viscosity (9)

Rapidity correlations to measure the shear viscosity

[Gavin, Abdel-Aziz, PRL 2006]



Azimuthal correlation In transverse momenta
@1

Transverse plane can be
separated to () -bins

@2

Focus on two ¢»-bins 1 and 2,
define correlation function

)(z)
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particle numbers in bins 1 and 2

A A

i,): particles in bins 1 and 2

average is taken over events




Diffusion equation for azimuthal correlation
iIn central collisions

Cylindrical coordinates, metrics and velocity

Xt = (r,,r¢)
: 2 2
gupo = diag(—1,77.1,r7) - central collision
ut = Ap(1,0,vp(T,r,¢),0)«

Energy-momentum tensor

" = (e + P)u'u” + Pg"" + mH"
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Diffusion equation for azimuthal correlation
iIn central collisions

EM conservation leads to

D0 () L0 o
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Diffusion equation for azimuthal covariance
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Solve diffusion equation in general frame

1. Initial condition essemble given by HIJING

| 6T (&, 70)|

0 = 0.6 fm

2. Solve fluid equation to determine thermodynamic quantities
as input to diffusion equation

VIR =0 =

e(r.r), Plr.r). vpir.r)

e = 0.075 GeV /fm”

freeze-out
energy density

3. Sovle evolution for jvr to obtain essemble at freeze-out
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Solve diffusion equation in general frame

4. Observables via average over freeze-out hyper-surface

or

SEp — f 051, STV A%, = (=1,0, 50, 0)rrdrdady
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5. Compute the azimuthal correlation of the transverse energy
at freeze-out, average taken over essemble
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Azimuthal correlation Iin transverse momenta
result from HIJING
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Results for azimuthal correlation(1)
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Results for azimuthal correlation (2)
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Results for azimuthal correlation (3)
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Summary and conclusion

1. A diffusion equation for azimuthal correlation for
transverse momentum is derived a general Lorentz
frame.

2. Mini-jet thermalization is shown in the correlation

3. Azimuthal correaltion as a measure for shear
viscosity

4. For a future study, we can choose Glauber initial
conditions



