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Abstract. We show that the single, non-photonic electron nuclear modification factorRe
AA is af-

fected by the thermal enhancement of the heavy-baryon to heavy-meson ratio in relativistic heavy-
ion collisions with respect to proton-proton collisions. We make use of the dynamical quark re-
combination model to compute such ratio and show that this produces a sizable suppression factor
for theRe

AA at intermediate transverse momenta. We argue that such suppression factor needs to be
considered, in addition to the energy loss contribution, incalculations ofRe

AA.
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INTRODUCTION

The suppression of single, non-photonic electrons at RHIC [1, 2] is usually attributed to
heavy-quark energy losses. However, calculations that successfully describe the nuclear
modification factor of charged hadrons fail to describe the single, non-photonic electron
nuclear modification factorRe

AA [3, 4, 5]. This has prompted a great deal of effort
aimed to better describe the heavy-quark energy loss mechanisms to include not only the
radiative part but also the collisional and the medium dynamical properties to compute
the radiative piece. As a result, although some improvementin the description of the
nuclear modification factor has been gained, it is not yet clear whether the anomalous
suppression can be completely attributed to energy losses.

Working along a complementary approach to describe the non-photonic electron yield
at RHIC, it has been argued [6, 7] that under the assumption ofan enhancement in
the heavy-quark baryon to meson ratio, analogous to the caseof the proton to pion
and theΛ to kaon ratios in Au+Au collisions [8, 9, 10, 11], it is possible to achieve
a larger suppression of the nuclear modification factor. Therationale behind the idea
is that heavy-quark mesons have a larger branching ratio to heavy-quark baryons, and
therefore, when the former are less copiously produced in a heavy-ion environment, the
nuclear modification factor decreases, even in the absence of heavy quark energy losses
in the plasma.



In a recent work [12], we have quantitatively address this question by making use of a
dynamical recombination scenario that accounts for the fact that the probability to form
baryons and mesons can depend on a different way on the evolving density during the
collision. Here, we present the main points of that work and enhance the discussion. A
coalescense model addressing the same goals has been recently presented in Ref. [13].

Recently, following the approach described here, the nuclear modification factor has
been estimated [14]. It has also been found that non-negligible contributions from
higher-twist processes in largepT hadron production, may indicate that the recombi-
nation mechanism can still be important in that regime [15].

In order to give a qualitative argument that shows how an enhancement in the heavy-
quark baryon to meson ratio can suppress the single, non-photonic electron nuclear
modification factor, let us look at thepT integratedRe

AA and to consider that the heavy
hadrons are only those containing a single charm,
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where〈np〉 is the average number of participants in the collision for a given centrality
class,Nx

AA (pp), refers to the number ofx-particles produced inA+A (p+ p) collisions
andBx→e is the branching ratio for the inclusive decay ofx-particles into electrons.

We can bring Eq. (1) into a form that contains the corresponding pT integrated nuclear
modification factor for particles containing charm as:
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C represents theenhancement factorfor the ratio of charm baryons to mesons inA+A
as compared top+ p collisions andx is the charm baryon to meson relative branching
ratios for their corresponding inclusive decays into electrons.

When not integrated over transverse momentum, 1/〈np〉
[

(ND
AA+NΛ

AA)/(ND
pp+NΛ

pp)
]

represents the nuclear modification factor for particles with charm. Let us not assume
any particular value for this factor and instead concentrate in the other one in Eq. (2),
which can be written as

Te pT int

AA =
(1+a)(1+Cxa)
(1+Ca)(1+xa)

, (4)

wherea= NΛ
pp/ND

pp. The above quantity is plotted in Fig. 1 as a function ofx for different
combination ofC anda. Notice that the functionTe pT int

AA is less than one whenx < 1
provided thatCa> a.



FIGURE 1. (Color online)pT integratedTe
AA as a function ofx, the ratio of branching ratios for charmed

baryons and mesons to decay inclusively into electrons. Notice that forx< 1, Te
AA < 1 whenCa–the ratio

of charm baryons to mesons in A + A– is larger thana –the ratio of charm baryons to mesons in p + p–.

We want to quantitatively address the question of whether the enhancement factor
C times a –namely, the heavy-baryon to heavy-meson ratio in Au+ Au collisions–
can indeed be larger thana –namely, the heavy-baryon to heavy-meson ratio in p+ p
collisions– and if so, how this affects the behavior of the factorTe

AA as a function ofpT .
The rest of the work is organized as follows: After presenting a brief introduction

to the dynamical quark recombination model in Sec. II, we proceed in Sec. III to
compute the probabilities to form mesons and baryons containing a heavy quark in a
relativistic heavy-ion collision environment. In Sec. IV we use these probabilities to
write expressions for the meson and baryon transverse momentum distributions. In Sec.
V we compute such distributions as well as the baryon to mesonratio. We convolute such
ratio with the branching ratios of charmed baryons and mesons to decay into electrons
to obtain thepT unintegrated functionTe

AA and show that this can be indeed less than 1.
Finally we summarize and conclude in Sec. VI.

DYNAMICAL QUARK RECOMBINATION

It has been shown [17] that the features of the proton to pion ratio can be well described
by means of the so calleddynamical quark recombination modelthat incorporates how
the probability to recombine quarks into mesons and baryonsdepends on density and
temperature. The upshot of the model is that this probability differs for hadrons made up
by two and three constituentswith the same mass, that is to say, the relative population of
baryons and mesons can be attributed not only to flow but rather to the dynamical prop-
erties of quark clustering in a varying density scenario. A natural question is whether
those features remain true for baryons and mesons with one constituent heavy-quark
and whether a computed, as opposed to assumed, baryon to meson ratio, can at least
partially explain the anomalous single, non-photonic electron suppression at RHIC.



FIGURE 2. (Color online) ProbabilitiesPB,M to produce charmed baryons and mesons as a function
to the energy densityε. Shown are the results of the Monte Carlo simulation for baryons (full circles) and
mesons (open circles) together with a fit to these.

The invariant transverse momentum distribution of a given hadron can be written as
an integral over the freeze-out, space-time hypersurfaceΣ of the relativistically invariant
phase space particle densityF(x,P),

E
dN
d3P

= g
∫

Σ f

dΣ
P ·u(x)
(2π)3 F(x,P) , (5)

whereP is the hadron’s momentum andu(x) is a future oriented unit four-vector normal
to Σ andg is the degeneracy factor for the hadron which takes care of the spin degree of
freedom. The functionF(x,P) contains the information on the probability that the given
hadron is formed.

To allow for a dynamical recombination scenario in a thermalenvironment, let us
assume that the phase space particle densityF(x,P) can be factorized into the product
of a term containing the thermal occupation number, including the effects of a possible
flow velocity, and another term containing the system energydensityε driven probability
P(ε), for the coalescence of partons into a given hadron. We thus write

F(x,P) = e−P·v(x)/T
P(ε) , (6)

wherev(x) is the flow velocity. As we will show, the probabilityP(ε) incorporates
in a simple manner the information that the partons that coalesce need to be close in
configuration space as well as to have a not so different velocity.

To compute the probabilityP(ε), it has been shown in Ref. [17] (where we refer
the reader to for details) that use can be made of thestring flip modelin order to get
information about the likelihood of clustering of constituent quarks to form hadrons from
an effective quark-quark interaction. In short, the model is a variational quantum Monte
Carlo simulation that, taking a set of equal number of all color quarks and antiquarks



at a given density, computes the optimal configuration of colorless clusters (baryons or
mesons) by minimizing the potential energy of the system. Atlow densities, the model
describes the system of quarks as isolated hadrons while at high densities, this system
becomes a free Fermi gas of quarks.

We considerN quarks moving in a three-dimensional box and are described by a
variational wave function of the form:Ψλ = exp(−λV)ΦFG, whereλ is the single
variational parameter,V is the potential to build either mesons or baryons respectively,
and ΦFG is the Fermi-gas wave function given by a product of Slater determinants,
which are built up of single-particle wave functions describing a free particle in a box.
The square of the variational wave function is the weightingprobabilty in the sampling,
wich we carry out using metropolis algorithm.

We can identify the value of the variational parameterλ as being directly proportional
to the probability to form a cluster. This fact will be latterexploited to define the density
dependent probabilityP(ε) since, as we show below,λ changes from a fixed value at
low density (isolated clusters) to zero at high density (Fermi gas).

PROBABILITIES

All the results we present here come from simulations made with 384 particles, 192
quarks and 192 antiquarks, corresponding to having 32u (ū) plus 32 c (c̄) quarks
(antiquarks) in the three color charges (anti-charges). The number of quarks corresponds
to the second closed shell of a three-dimensional box. The equal amount of light and
heavy quarks used in the simulation is not intended to represent the whole system but
rather the fraction which will drive the relative recombination. The rest of the light
quarks will contribute to determine the thermodynamical properties of the system. To
take into account the mass difference betweenuandcquarks we setmc = 10Mu. We have
checked that variations of this particular choice do not affect our relative probabilities.

To determine the variational parameter as a function of density we first select the
value of the particle densityρ in the box. Then, we compute the energy of the system
as a function of the variational parameter using the Monte Carlo method described in
the previous section. The minimum of the energy determines the optimal variational
parameter. To get a measure of the probability to form a cluster , we take the variational
parameter and divide it by its corresponding value at the lowest density. Notice that
since the heavy quarks are not as abundant as the light ones, they do not contribute to
the energy density and thus, within the model, this last can be computed by assuming
that only light flavors contribute.

In order to find an appropriate measurement of the probability to form baryons and
mesons, we multiply this variational parameters by the likelihood to find clusters of
baryons made up of two-light, one-heavy quark and mesons made up of one-light, one-
heavy quark. This likelihood has to consider the fact that the thermal plasma is mainly
made up of light quarks and thus that the number of produced heavy quarks is relatively
small. To accomplish this, notice that in a model where the interaction between quarks
to form clusters is flavor (as well as color) blind, this likelihood should account only for
the combinatorial probabilities.

Consider the case where one starts with a set ofn u-quarks,n ū-antiquarks,m c-quarks



andmc̄-antiquarks, each coming in three colors (we impose that thenumber ofu-quarks
be a multiplel of the number ofc-quarks, namely,n= lm ) Using the number of possible
colorless (anti)mesons and (anti)baryons that can be formed we can compute therelative
abundance of baryons with respect to mesons computed under the above assumptions on
the number of light and heavy quarks that we start from. Sincein the case of mesons we
are allowing to consider the caseuc̄ as well as ¯uc, we need to include in the counting of
the groups of three quarks also the antibaryons. Thus the relative abundance is

c−baryons+c−antibaryons
c−mesons+c−antimesons

=
3l

2(l +1)

l→∞−→ 3
2
, (7)

since, in the plasma, the number ofu-quarks greatly exceeds the number ofc-quarks. It
can be checked that the assymptotic value 3/2 is rapidly reached, for instance, by taking
l = 30, the above fraction already becomes 1.475.

Figure 2 shows the probability parameterPB,M (ε) for baryons and mesons,obtained
by multiplying the variational parameter with the corresponding fraction of
baryon/meson formed at the given energy density. In the caseof mesons it corre-
sponds to 1/4 irrespective of the density, while for baryonsit has a functional form,
since the kind of clusters can be different as density increases. For low densities the
ratio of the probabilities becomes 3/2, as expected from thecombinatorial described
above. Shown in the figure is also a fit to the variational parameters with the functional
form

f (x) = a1+
a2

1+exp[(x−x0)/dx]
. (8)

For BaryonsaB
1 = 0.0294,aB

2 = 0.3374,xB
0 = 0.8604,dxB = 0.0078, whereas for

mesonsaM
1 = 0.0496, aM

2 = 0.1953, xM
0 = 0.4812, dxM = 0.0813. We will use this

analytical expression to carry out the calculations.

BARYON TO MESON RATIO

In order to quantify how the different probabilities to produce sets of three quarks as
compared to sets of two quarks affect the particle’s yields as the energy density changes
during hadronization, we need to resort to a model for the space-time evolution of the
collision. We take Bjorken’s scenario which incorporates the fact that initially, expansion
is longitudinal, that is, along the beam direction which we take as the ˆz axis and include
transverse flow as a small effect on top of the longitudinal expansion. In this scenario,
the relation between the temperatureT and the 1+1 proper-timeτ is given by

T = T0

(τ0

τ

)v2
s
, (9)

whereτ =
√

t2−z2. Equation (9) assumes that the speed of soundvs changes slowly with
temperature. For simplicity we takevs as a constant equal to the ideal gas limitv2

s = 1/3.
We also consider that hadronization takes place on hypersurfacesΣ characterized by a



constant value ofτ and thereforedΣ = τρ dρ dφ dη, whereη is the spatial rapidity
andρ , φ are the polar transverse coordinates. Thus, the transversespectrum for a hadron
speciesH is given as the average over the hadronization interval of the right hand-side
of Eq. (5), namely

E
dNH

d3P
=

g
∆τ

∫ τ f

τ0

dτ
∫

Σ
dΣ

P ·u(x)
(2π)3 FH(x,P), (10)

where∆τ = τ f − τ0.
To find the relation between the energy densityε –that the probabilityP depends

upon– andT, we resort to lattice simulations. For the case of two flavors(since the
heavy quark does not thermalize), a fair representation of the data [16] is given by the
analytic expression

ε/T4 = a

[

1+ tanh

(

T −Tc

bTc

)]

, (11)

with a = 4.82 andb = 0.132. We takeTc = 175 MeV.
Considering the situation of central collisions, we assumethat there is no dependence

of the particle yield on the transverse polar coordinates. Furthermore we consider that
the space-time and momentum rapidities are completely correlated. Under these assump-
tions it is possible to write the hadron transverse momentumdistribution as

dN
pTdpTdy

= g
mT∆y

4π
ρ2

nucl

∆τ

∫ τ f

τ0

τdτP(τ)I0(pT sinhηT/T)e−coshηT/T . (12)

whereρnucl is the radius of the colliding nuclei andI0 is the Bessel functionI of order
zero,y is the 1+1 momentum rapidity.

Armed with the expression, we now proceeed to apply the analysis to the computation
of the charmed meson and baryon distributions.

RESULTS

Figure 3 shows examples of the transverse momentum distributions for mesons and
baryons obtained from Eq. (12). We set the mases of the charmed baryons and mesons
asmB = 2.29GeV (corresponding toΛc) andmB = 1.87GeV (corresponding toD). We
take the initial hadronization time asτ0 = 1fm, at an initial temperatureT0 = 200MeV
and the final hadronization temperature asTf = 100MeV, corresponding, according to
Eq. (9), to a final timeτ0 = 8fm. Shown are the cases withvT = 0 andvT = 0.4. Notice
that a finite transverse expansion velocity produces a broadening of the distributions, as
expected.

Figure 4 shows the charmed baryon to meson ratio obtained from the ratio of the above
transverse momentum distributions. Shown is the range for this ratio when varying the
transverse expansion velocityvT from 0 to 0.4. Notice that for a finitevT , this ratio goes
above 1 forpT3.5GeV.

We now proceed to compute thepT unintegrated functionTe
AA. For this purpose, we

take that the posible charmed mesons decaying inclusively into electrons or positrons



FIGURE 3. (Color online) Charmed baryon and meson transverse momentum distributions. The pa-
rameters used in the calculation aremB = 2.29 GeV,mM = 1.87 GeV,τ0 = 1 fm, T0 = 200 MeV,Tf = 100
MeV, corresponding to a final timeτ f = 8 fm. Shown are the cases withvT = 0 andvT = 0.4.

FIGURE 4. (Color online) Charmed baryon to meson ratio,Ca, as a function of transverse momentum.
The parameters used in the calculation aremB = 2.29 GeV,mM = 1.87 GeV,τ0 = 1 fm, T0 = 200 MeV,
Tf = 100 MeV, corresponding to a final timeτ f = 8 fm. Shown is a range when varying the transverse
expansion velocityvT from 0 (upper curve at low momenta) to 0.4 (lower curve at low momenta).

areD±(BD±→e± = 16.0%), D0, D0(BD0,D0→e± = 6.53%), D±
s (BD±

s →e± = 8%) and that
the possible charmed baryons decaying inclusively into electrons or positrons areΛc,
Λc(B,ΛcΛc→e± = 4.5%). Thus, we getx = 0.14. We also approximate the masses of all
the charmed mesons considered to be equal to the mass of theD± mesons.

From Eq. (4) we see that, without integrating overpT , the dependence of the trans-
verse momentum comes froma = (dNΛ

pp/dpT)/(dND
pp/dpT) and the productCa =

(dNΛ
AA/dpT)/(dND

AA/dpT). The integrated ratioaint has been computed in Ref. [7] using



FIGURE 5. (Color online) Suppression factorTe
AA as a function of transverse momentum. The parame-

ters used in the calculation aremB = 2.29 GeV,mM = 1.87 GeV,τ0 = 1 fm,T0 = 200 MeV,Tf = 100 MeV,
corresponding to a final timeτ f = 8 fm, x= 0.14, a=0.073. Shown is a range for the transverse expansion
velocity formvT = 0 (upper curve at lowpT) andvT = 0.4 (lower curve at lowpT .

a Pythia simulation, with the resultaint = 0.073. We have also performed a simulation
using Pythia at NLO with 100,000 events and have found that with such statistics, the
ratio of charmed baryons to charmed mesons in p+ p collissions at

√
sNN = 200 GeV

is flat up topT ≈ 5 GeV and consistent with the value reported in Ref. [7]. Therefore,
for simplicity we takea as a constant equal to the above quoted number. Thus

Te
AA

(1+aint

(1+xaint

1+x(dNΛ
AA/dpT)/(dND

AA/dpT)

1+(dNΛ
pp/dpT)/(dND

pp/dpT)
. (13)

Figure 5 showsTe
AA as a function ofpT . We have used a range of values for the transverse

expansion velocity betweenvT = 0 andvT = 0.4. We see that for the chosen evolution
parameters,Te

AA is indeed smaller than 1 and thus it contributes to the suppression of the
single non-photonic electron nuclear modification factorRe

AA.

CONCLUSIONS

In this work we have shown that the anomalous suppression of the single non-photonic
electron nuclear modification factorRe

AA can be partially understood by realizing that
this quantity is affected by an enhancement in the charmed baryon to meson ratio at
intermediatepT in Au + Au collisions. This enhancement is due to the fact that in this
region, thermal recombination becomes the dominant mechanism for hadron production.
We have made used of the DQRM to calculate this ratio and have shown that for
moderate and even for vanishing transverse expansion velocities, it indeed can be larger
than the charmed baryon to meson ratio in p+ p collisions. This enhancement in turn
produces that theTe

AA is below 1 and thus contributes to the suppression factor introduced
by considering energy losses due to the propagation of heavyflavors in the plasma.



It is worth to keep in mind some important features concerning the results of the
present calculation: First, notice that we have not included the momentum shift intro-
duced by energy losses when computing the transverse distributions of charmed mesons
and baryons. This is so because forRe

AA, energy losses should be included in the prefac-
tor of the functionTe

AA. In this sense, in order to avoid a double counting of the effect,
the ratio that goes into the calculation of this last function is the raw ratio.

Second, it is expected that at some value ofpT , fragmentation becomes the dominant
mechanism for hadron production and therefore that the charmed baryon to meson ratio
decreases above thatpT value, given that fragmentation produces more mesons than
baryons. Third, we have considered finite values of transverse flow for charmed mesons
and baryons even thought it might be questionable that heavyflavors also flow as light
flavors do. Nevertheless, there seems to be some experimental support for heavy quark
flow [18]. In this sense, the flow strength range we have considered is only for moderate
values. Notice however that even in the absence of flow the suppression factor keeps
being less than 1. Some of these issues will be the subject of afuture work to appear
elsewhere.

ACKNOWLEDGMENTS

We thank the organizers for a very enjoyable conference. Support for this work has been
received in part by CONACYT-México.

REFERENCES

1. S. S. Adleret al. (PHENIX Collaboration), Phys. Rev. Lett.96, 032301 (2006).
2. B. I. Abelevet al. (STAR Collaboration), Phys. Rev. Lett.98, 192301 (2007); A. G. Knospe (for the

STAR Collaboration), Eur. Phys. J C62, 223 (2009)
3. M. Djordjevic,et al., Phys. Lett. B632, 81 (2006).
4. N. Armesto,et al., Phys. Lett. B637, 362 (2006).
5. S. Wicks,et al., Nucl. Phys.A784, 426 (2007).
6. P. R. Sorensen and X. Dong, Phys. Rev. C74, 024902 (2006).
7. G. Martinez-Garcia, S. Gadrat and P. Crochet, hep-ph/0702035; G. Martinez-Garcia, S. Gadrat and

P. Crochet, Phys. Lett. B663, 55 (2008),erratumPhys. Lett. B666 533 (2008).
8. S.S. Adleret al. (PHENIX Collaboration), Phys. Rev. C69, 034909 (2004).
9. J. Adamset al. (STAR Collaboration), nucl-ex/0601042.
10. A. László and T. Schuster, (NA49 Collaboration), Nucl. Phys. A774, 473 (2006).
11. B.I. Abelevet al., (STAR Collaboration), Phys. Lett. B655, 104 (2007).
12. A. Ayala, J. Magnin, L. M. Montaño and G. Toledo Sánchez, Phys. Rev. C80, 064905 (2009).
13. Y. Oh and C. M. Ko, Phys. Rev. C79, 067902 (2009).
14. I. Bautista and C. Pajares, Phys. Rev. C82, 034912 (2010).
15. Francois Arleo, Stanley J. Brodsky, Dae Sung Hwang, and Anne M. Sickles, Phys. Rev. Lett.105,

062002 (2010).
16. F. Karsch, E. Laermann and a Peikert, Phys. Lett B478, 447 (2000); F. Karsch, Lect. Notes in Phys.

583, 209 (2002).
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