## Full Jet-Reconstruction in Heavy-Ion Collisions at RHIC

And is there a consistent jet-quenching picture at RHIC?

Jörn Putschke

(Yale University)







Short intro: Jets and Jet-Finding Algorithms

## Jets as a calibrated probe: p+p and d+Au reference

## **Our new tool:** Jets in heavy-ion collisions (RHIC)

- Background in heavy-ion collisions: fake-jets and fluctuations
- Inclusive jet spectrum and jet RAA
- Jet energy profile (R=0.2/0.4)
- Di-Jet coincidence measurements

## **Consistency? Connection to single/di-hadron results!?**

## Summary

## Jets connect theory and experiment



Jets are the experimental signatures of quarks and gluons. They reflect the kinematics and "topology" of partons.

<u>Goal:</u> re-associate (measurable) hadrons to accurately reconstruct partonic kinematics

- pQCD calculates partons
- experiments measure fragments of partons: hadrons

<u>Tool:</u> *Jet-finding algorithms:* Apply same algorithm to data and theoretical calculations

#### pQCD factorization/jet spectrum:

 $E\frac{d^{3}\sigma}{dp^{3}} \propto f_{a/A}(x_{a},Q^{2}) \otimes f_{b/B}(x_{b},Q^{2}) \otimes \frac{d\hat{\sigma}^{ab \to cd}}{dt}$ 

Jörn Putschke, 5th Workshop on High-pt Physics at LHC, Mexico City, September 2010

The construction of a jet is *unavoidably ambiguous*. On at least two fronts:

- which particles get put together into a common jet?
- How do you combine their momenta?

## Jet definition ⇔ Jet algorithm



## Jet definition $\Leftrightarrow$ Jet algorithm

The construction of a jet is *unavoidably ambiguous*. On at least two fronts:

- which particles get put together into a common jet?
- How do you combine their momenta?

| Modern Jet Finder Algorithms                                                                                         |                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sequential Recombination                                                                                             | Cone                                                                                                                                                                         |
| <ul> <li>bottom-up</li> <li>successively undoes QCD<br/>branching</li> </ul>                                         | <ul> <li>top-down</li> <li>centred around idea of an<br/>'invariant', directed energy flow</li> </ul>                                                                        |
| <ul> <li>k<sub>T</sub> algorithm</li> <li>anti-k<sub>T</sub> algorithm</li> <li>Cambidge-Aachen algorithm</li> </ul> | <ul> <li>CDF JetClu</li> <li>CDF MidPoint</li> <li>PyCell/CellJet</li> <li>D0 (run II) Cone</li> <li>Gaussian Filter</li> <li>SISCone</li> <li>CMS Iterative Cone</li> </ul> |

## 1) The probe is calibrated:

**Comparison of pQCD calculations with p+p measurements** 





## 1) The probe is calibrated:

**Comparison of pQCD calculations with p+p measurements** 



2) <u>Control experiment:</u>

Measure initial state/Cold Nuclear Matter (CNM) effects; Probe the "cold medium" via d+Au collisions (compare to p+p)





## 1) The probe is calibrated:

**Comparison of pQCD calculations with p+p measurements** 



2) <u>Control experiment:</u>

Measure initial state/Cold Nuclear Matter (CNM) effects; Probe the "cold medium" via d+Au collisions (compare to p+p)



## **Full-Jet reconstruction in HI collisions**



## **Full-Jet reconstruction in HI collisions**



## **Full-Jet reconstruction in HI collisions**



## Full jet reconstruction in HI collisions is a challenge due to the underlying background !

#### A word of caution (especially in HI): Jet Definition ⇔ Jet Algorithm



8

## The challenge: Heavy-ion Background

#### A jet in HI collisions schematically:

 $p_T$  (Jet Measured) =  $p_T$  (Jet) + HI Bkg. ± F(A)

#### Three main components:

- 1. *HI background:* for example determine energy density per unit area  $\rho$  (event-by-event) with A the jet area (determined by FastJet algorithm)  $\rho A \sim 45$  GeV for R<sub>C</sub>=0.4 (S/B ~0.5 for 20 GeV jet)
- 2. *"Fake jets"* = signal in excess (due to jet clustering) of background model from random association of uncorrelated soft particles (i.e. not due to hard scattering)
- 3. *Background fluctuations*: A priori unknown background fluctuation distribution F(A). In a gaussian (random area) approximation: ~ 6-7 GeV for R<sub>C</sub>=0.4





## "Fake-Jet" contribution

<u>"Fake" jets:</u> signal in excess of background model from random association of uncorrelated soft particles (i.e. not due to hard scattering)

#### Inclusive jet spectrum (STAR):

Spectrum of "jets" after randomizing HI event in  $\phi$  and removing leading jet particle

#### **Di-Jet / Fragmentation function (STAR):**

Background di-jet rate = "Fake" + Additional Hard Scattering Estimated using "jet" spectrum at 90 deg.

#### **PHENIX** (gaussian filter):

Gaussian fake-jet rejection; use overall shape of jets for discrimination

<u>Caveat:</u> If quenching distorts jet-shape substantially, danger of vetoing quenched jets!



## "Fake-Jet" contribution

<u>"Fake" jets:</u> signal in excess of background model from random association of uncorrelated soft particles (i.e. not due to hard scattering)

#### Inclusive jet spectrum (STAR):

Spectrum of "jets" after randomizing HI event in  $\phi$  and removing leading jet particle

#### **Di-Jet / Fragmentation function (STAR):**

Background di-jet rate = "Fake" + Additional Hard Scattering Estimated using "jet" spectrum at 90 deg.

#### **PHENIX** (gaussian filter):

Gaussian fake-jet rejection; use overall shape of jets for discrimination

<u>Caveat:</u> If quenching distorts jet-shape substantially, danger of vetoing quenched jets!

*Conceptual difference between STAR and PHENIX! (Quantitative difference !?)* 



anti-kt - data



Jet spectrum in Au+Au (schematically):

$$\frac{d\sigma_{AA}}{dp_t} = \frac{d\sigma_{pp}}{dp_t} \otimes F(A, p_t)$$

Effect of background fluctuations  $F(A,p_t)$  $\Rightarrow$  substantial "feed-up" in the jet x-section

#### "Generalized probe" embedding (*conceptually the same in STAR and PHENIX*)

Systematic extension of random region-to-region fluctuation estimate. Embed probes (single particles, pythia jets, p+p jets ...) into Au+Au/Cu+Cu events and measure the fluctuations spectrum (used for unfolding). Takes the effect of clustering/jet-finding algorithms into account; conceptually higher bound for fluctuations (diluted due to random embedding; has to be estimated; and what about  $v_2$ !?)

#### Statistical description (strictly lower bound, in context of estimating systematics)

Conceptually F(A,pt) for stat. independent thermal (exp.) particle emission :

 $F(A, p_t) = Poisson((M(A)) \otimes \Gamma(M(A), \langle p_t \rangle))$ 

More details/first data comparison: E. Bruna (STAR), AGS Users Meeting 2010

## **Background fluctuations**



Conceptually F(A,pt) for stat. independent thermal (exp.) particle emission :

 $F(A, p_t) = Poisson((M(A)) \otimes \Gamma(M(A), \langle p_t \rangle))$ 

More details/first data comparison: E. Bruna (STAR), AGS Users Meeting 2010

Corrections for smearing of jet p<sub>t</sub> due to HI bkg. nonuniformities:

- 1) raw spectrum
- 2) removal of "fake"correlations
- 3) unfolding (bayesian) of HI bkg. fluctuations
- 4) correction for  $p_T$  resolution





Momentum and energy is conserved even for quenched jets If full jet reconstruction in heavy-ion collisions are unbiased  $\Rightarrow$  Inclusive jet spectrum scales with N<sub>binary</sub> relative to p+p

Initial state nuclear effects at large x "EMC effect" as measured in d+Au seem to be small

## Inclusive jet x-section in heavy-ion collisions

Au+Au collisions 0-10% Y. Lai QM2009 dN<sup>Jet</sup> /dp<sub>1</sub> 10  $2\pi)^{-1}N_{evt}^{-1} dN/(p_T dp_T dy) ((GeV/c)^2)$ **PHENIX Preliminary** lines=unfolding Run-5 Cu + Cu $\sqrt{s_{NN}}$  = 200 GeV/c Gaussian filter, $\sigma$  = 0.3 10 uncertainties 10 uncorrected p + p compared to background-unfolded Cu + Cu **STAR Preliminary** 10<sup>-5</sup> M.Ploskon QM2009 10<sup>-6</sup> 10  $p + p \times p$ 11 + Cu kt R=0.4 ° 0–20% 10<sup>-1</sup> **10**<sup>-7</sup> anti-kt R=0.4 20 - 40%40-60% kt R=0.2 60-80% 10<sup>-8</sup>  $10^{-13}$ 25 30 35 45 40 50 20 anti-kt R=0.2 0 5 10 15  $p_{\tau}^{\text{rec}-pp}$  (GeV/c)  $10^{-9}$ 20 30 50 60 0 40 10 p<sub>T</sub><sup>Jet</sup> (GeV/c)

## • Inclusive Jet spectrum measured in central Au+Au and Cu+Cu collisions at RHIC

• Extended the kinematical reach to study jet quenching phenomena to jet energies > 40 GeV

<u>Remark:</u> New high statistics Au+Au runs on tape (Phenix and STAR) will increase significantly the kinematic reach!

## Jet RAA in central Au+Au and Cu+Cu



**STAR** sees a substantial fraction of jets in Au+Au - in contrast to x5 suppression for light hadron R<sub>AA</sub>

Strong suppression (similar to single particle) in Cu+Cu measured by PHENIX

## First look at the jet energy profile



#### Strong evidence of broadening in the jet energy profile

## **Recoil jet spectrum RAA**



• Selecting biased trigger jet maximizes pathlength for the back-to-back jets: *extreme selection of jet population* 

• Significant suppression in di-jet coincidence measurements!



#### Small k<sub>T</sub> broadening of surviving parton in Cu+Cu



Small k<sub>T</sub> broadening of surviving parton in Cu+Cu

Are we biasing our (di-)jet measurements towards non-interacting jets? <u>Or</u> is our HI jet energy underestimated due to jet broadening!?

Can we test this with an *independent* measurement!?

## Jet-Hadron correlations (JH) 0-20% Au+Au

High Tower Trigger (HT): tower 0.05x0.05 ( $\eta x \phi$ ) with E<sub>t</sub>> 5.4 GeV



۷Ø

## Jet-Hadron correlations (JH) 0-20% Au+Au

High Tower Trigger (HT): tower 0.05x0.05 ( $\eta x \varphi$ ) with E<sub>t</sub>> 5.4 GeV



STAR mid-rapidity (TPC+EMCal): Anti- $k_T R = 0.4$ ,  $p_T^{track,tower} > 2 \text{ GeV/c}$ ,  $p_T^{jet} > 10 \text{ GeV/c}$ 



## The presence of a jet influences the EP calculation!

#### For the jet definition used: "jet $v_2$ "~ $v_2$ {2}

(used in jet-hadron correlations; max v<sub>2</sub> uncertainties: no v2 and +50% of v<sub>2</sub><sup>Jet\*</sup>v<sub>2</sub><sup>Assoc</sup>{2})

Next steps: Using forward detectors to calculate the EP (FTPC, BBC, ZDC-SMD), to suppress non-flow!

## JH: Look on near-side first ...



#### Assumption:

What if this is energy loss ( $\Delta E \sim 2 \text{ GeV}$ ) even on the near-side!

- $\rightarrow$  Compare to p+p jets (+ 3/2\* $\Delta$ E)
- $\rightarrow$  NS (and AS) low-p<sub>T</sub> enhancement balanced with high-p<sub>T</sub> suppression

## JH: Away-side width and IAA



- Significant (gaussian) jet broadening for recoil jets decreasing with increasing jet energy; ~6-9 GeV out-of-cone (R>0.4) energy
- Softening of jet "fragmentation": suppression at high pT and enhancement at low pT (pT<2 GeV)</li>
- Measurements/conclusions robust wrt to background subtraction

Further studies: jet energy scale/uncertainties on near-side (Δη study), included in systematics

## JH: Away-side DAA vs jet energy



Away-side yields enhancement/suppression not fully balanced, more energy at low  $p_T$  in Au+Au

**<u>But</u>** significant amount of energy ~3-4 GeV at low  $p_T$  compensated by high- $p_T$  suppression!

## Jet-quenching at work !
## "Jet-finding bias" assessment via jet-hadron correlations



Away-side shows broadening and softening in jet-hadron correlations

- ⇒ Highly biased jets seem to be modified; jet-finding algorithm not only reconstructing unmodified jet!
- ⇒ Suppression of di-jet coincidence due to "out-of-cone energy"

# But what about di-hadron correlations at lower $p_T$ 's ?



#### In general: Two-component (ZYAM) approach

$$\frac{1}{N_{trig}}\frac{dN}{d\Delta\phi}(\Delta\phi) = \frac{1}{N_{trig}}\left(\frac{dN_{meas.}}{d\Delta\phi}(\Delta\phi) - B_{\Delta\phi}(\Delta\phi)\right)$$

$$B_{\Delta\phi}(\Delta\phi, v_2^{trig}, v_2^{assoc}) \equiv b_{\Delta\phi} \left( 1 + 2 \langle v_2^{trig} v_2^{assoc} \rangle \cos 2\Delta\phi \right)$$
$$\cong b_{\Delta\phi} \left( 1 + 2 \langle v_2^{trig} \rangle \langle v_2^{assoc} \rangle \cos 2\Delta\phi \right)$$

$$Y|_{a,b} = \frac{1}{N_{trig}} \int_{a}^{b} d\Delta \phi \frac{dN}{d\Delta \phi} (\Delta \phi).$$

#### In simple model:

$$\frac{1}{N_{trig}}\frac{dN_{meas.}}{d\Delta\phi}(\Delta\phi) = \frac{1}{N_{trig}}(S(\Delta\phi) + b_{\Delta\phi}),$$

$$N_{trig} = N_{trig}^{Jet} + N_{trig}^{Bkg.} = N_{trig}^{Jet} \cdot (1+f) \text{ ,with } f = \frac{N_{trig}^{Bkg.}}{N_{trig}^{Jet}}$$

 $I_{AA}^{Sim} = \frac{Y^{Emb.}}{Y^{Py.}} = \frac{1}{1+f},$ 

### Two cases: (i) h<sub>Jet</sub>-h: Trigger associated to jet (ΔR<0.4) (ii) h-h: All "trigger particles" in event

DL

A. Adare (STAR), RHIC AGS Users Meeting 2010

рт<sup>A</sup> 2-3 GeV/с рт<sup>B</sup> 1-2 GeV/с





A. Adare (STAR), RHIC AGS Users Meeting 2010

p<sub>T</sub><sup>A</sup> 2-3 GeV/c рт<sup>в</sup> 1-2 GeV/с 3.5  $1/N^{A} dN^{AB}/d\Delta \phi$ 2.5 1.5 1⊦ 0.5 0 3 -1 0 2 1 4 ∆ (**rad**)

To start: produce h-h correlations in pythia.



A. Adare (STAR), RHIC AGS Users Meeting 2010

рт<sup>A</sup> 2-3 GeV/с рт<sup>в</sup> 1-2 GeV/с



To start: produce h-h correlations in pythia.

Add isotropic thermal background; calculate  $h_{jet}$ -h. Trigger particles are inside  $\Delta R = R_c = 0.4$ .



A. Adare (STAR), RHIC AGS Users Meeting 2010

рт<sup>A</sup> 2-3 GeV/с рт<sup>B</sup> 1-2 GeV/с



To start: produce h-h correlations in pythia.

Add isotropic thermal background; calculate  $h_{jet}$ -h. Trigger particles are inside  $\Delta R = R_c = 0.4$ .

**Background pedestal calculated** 



A. Adare (STAR), RHIC AGS Users Meeting 2010



To start: produce h-h correlations in pythia.

Add isotropic thermal background; calculate  $h_{jet}$ -h. Trigger particles are inside  $\Delta R = R_c = 0.4$ .

**Background pedestal calculated** 

<u>h<sub>jet</sub>-h:</u> Pedestal subtraction recovers PYTHIA yield (dark points)



A. Adare (STAR), RHIC AGS Users Meeting 2010

рт<sup>а</sup> 2-3 GeV/с рт<sup>в</sup> 1-2 GeV/с



To start: produce h-h correlations in pythia.

Add isotropic thermal background; calculate  $h_{jet}$ -h. Trigger particles are inside  $\Delta R = R_C = 0.4$ .

**Background pedestal calculated** 

<u>h<sub>jet</sub>-h:</u> Pedestal subtraction recovers PYTHIA yield (dark points)

Inclusive h-h: many *fake/uncorrelated* background trigger particles (at "low p<sub>T</sub>")



|/N<sup>A</sup> dN<sup>AB</sup>/dΔφ

A. Adare (STAR), RHIC AGS Users Meeting 2010



Anti- $k_{T}$  R = 0.4,  $p_{T}$ <sup>track,tower</sup> > 2 GeV/c,  $p_{T}$ <sup>jet</sup> > 10 GeV/c

**h-h:** Event contains a 10+ GeV jet, but no  $\Delta R$  cut

**h**<sub>Jet</sub>-h: Same events, with  $\Delta R < 0.4$ 

Same v<sub>2</sub> currently used for both as initial estimation

ZYAM applied for consistency with STAR and PHENIX h-h analyses

A. Adare (STAR), RHIC AGS Users Meeting 2010



Anti- $k_{T}$  R = 0.4,  $p_{T}^{track,tower}$  > 2 GeV/c,  $p_{T}^{jet}$  > 10 GeV/c

**h-h:** Event contains a 10+ GeV jet, but no  $\Delta R$  cut

**h**<sub>Jet</sub>-**h**: Same events, with  $\Delta R < 0.4$ 

Same v<sub>2</sub> currently used for both as initial estimation

ZYAM applied for consistency with STAR and PHENIX h-h analyses

A. Adare (STAR), RHIC AGS Users Meeting 2010



Anti- $k_{T}$  R = 0.4,  $p_{T}^{track,tower}$  > 2 GeV/c,  $p_{T}^{jet}$  > 10 GeV/c

**h-h:** Event contains a 10+ GeV jet, but no  $\Delta R$  cut

**h**<sub>Jet</sub>-**h**: Same events, with  $\Delta R < 0.4$ 

Same v<sub>2</sub> currently used for both as initial estimation

ZYAM applied for consistency with STAR and PHENIX h-h analyses

A. Adare (STAR), RHIC AGS Users Meeting 2010



Anti- $k_T R = 0.4$ ,  $p_T^{track,tower} > 2 \text{ GeV/c}$ ,  $p_T^{jet} > 10 \text{ GeV/c}$ 

**h-h:** Event contains a 10+ GeV jet, but no  $\Delta R$  cut

**h**<sub>Jet</sub>-h: Same events, with  $\Delta R < 0.4$ 

Same v<sub>2</sub> currently used for both as initial estimation

ZYAM applied for consistency with STAR and PHENIX h-h analyses

 $h_{jet}$ -h and h-h correlations similar at highest trigger  $p_T$ !

HI "trigger" and "associated" background complex ...

What do we measure with di-hadrons at lower trigger  $p_T$ 's?

# So, what do we learn ?



STAR Phys. Rev. Lett. 97 (2006) 152301



Secondary (n-th) hard-scattering reduces h-h due to different jet energy scales sampled wrt h<sub>Jet</sub>-h!

If h-h is the true Au+Au "jet" correlation ⇔ dominated by semi-hard scatterings!

But there is the B/M enhancement! So some dilution due to "fake" triggers expected in h-h! *We can not have both!* 

# So, what do we learn ?



STAR Phys. Rev. Lett. 97 (2006) 152301



Secondary (n-th) hard-scattering reduces h-h due to different jet energy scales sampled wrt h<sub>Jet</sub>-h!

If h-h is the true Au+Au "jet" correlation ⇔ dominated by semi-hard scatterings!

But there is the B/M enhancement! So some dilution due to "fake" triggers expected in h-h! *We can not have both!* 

# *My take on that:* At lower trigger $p_T$ we are dominated by "bulk correlations"!





## **Summary from RHIC:**

(Light flavor) Jet quenching measurements at RHIC can be (qualitatively) explained in a consistent picture by a significant broadening and softening of the jet structure caused by (pQCD-like) partonic energy loss in the medium!





> 440 430

420

d \d⊽ 0.4

0.2

-0.2





# A word of caution: Initial state effects at LHC ...





y~3 at RHIC probes similar x as at midrapidity at LHC

Suppression/de-correlation at y~3 in central d+Au collisions at RHIC! Onset of CGC !?

Can we learn more about the initial effects from other measurements before the p+Pb run?

# The "Ridge" in p+p collisions at the LH

CMS, CERN Seminar, Sept. 21, 2010

## Intermediate $p_T$ : 1-3 GeV/c

### **MinBias**

high multiplicity (N>110)

(d) N>110, 1.0GeV/c<p\_<3.0GeV/c

(b) MinBias, 1.0GeV/c<p\_<3.0GeV/c



Pronounced structure at large  $\delta\eta$  around  $\delta\phi \sim 0$  !

# Is the ridge in p+p caused by the CGC ? Onset of CGC at same x measured at forward rapidity's at RHIC ?

(for example A. Dumitru and J. Jamal @ RBRC Workshop March 2010)

# The "Ridge" in p+p collisions at the LH

CMS, CERN Seminar, Sept. 21, 2010

## Intermediate p<sub>T</sub>: 1-3 GeV/c

**MinBias** 

high multiplicity (N>110)

(b) MinBias, 1.0GeV/c<p\_<3.0GeV/c

(d) N>110, 1.0GeV/c<p\_<3.0GeV/c



Control experiment p+Pb at LHC necessary to measure with high precision initial state effects to allow an unambiguous interpretation of jet-quenching measurements in Pb+Pb collisions!

Pronounced structure at large  $\delta\eta$  around  $\delta\phi \sim 0$  !

Is the ridge in p+p caused by the CGC ? Onset of CGC at same x measured at forward rapidity's at RHIC ?

(for example A. Dumitru and J. Jamal @ RBRC Workshop March 2010)

# Summary

#### **Qualitative picture (so far) from RHIC:**

Jet-quenching measurements can be "consistently" explained by jet-broadening/softening due to radiative energy loss in the medium!

# Large kinematical reach and precise (full) jet measurements at the LHC:

⇒ Quantitative constraints on underlying partonic energy loss mechanisms (for light quarks)!

#### Landscape of hard probes:



#### **RHIC and LHC jet measurements will be complementary!**

#### But this is just the start!

#### The landscape of hard probes is rich at the LHC (and RHIC II)!

Measure heavy quark energy loss (b-tagged jets), still open theoretical issue to describe heavy and light flavor energy loss in a consistent framework!