Jet Physics in Heavy Ion Collisions with ALICE

Andreas Morsch CERN For the ALICE Collaboration Sept 28, 2010

1

Heavy Ions at LHC: the actors ...

CMS

2010/11: p+p collisions @ 7 TeV Nov 2010 hot switch to PbPb collisions @ 2.76 TeV

4 weeks in 2010 and 2011

Di-Jet Event

Some more patience needed: Early Heavy Ion Runs

		Early (2010/11)	Nominal
$\sqrt{s_{_{ m NN}}}$ (per colliding nucleon pair)	TeV	2.76	5.5
Number of bunches		62	592
Bunch spacing	ns	1350	99.8
<i>β</i> *	m	$2 \rightarrow 3.5$	0.5
Pb ions/bunch		7 x 10 ⁷	7x10 ⁷
Transverse norm. emittance	μm	1.5	1.5
Initial Luminosity (L_0)	cm ⁻² s ⁻¹	(1.25→ 0.7) 10 ²⁵	10 ²⁷
Stored energy (W)	MJ	0.2	3.8
Luminosity half life (1,2,3 expts.)	h	τ _{IBS} =7-30	8, 4.5, 3

Initial interaction rate: 50 Hz (5 Hz central collisions b = 0 - 5 fm) ~5 x 10⁷ interaction/10⁶s (~1 month) In 2010: integrated luminosity 1-3 µb⁻¹

The rare becomes profuse

Expected rates

First PbPb run at 2.76 TeV

- Jet x-section reduced by factor 10
- 10⁶ central events
- Measure R_{AA}^{Jet} up to 110 GeV
- 10^7 central events at 5.5 TeV
 - Measure R_{AA}^{Jet} up to 150 GeV
 - Jet structure up to 100 GeV
- Nominal 1month runs with EMCAL trigger
 - Jet structure up to 200 GeV
- Some important reference measurements only possible with EMCal trigger

As compared to RHIC...

- Cross-section falls with a smaller (power-law) exponent
 - _ n = 5.9 (LHC) / 8 (RHIC)
 - Reduced sensitivity to energy scale
 - Reduced selection bias on fragmentation
- Different x_{T} range
 - _ LHC: 0.02 0.2
 - RHIC: 0.15 0.45
- LHC (RHIC) gluon (quark) dominated

Jets in Nucleus-Nucleus Collisions

- High- p_{T} partons produced in hard interactions in the initial state of nucleus-nucleus collisions undergo multiple interaction inside the collision region prior to hadronisation.
- In particular they loose energy through medium induced gluon radiation and this so called "jet quenching" has been suggested to behave very differently in cold nuclear matter and in QGP.

$$\Delta E \propto \alpha_s C_R < \hat{q} > L^2 f(E, m_q)$$

Consequences for the Jet Structure

- Increase of p_{T} relative to jet axis (j_{T})
 - Broadening of the jet
 - Out of cone radiation (decrease of jet rate)
- Increased di-jet energy imbalance and acoplanarity.

Background from the UE also important at LHC

 $Jet(E) \rightarrow Jet(E-\Delta E)$ + soft gluons (ΔE) + soft hadrons from UE

- ... and this has important consequences for
 - Jet identification
 - Jet energy reconstruction
 - Resolution
 - Bias
 - Low-p_↑ background for the jet structure observables
- In Cone of R=1
 - 0.25 TeV (RHIC, cen. AuAu)
 - 0.8 1.9 TeV (LHC, cen. PbPb)
 - Higher bound from HIJING
 - High energy jets are more collimated

ALICE Detector Systems for Jet and γ -Identification

• ITS+TPC+(TOF, TRD)

- Charged particles $|\eta| < 0.9$
- Excellent momentum resolution up to 100 GeV/c ($\Delta p/p < 6\%$)
- Tracking down to 100 MeV/c
- Excellent Particle ID and heavy flavor tagging

EMCal

- Energy from neutral particles
- Pb-scintillator, 13k towers
- Δφ = 107°, |η| < 0.7
- Energy resolution $\sim 10\% / \sqrt{E_{\gamma}}$
- Trigger capabilities

DCal complements EMCal for Dijet and hadron-Jet Correlation Measurements

Sequence of key measurement

Characterization of the soft background

- Background fluctuations in typical jet cone areas
 - Correlated and uncorrelated
- Elliptic flow
- Modification of the transverse jet structure
 - $\blacksquare \mathsf{R}^{\mathsf{A}\mathsf{A}}_{\mathsf{J}\mathsf{e}\mathsf{t}}(\mathsf{E}_{\mathsf{T}},\mathsf{R})$
 - Jet shape $\psi(r)$
 - j_T
 - Modification of the longitudinal jet structure
 - Fragmentation function 1/N_{iet} dN/dz

More technically ...

- Determine Resolution Matrix $R(E_{rec} | E_{true}; FF, JF, ...)$
 - FF: Fragmentation
 - JF: Jet Finder
- Unfold measured spectrum
- Determine Smearing Matrix $R(E_{true}, E_{bg} | E_{rec;}; FF, JF, ...)$
- Measure jet shape and correcting for soft BG (splash-in)
- Evaluate bias from splash-out
- Measure longitudinal fragmentation
 - Correct for splash in and splash out MC Consistency check

- Without modification standard jet finders used in pp (e⁺e⁻) collisions will not work in a heavy ion environment.
- The main modification consists in determining the mean underlying event cell energy from cells outside a jet cone. It is recalculated after each iteration and subtracted from the energy inside the jet area.
- Large interest and progress in Jet Reconstruction in high multiplicity environment
- FASTJet package (Cacciari, Salam)
 - Fast (N InN) implementation of k_{τ} and Cambridge/Aachen
 - Implementation of an IRC safe cone algorithm (SIScone)
 - New soft-resilient algorithm: anti-k₁
 - Quantitative definition of jet area beyond leading order

Jet Reconstruction: Underlying Event

- Background energy fluctuations limit jet energy resolution at low energies
- In addition, they add a soft component to the jet structure observables (splash in)

• $\Delta E \sim \sqrt{Jet Area}$

- Cone Algorithm: fixed area R²
- k_{T} : minimizes splash-out, however back-reaction from soft particles dominates systematics when comparing PbPb to more elementary collisions (pp, pA)
- Anti- $k_{\rm T}$: regular jet-areas, small back-reaction
- At LHC background has hard component
 - O(10) Jets > 10 GeV per central collision

Splash-in can only be quantified once input spectrum has been measured and carries part of its systematic uncertainty.

Background Fluctuations

Difference between real and estimated background energy Jet Finder systematics with monochromatic jets.

- "non-Poissonian" behavior at medium pT and in the tails of the pdf
- Small but significant systematics of the mean value

Characterization of the soft correlated and uncorrelated background for high E_{τ} QCD jets is an important LHC day-1 measurement.

Energy Resolution: EMCAL+tracking

Underlying event (central Pb–Pb)		
Fluctuations	20% (75 GeV/c), 3% (150 GeV/c)	
False Jets	small $(>50 \text{ GeV/c})$	

Instrumental effects and fluctuating unmeasured contribution of K_0^{L} and neutrons.

ALICE EMCal PPR

Systematic effect	Incl. cross section sys. uncert.		
Common in p–p and A–A			
Tracking distortions	unknown		
(space charge etc.)			
Tracking efficiency	1%		
Hadronic and electron en-	3-4%		
ergy double counting			
EMCal energy scale	8-10%		
Unobserved neutral energy	13-15%		
Underlying event (central Pb–Pb)			
Fluctuations	20% (75 GeV/c), 3% (150 GeV/c)		
False Jets	small $(>50 \text{ GeV/c})$		

Reduced Jet Area (Splash-Out)

Trigger bias towards more collimated jets

- Part of the medium induced soft radiation will be outside the jet cone and/or indistinguishable from the underlying event.
 - This introduces a systematic difference in the energy scale when comparing measurements in central PbPb to a baseline (pp or peripheral PbPb)
 - Energy scale enters directly into longitudinal fragmentation function($z = p_L/E_{iet}$)
 - Bias towards less quenched jets

• Measurement of the $R_{AA}^{Jet}(R)$ allows to quantify the effect

(see STAR and PHENIX)

Large Out-of-cone radiation also expected at LHC

Jet R_{AA} and Jet Broadening

Splash in/out systematics on jet structure

- Splash-in
 - Softening, widening
 - Quench-bias
- Splash-out
 - Collimation, hardening
 - Anti-quench bias
- Examples on the following slides ...

Modification of the Fragmentation Function

Ideal: No background

 $R_{\rm AA}(\xi)$

$$R_{AA}(\xi) = \frac{1/N_{jet}^{AA} dN^{AA}/d\xi}{1/N_{jet}^{pp} dN^{pp}/d\xi}$$

Systematic Effects

• Jet reconstruction pre-selects jets with larger than average soft UE contribution. Needs correction.

- Robust signal but underestimation of jet energy biases ξ to lower values.
 - _ Depends on cone size R and p_{T} cut
 - Measurement has to be complemented by measurement of the
 - jet shape (out of cone radiation)
 - $R_{AA}(E_{jet})$ and
 - Calibration using γ -jet events

PID and Jets

Measure K₀ spectrum much harder wrt to any Pythia Tune ! Look more differential into this effect:

- K_0 yield inside jets
- K_0 in underlying event

PID and Jets

Where do we stand today ?

Di-Hadron Correlation

See talk J. Ulery

Jet-like properties from Di-Hadron Correlations

See talk J. Ulery

Di-Hadron p_{τ}

Raw Min Bias Jet Spectrum pp@900 GeV

Raw Min Bias Jet Spectrum pp@7 TeV

Some ideas for <u>non-standard jet measurements</u>

- Energy flow relative to thrust-major axis
- Jet mass modifications
- High j_{T} suppression

Energy flow relative to Thrust-Major

Jet axis ~ (single jet) Thrust

 Jet reconstruction sensitive to modifications of longitudinal and transverse energy flow.
 However, it should be insensitive to redistributions in the tangential direction.

• How to measure this ?

- In parton showers φ-symmetry in plane perpendicular to jet axis is broken after first "hard" splitting. Defines Thrust Major Axis.
- Determine this axis from particles near to the jet axis with relatively high p_t.
- Look for correlations at higher R and lower $p_{\rm T}$

$$S^{\alpha\beta} = \frac{\sum_{i} p_{i}^{\alpha} p_{i}^{\beta}}{\sum_{i} \left| p_{i} \right|^{2}}$$

$$p_{i}^{x} = p_{T} \cos(\delta)$$
$$p_{i}^{y} = p_{T} \sin(\delta)$$

$$\delta = \tan^{-1}(\Delta \Phi / \Delta \eta)$$

Find largest eigenvalue and corresponding eigenvector. Eigenvector = x-axis of new coordinate system.

рр

Quenched (Q-Pythia)

Δη

Quenched (Q-Pythia)

n_x

Jet Mass

Will approximate scaling ~ RE_{T} persist in QGP ?

Possible LHC Scenario

The Measurement: Background Correction

- Determine expected (E, p_x , 0, 0) at y = 0 from background
- Rotate and boost in the jet direction.
- Subtract jet by jet.

Suppression of large $j_{\rm T}$?

- Relation between *R* and formation time of hard final state radiation.
 - Early emitted final state radiation will also suffer energy loss.
 - Look for R dependence of $\langle j_1 \rangle$!

Summary

- We can look forward to very interesting physics with reconstructed jets in Heavy Ion collisions with ALICE
 - High rates providing sufficient energy lever-arm to map out the energy dependence of jet quenching.
 - Large effects: Jet structure changes due to energy loss and the additional radiated gluons.
 - Experiments suited for jet measurements in Heavy Ion Collisions
 - ATLAS and CMS: larger acceptance, higher energy reach
 - ALICE: excellent PID and low- $p_{\rm T}$ capabilities
- Three unconventional jet observables have been discussed. They might help to distinguish between different jet quenching models.
 - Energy flow relative to thrust-minor axis
 - Jet mass modifications
 - High j_{T} suppression