Transverse Momentum Spectra of Charged Particles Measured with ALICE

Henner Büsching
Goethe-Universität Frankfurt
for the ALICE Collaboration

5th Workshop on High p_T Physics at LHC
Mexico City
Interesting in many ways...

- Bulk particle production still challenge for (non-perturbative) QCD
- pp data as reference for heavy ion collisions
- Transverse momentum spectra crucial to understand soft QCD
- Here:
 - different multiplicities
 - as function of energy

CDF

$|n|\leq1$ and $p_T \geq 0.4$ GeV/c

Pythia hadron level:
- TuneA no MPI
- TuneA $\hat{p}_T = 0$
- TuneA $\hat{p}_T = 1.5$
- ATLAS tune
ALICE – setup

Inner Tracking System

Time Projection Chamber

ITS and **TPC** detectors used in present analysis of p_T spectra.
Event Selection

- Min Bias Trigger
 - SPD or V0A or V0C
- Beam background rejection
 - SPD and V0
- Event and track selection
 - ITS + TPC

(full tracking, $|\eta| < 0.8$)
2.67×10^5 pp events
$\sqrt{s} = 900$ GeV
momentum resolution (from matching of two segments of cosmic track)

- \(\Delta p_t / p_t \approx 7\% \) at 10 GeV/c

ALICE performance work in progress

- present \(p_T \) resolution
- 7\% at 10 GeV/c
- below 1\% at \(p_T < 1 \) GeV/c
- confirmed by \(K^0_s \) measurements
ITS alignment

alignment with cosmic tracks

SPD alignment:
- $\sigma_\phi \approx 14 \, \mu m$
- impact parameter resolution $\sigma \sim 50 \, \mu m$
- misalignment $< 10 \, \mu m$

- close to design values

alignment with pp data ongoing
TPC dE/dx resolution:
5.5% (= design value!)

TPC particle ID used for track propagation through material and p_T reconstruction.
MC corrections rely on detailed knowledge of material budget

- Efficiency correction (particle absorption)
- Contamination correction (γ conversion, protons, ...)
- Energy loss corrections (10% for 0.2 GeV/c pions)

Agreement between MC and Data within 10%.
Efficiency and Contamination

Efficiency of the primary track selection

Contamination by secondary tracks

PYTHIA
Systematic Uncertainties

<table>
<thead>
<tr>
<th>p_T range (GeV/c)</th>
<th>$\frac{1}{N_{\text{evt}} \frac{d^2N_{\text{ch}}}{dy dp_T}}$</th>
<th>$0.5 - 4$</th>
<th>$0.15 - 4$</th>
<th>$0 - 4$ (extrap.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track selection cuts</td>
<td>0.2-4%</td>
<td>negl.</td>
<td>0.3%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Contribution of diffraction (INEL)</td>
<td>0.9-1%</td>
<td>negl.</td>
<td>negl.</td>
<td>negl.</td>
</tr>
<tr>
<td>Contribution of diffraction (NSD)</td>
<td>2.8-3.9%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Event generator dependence (INEL)</td>
<td>2.5%</td>
<td>negl.</td>
<td>negl.</td>
<td>negl.</td>
</tr>
<tr>
<td>Event generator dependence (NSD)</td>
<td>0.5%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Particle composition</td>
<td>1-2%</td>
<td>0.1%</td>
<td>negl.</td>
<td>0.1%</td>
</tr>
<tr>
<td>Secondary particle rejection</td>
<td>0.2-1.5%</td>
<td>negl.</td>
<td>0.1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Detector misalignment</td>
<td>negl.</td>
<td>negl.</td>
<td>negl.</td>
<td>negl.</td>
</tr>
<tr>
<td>ITS efficiency</td>
<td>0-1.6%</td>
<td>negl.</td>
<td>0.3%</td>
<td>0.5%</td>
</tr>
<tr>
<td>TPC efficiency</td>
<td>0.8-4.5%</td>
<td>negl.</td>
<td>0.5%</td>
<td>0.7%</td>
</tr>
<tr>
<td>SPD triggering efficiency</td>
<td>negl.</td>
<td>negl.</td>
<td>negl.</td>
<td>negl.</td>
</tr>
<tr>
<td>VZERO triggering efficiency (INEL)</td>
<td>negl.</td>
<td>negl.</td>
<td>negl.</td>
<td>negl.</td>
</tr>
<tr>
<td>VZERO triggering efficiency (NSD)</td>
<td>0.2%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Beam-gas events</td>
<td>negl.</td>
<td>negl.</td>
<td>negl.</td>
<td>negl.</td>
</tr>
<tr>
<td>Pile-up events</td>
<td>negl.</td>
<td>negl.</td>
<td>negl.</td>
<td>negl.</td>
</tr>
<tr>
<td>Total (INEL)</td>
<td>3.0-7.1%</td>
<td>0.1%</td>
<td>0.7%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Total (NSD)</td>
<td>3.5-7.2%</td>
<td>3.0%</td>
<td>3.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>R weighting procedure</td>
<td>3.0%</td>
<td>3.0%</td>
<td>3.0%</td>
<td></td>
</tr>
<tr>
<td>Extrapolation to $p_T = 0$</td>
<td>-</td>
<td>-</td>
<td>1.0%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3.0%</td>
<td>3.1%</td>
<td>3.3%</td>
<td></td>
</tr>
</tbody>
</table>
p_T Spectra
Fit by modified Hagedorn function
For extrapolation to $p_T=0$

\[
\frac{1}{2\pi p_T} \frac{d^2N_{ch}}{d\eta \, dp_T} \propto \frac{p_T}{m_T} \left(1 + \frac{p_T}{p_{T,0}}\right)^{-b}.
\]

$p_{T,0} = 1.05 \pm 0.01 \, \text{(stat.)} \pm 0.05 \, \text{(syst.)} \, \text{GeV}/c$
$b = 7.92 \pm 0.03 \, \text{(stat.)} \pm 0.02 \, \text{(syst.)}$.

Fit by power law function for $p_T > 3 \, \text{GeV}/c$

\[
\frac{1}{2\pi p_T} \frac{d^2N_{ch}}{d\eta \, dp_T} \propto p_T^{-n},
\]

$n = 6.63 \pm 0.12 \, \text{(stat.)} \pm 0.01 \, \text{(syst.)}$.

\(\frac{dN_{\text{ch}}}{dp_T} \) – comparison to experiments

- good agreement at \(p_T < 1 \text{ GeV/c} \)
- ALICE spectrum harder at higher \(p_T \)
- UA1 sees higher yield at low \(p_T \)
$<p_T>$ - energy dependence

- ALICE sees larger $<p_T>$ than other experiments with larger η acceptance at 900 GeV
- similar trend also observed
 - at Tevatron
 - in η bins of CMS data
 - in PYTHIA

$$<p_T>_{INEL} = 0.483 \pm 0.001 \text{ (stat.)}$$
$$\pm 0.007 \text{ (syst.) GeV/c.}$$

$$<p_T>_{NSD} = 0.489 \pm 0.001 \text{ (stat.)}$$
$$\pm 0.007 \text{ (syst.) GeV/c.}$$
\(\frac{dN_{\text{ch}}}{dp_T} \) – comparison to MC

- PYTHIA D6T and Perugia0 describe shape reasonably well but fail in the yield
- PHOJET and ATLAS-CSC are off
Multiplicity Dependence
<p>ALICE, pp, INEL
√s = 900 GeV, |η| < 0.8</p>

Fits of $\frac{1}{p_T} \frac{d^2N_{ch}}{dηdp_T} \propto p_T \frac{m_T}{p_T} \left(1 + \frac{p_T}{p_{T,0}}\right)^{-n}$

in bins of multiplicity
$<p_T>$ vs multiplicity

$p_T > 500$ MeV/c:
weighted average over data points $0.5 < p_T < 4$ GeV/c

$p_T > 150$ MeV/c:
weighted average over data points $0.15 < p_T < 4$ GeV/c

$p_T > 0$:
weighted average over data points $0.15 < p_T < 4$ GeV/c, combined with result from fit at $p_T < 0.15$ GeV/c
\[N_{\text{meas}} \rightarrow N_{\text{true}} \]

- Transition not trivial
- Cross checks:
 - PYTHIA
 - PHOJET
 - Unfolding of matrix
- Edge effects to be considered

\[
\langle p_T \rangle (n_{ch}) = \sum_{n_{acc}} \langle p_T \rangle (n_{acc}) \cdot R(n_{ch}, n_{acc})
\]
$\langle p_T \rangle$ vs multiplicity

from measured to true multiplicity (employing MC)
\(<p_T> vs \text{ multiplicity} – \text{ comparison to MC}\)

- \(p_T>500 \text{ MeV/c}:
 - PYTHIA Perugia0 gives good description of the data

- \(p_T>150 \text{ MeV/c}:
 - all models fail
 - (Perugia0 is still best)
Reminder: $dN_{ch}/d\eta$

- PYTHIA D6T and Perugia-0 don’t match at any energy.
- Pythia ATLAS-CSC and PHOJET reasonably close at 0.9 and 2.36 TeV.
- only ATLAS-CSC close at 7 TeV.
Monte Carlo

PYTHIA D6T and Perugia0

None of the MC’s do really well

ATLAS-CSC and PHOJET
Summary

• Primary charged particle transverse momentum spectrum
• Mean transverse momentum for pp collisions at $\sqrt{s} = 900$ GeV

• Good agreement with previous results from LHC up to $p_T = 1$ GeV/c
• At higher p_T, harder momentum spectrum than other measurements at same energy -> different pseudorapidity intervals

• None of models and tunes describe p_T spectrum and correlation between $<p_T>$ and n_{ch}

• In low p_T region, where the bulk of the particles are produced, the models require further tuning
Outlook and Questions

- Data will be used as baseline for heavy ion measurements
- Need for good energy scaling
- What do we learn on soft QCD rather than only modifying parameters?
- What are the implications on HI predictions?