

QCD at DØ: A Review of Recent Results

Lee Sawyer

Louisiana Tech University

Presented at the 5th Workshop on High pT Physics at the LHC CNAM, Mexico City, Mexico September 28, 2010

Outline

The collider and the detector

The data and the systematics

Non-perturbative Results

Angular Correlation in Minimum Bias Events
Double Parton Interactions

Inclusive Jet Results

Fermilab Tevatron - Run II

The DØ Detector

Resume:

- Good central tracking •Si µstrip tracker
 - Scintillating Fiber Tracker
 - 2T central solenoid
- Excellent Calorimetry
- Wide muon coverage
 - Central and forward toroids

Coordinates Primer:

Unless otherwise noted -

- ϕ = Azimuthal angle
- η = pseudorapidity = -ln(tan(θ /2))
- y = rapidity = $\frac{1}{2} \ln \left[\frac{1+\beta\cos\theta}{1-\beta\cos\theta} \right]$

Calorimeter Details: ^{n=0.0}

-IAr/U primarily

- Four EM layers (~20 X₀)
- -3 to 4 Hadronic Layers (7 to 8 X_I)

- 0.1 x 0.1 segmentation in $\Delta \eta \ x \ \Delta \phi$ (0.05 x 0.05 at EM shower max)

Energy Resolution: e: $\sigma_{\rm E} / E = 15\% / \sqrt{E} + 0.3\%$ π : $\sigma_{\rm E} / E = 45\% / \sqrt{E} + 4\%$

Elastic Collisions

Froward Proton Detector (FPD)

- 8 quadrupole spectrometers
- 6 layers of scintillating fibers in each
- Special Tevatron running
- (L ~ 30 nb⁻¹, $\beta^* = 1.6m$, single bunch)

DØ Preliminary $\rightarrow d\sigma/d|t|$ (shown at DIS2010)

-0.25<|t|<0.6 GeV2 and

0.6 < |t| < 1.2 GeV2

 - 14.3% luminosity uncertainty not shown
 - Great deal effort to commission, alignment FPD, understand efficiencies, etc.

Track Correlations in Minimum Bias Events

- Use correlations in $\Delta \phi$ to characterize Minimum Bias Events
- Compare data to various Monte Carlo tunes and models

From full distribution...

Track Correlations in Minimum Bias Events

- Use correlations in $\Delta \phi$ to characterize Minimum Bias Events
- Compare data to various Monte Carlo tunes and models

Fit minimum: subtract to remove pedestal and suppress fakes, noises, ...

Track Correlations in Minimum Bias Events

- Use correlations in $\Delta \phi$ to characterize Minimum Bias Events
- Compare data to various Monte Carlo tunes and models

Subtract then normalize to get crest shape observable

Choosing a Minimum Bias Event Sample

- Trigger on dimuon events
- Require exactly 2 muons w/ p_T > 2 GeV associated with the same primary vertex (PV)
- Then require one or more Minimum Bias PVs
 - At least 5 tracks
 - At least 0.5cm from triggered PV
 - Within 20cm of center of detector

Strategy: Associate all tracks to PVs and then select good quality tracks associated to minbias PVs. Minimize fakes, cosmics, conversions, long-lived resonances, vertex mis-associations

- pT>0.5GeV
- |η|<2

$\Delta \phi$ comparison to MC

Comparisons to some broadly used tunes .

"GAL" = "General Area Law" model of color reconnections

Opposite vs Same Side

Detector beam-axis plane

- Subtract opposite side from same side distribution
- Removes unwanted effects from uncorrelated fakes and tracking efficiencies

Δφ comparison to MC

Other interesting comparisons possible focusing on aspects of minimum bias modeling (ISR, color reconnections, PDFs, treatment of beam remnants, etc)

Double Parton Interactions

- Provides insight into parton spatial distributions
 - May impact PDFs
- Double Parton cross-section given on a scaling parameter σ_{eff}
 - Large values \rightarrow Uniform spatial distribution
- Double Parton interaction can be background to several important rare channels, including Higgs searches

 $\sigma_{DP} = \frac{\sigma_A \sigma_B}{\sigma_{eff}}$

γ+3 Jets DP Topology

Double Parton

Single Parton

Signal: Double Parton (DP) production:

 1^{st} parton process produces γ -jet pair, while 2^{nd} process produces dijet pair.

Background: Single Parton (SP) production:

single hard γ -jet scattering with 2 radiation jets in 1vertex events.

Discriminating Variables

$$\Delta S = \Delta \phi(oldsymbol{p}_{\mathcal{T}}^{\gamma, \, \mathsf{jet}}, oldsymbol{p}_{\mathcal{T}}^{\mathsf{jet}_i, \, \mathsf{jet}_k})$$

△ φ angle between two best pT-balancing pairs
 The pairs should correspond to a minimum
 △S value:

$$S_{\phi} = \frac{1}{\sqrt{2}} \sqrt{\left(\frac{\Delta\phi(\gamma,i)}{\delta\phi(\gamma,i)}\right)^{2} + \left(\frac{\Delta\phi(j,k)}{\delta\phi(j,k)}\right)^{2}}$$
$$S_{\rho_{T}} = \frac{1}{\sqrt{2}} \sqrt{\left(\frac{|\vec{P_{T}}(\gamma,i)|}{\delta P_{T}(\gamma,i)}\right)^{2} + \left(\frac{|\vec{P_{T}}(j,k)|}{\delta P_{T}(j,k)}\right)^{2}}$$

In the signal sample most likely (>94%) S-variables are minimized by pairing photon with the leading jet.

Single Parton $\triangle S: \gamma + 3$ -Jets

For " γ +3jets" events from Single Parton scattering we expect Δ S to peak at π ,

Should be flat for "ideal" DP interaction (2nd and 3rd jets are from dijet production).

P_T Binning: Motivation

Jet P_T : jet from dijets vs. radiation jet from γ +jet events

- ► Jet p_T from dijets falls much faster than that for radiation jets, i.e.
 - → Fraction of dijet (Double Parton) events should drop with increasing jet p_T → Measurement is done in the three bins of 2nd jet p_T : 15-20, 20-25, 25-30 GeV

Fraction of DP Events

Pythia MPI tunes A and S0 are considered.

Data are in between the model predictions.

Data are not yet corrected to the particle level.

Will be done later to find the best MPI Tune

Calculation of σ_{eff}

 σ_{eff} values in different jet p_T bins agree with each other within their uncertainties. (a slight fall can be also suggestive)

Uncertainties have very small correlations between jet2 p_T bins.

One can calculate the averaged (weighted by uncertainties) values over jet2 p_T bins:

$$\sigma_{eff}^{ave} = 16.4 \pm 0.3(stat) \pm 2.3(syst)mb$$

Main systematic and statistical uncertainties (in %) for σ_{eff} :

p_T^{jet2}	Sy	ystem	$\delta_{\rm syst}$	$\delta_{\rm stat}$	δ_{total}			
(GeV)	$f_{\rm DP}$	$f_{\rm DI}$	$\varepsilon_{ m DP}/\varepsilon_{ m DI}$	JES	$R_c \sigma_{ m hard}$	(%)	(%)	(%)
15 - 20	7.9	17.1	5.6	5.5	2.0	20.5	3.1	20.7
20 - 25	6.0	20.9	6.2	2.0	2.0	22.8	2.5	22.9
25 - 30	10.9	29.4	6.5	3.0	2.0	32.2	2.7	32.3

Jet Production

X

Comparing Data to Predictions

Measure cross section for pp-bar \rightarrow jets on "particle-level"

calculated using a fast detector parametrization

Apply correction to the pQCD calculation

Interpolation techniques for PDFs(x, μ), $\alpha_s(\mu)$

Use Jet Definition to relate Observables defined on Partons, Particles,

Correct for experimental effects (efficiencies, resolution, ...)

Include uncertainties and correlations from jet energy scale, non-pertubative effects & UE, id efficiencies, correction for

Comparison to NLO pQCD implemented using NLOjet++, FastNLO

E 0.02

Detector

program

muons & v's, etc

Energy scale uncertainty: 1-2% !

A Few Jet Details

- Jet Finding
 - DØ Run II Midpoint Algorithm
 - Can run on calorimeter towers/MC particles/pQCD partons
 - Fixed cone: R_{cone} = 0.5 or 0.7 (most jet studies)
 - pTmin = 8 GeV
 - Use all particles + midpoints btwn jets as seeds.
 - Merge jets if overlap in p_T by more than f = 50%.

- Jet Energy Scale (JES)
 - $E_{\text{particle}} = E_{\text{cal}} O / (R \cdot S)$
 - E_{cal} = Calorimeter energy
 - O = Offset Energy
 - Electronics noise, U noise, pileup,...
 - S = Showering Correction
 - Response measured in γ + jet
 - EM scale set by Z mass fit.
 - Checked with dijet balance

Inclusive Jet Production

- Run II: Increased x5 at pT=600GeV → sensitive to "New Physics": Quark Compositeness, Extra Dimensions, ...(?)...
- Theory @NLO is reliable (±10%)
 - \rightarrow sensitivity to PDFs

 \rightarrow unique: high-x gluon

PDF sensitivity:

→ compare jet cross section at fixed $x_T = 2 p_T / sqrt(s)$

Tevatron (ppbar)

>100x higher cross section @ all x_T >200x higher cross section @ x_T >0.5

LHC (pp)

- need more than 2400 fb⁻¹ luminosity to improve Tevatron@12 fb⁻¹
- more high-x gluon contributions
- but more steeply falling cross sect. at highest p_T (=larger uncertainties)

Inclusive Jets

The inclusive jet cross section – doubly differential vs. (p_T,y)

Phys. Rev Lett. 101, 062001 (2008) Detailed Phys Rev. D in preparation

Analysis details:

- Use L = 0.7 fb-1 with well-measured JES
- Single jet trigger
- Require at least 1 jet with $p_T > 50$ GeV

Benefits from:

- high luminosity in Run II
- increased Run II cm energy \rightarrow high p_T
- hard work on jet energy calibration

Inclusive Jets

Strong Coupling Constant

Use MSTW2008NNLO PDFs as input

- \rightarrow Cannot test RGE at p_T > 200 GeV (RGE already assumed in PDFs)
- \rightarrow Exclude data points with $x_{max} \gtrsim 0.25$ (unknown correlation with PDF uncert.)
- \rightarrow 22 (out of 110) inclusive jet cross section data points at $50 < p_T < 145$ GeV
- \rightarrow NLO + 2-loop threshold corrections

Phys. Rev. D 80, 111107 (2009)

$$\alpha_s(M_Z) = 0.1161^{+0.0041}_{-0.0048}$$

	Total uncertainty	Experimental uncorrelated	Experimental correlated	Nonperturb. correction	PDF uncertainty	$\mu_{r,f}$ variation
0.1161	$^{+4.1}_{-4.8}$	± 0.1	$^{+3.4}_{-3.3}$	$^{+1.0}_{-1.6}$	$^{+1.1}_{-1.2}$	$^{+2.5}_{-2.9}$

Running of alpha-s (?)

 $\alpha_{\rm s}$ extraction from inclusive jets uses PDFs which were derived assuming the RGE

 \rightarrow We cannot use the inclusive jets to test the RGE in yet untested region

The inclusive jet cross section – double differentially vs. (p_T,y)

- Consistency between CDF and D0 (and between cone/ k_T)
- Traditionally THE measurement to constrain PDFs \rightarrow although triple dijet cross section (p_T,y*,yboost) is more sensitive
- More useful if measured with IR safe jet algorithms \rightarrow if possible successive recombination: k_T , CA, anti- k_T
- this measurement requires
 - best possible energy calibration
 - \rightarrow Calibrate jets / or detector objects?
 - Knowledge of correlations of uncertainties (calibration, resolution) over p_T and rapidity: D0 uses 48 separate sources

Dijets in CM frame and detector

The physics: in the dijet CM frame (*)

*

The observation: in the lab / detector frame

$$\mathbf{y^*} = \mathbf{1/2} |\mathbf{y_1} - \mathbf{y_2}| = \mathbf{1/2} |\mathbf{y_1}^* - \mathbf{y_2}^*| = |\mathbf{y_1}^*| = |\mathbf{y_2}^*|$$

$$y_{\text{boost}} = \frac{1}{2} (y_1 + y_2) = \frac{1}{2} \log(x_1/x_2)$$

Described by eight variables – for example:

Dijet Mass Spectrum

Dijet Angular Distribution

variable:

$$\chi_{\rm dijet} = \exp(|y_1 - y_2|)$$

at LO, related to CM scattering angle $1 \pm \cos \theta^*$

 $\chi_{\text{dijet}} = \frac{1 + \cos \theta^*}{1 - \cos \theta^*}$

- flat for Rutherford scattering
- slightly shaped in QCD
- new physics, like
 - quark compositeness
 - extra spatial dimensions
 - \rightarrow enhancements at low χ_{dijet}

Sensitivity to New Physics

Ratio of NP/SM in different dijet mass regions

→ Highest sensitivity to New Physics at high dijet masses

Strategy:

- Measure $\chi_{dijet} = exp(2y^*)$ (higher sensitivity in CM frame)
- Go to highest masses (even if statistics per bin is small)
- Analyze **whole shape** of distribution

Dijet Angular Distribution

Phys. Rev. Lett. 103, 191803 (2009)

→ normalized distribution $d\sigma$ 1 - DØ 0.7 fb⁻¹ $1/\sigma_{dijet} d\sigma/d\chi_{dijet}$ 0.1 $\overline{\sigma} d\chi_{\mathrm{dijet}}$ \rightarrow reduced experimental 0.05 $0.25 < M_{ii}/TeV < 0.3$ and theoretical uncertainties 0 0.1 \rightarrow Measurement for dijet masses 0.05 TeV⁻¹ ED $0.3 < M_{ii}/TeV < 0.4$ from 0.25 TeV to >1.1 TeV 0 0.1 0.05 First time: $0.4 < M_{ii}/TeV < 0.5$

Rutherford experiment above 1TeV

Dijet Angular Distribution: New Physics Limits

Test multiple models at highest possible energies:

- Probing quark substructure
- Sensitive to extra spatial dimensions
 - virtual exchange of KK excitation of graviton (ADD LED)
 - virtual KK excitation of gluon (TeV-1 ED)

Use full χ_{dijet} shape of corrected data

Bayesian and $\Delta \chi^2$ methods @95%CL

- Quark Compositeness Λ > 2.9TeV
- ADD LED (GRW) Ms > 1.6 TeV
- TeV-1 ED Mc > 1.6 TeV

all: most stringent limits!

Multi-Jet Production

- Inclusive jet production and dijets sensitive to PDFs and α_s²
- - But sensitive to α_s³
 - Sensitivity to contribution from higher order diagrams.
- Testing higher-order processes
 provides direct insight into
 strong dynamics

Dijet Azimuthal Decorrelation

Idea: Dijet Azimuthal Angle is Sensitive to Soft & Hard Emissions:

- Test Parton-Shower
- Test 3-Jet NLO

Dijet Azimuthal Decorrelation

Compare with theory:

- LO has Limitation >2pi/3
 & Divergence towards pi
- NLO is very good down to pi/2 & better towards pi ... still: resummation needed

Dijet Azimuthal Decorrelation

Compare with theory:

- LO has Limitation >2pi/3
 & Divergence towards pi
- NLO is very good down to pi/2 & better towards pi ... still: resummation needed
- HERWIG is perfect "out-the-box"
- PYTHIA is too low in tail ...
 ... but it can be tuned (tune DW) ("tune A" is too high!)
- SHERPA is great
- ALPGEN looks good but low efficiency → large stat. fluctuations

Three-jet Mass

First Measurement of three-jet cross section at the Tevatron

- \rightarrow First corrected 3-jet mass distribution
- → First comparison to NLO pQCD calculations for 3-jet cross sections

Strategy:

- Measure cross sect. vs. invariant three-jet mass
- in different rapidity intervals
 |y| < 0.8, 1.6, 2.4

For the largest rapidity interval

• for different p_T requirements of the 3rd jet $p_T^{Jet3} > 40, 70, 100 \text{ GeV}$

Data Set:

- 0.7 fb-1 inclusive jet triggers
- Require at least 3 reconstructed jets passing data quality and jet id criteria
 - Jet 1 p_T > 150 GeV
 - Jet 2, 3 p_T > 40 GeV
 - All jets separated by $\Delta R > 1.4 = 2*R_{cone}$

Three-jet Mass

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{3\mathrm{jet}}} = \frac{1}{L \cdot \Delta M_{3\mathrm{jet}}} \cdot \left(\sum_{i=1}^{N_{\mathrm{evt}}} \frac{1}{\epsilon_{\mathrm{v}}^{i}}\right) \cdot C_{\mathrm{unsmear}}$$

Rapidity dependence

p_T^{Jet3} dependence

Three-jet mass distrib.

R_{3/2}: Introduction

Goal: test pQCD (and α_s) independent of PDFs

- Probability to find a third jet in an inclusive dijet event
- Sensitive to α_s (3-jets: α_s^3 / 2-jets: α_s^2)
- (almost) independent of PDFs

 $\mathbf{R}_{3/2} = \sigma_{3\text{-jet}} / \sigma_{2\text{-jet}}$

Measure as function of two momentum scales:

- p_{Tmax} : common scale for both σ_{2-jet} and σ_{3-jet}
- p_{Tmin} : scale at which 3rd jet is resolved (σ_{3-jet} only)

Sensitive to α_s at the scale p_{Tmax}

→ probe running of α_s in Tevatron energy regime → up to 500 GeV

Details:

- inclusive *n*-jet samples (*n*=3,2) with *n* (or more) jets above p_{Tmin}
- |y| < 2.4 for all *n* leading p_T jets
- $\Delta R_{jet,jet} > 1.4$ (insensitive to overlapping jet cones)
- study p_{Tmax} dependence for different p_{Tmin} of 50, 70, 90 GeV
- → Measurement of $R_{3/2}(p_{Tmax}; p_{Tmin})$

 $\mathbf{R}_{3/2} = \sigma_{3\text{-jet}} / \sigma_{2\text{-jet}}$

SHERPA: good description (default version w/ MSTW2008LO PDFs) PYTHIA: huge dependence on tune

- Reasonable description by tune BW
- Popular tunes A, DW \rightarrow totally off

Maybe: extract strong coupling \rightarrow up to $p_T > 400$ GeV (yet untested)

Conclusions

- DØ continues to produce a wide-range of important QCD results, ranging from low p_T scattering, through an assortment of single and double differential jet measurements
 - Not even mentioned: exclusive jet production, single and double direct photon results, W and Z + jets, W/Z + heavy flavor jets, ...
 - With data currently under analysis, expect more precision QCD measurements
 - Inclusive jets at high p_T
 - Triple differential jet cross sections
 - High precision central and forward direct photon measurements
- Tevatron will continue though 2011
 - Will we run through 2014?
 - Are there additional measurements that can be made with 12 fb⁻¹?

For the latest public DØ QCD results, see http://www-d0.fnal.gov/Run2Physics/qcd/

Backup

Exclusive Dijets

Exclusive Dijets

Good discrimination between signal and background

- 26 candidate events, to bkg prediction
- of 5.4^{+4.2}-2.9
- in excess bin $\Delta > 0.85$
- Excess significance: 4.1σ

Shedding Light on QCD

- Important test of pQCD
 - Soft gluon resummation
- Major background to $H \rightarrow \gamma \gamma$
- Classes of Production
 - Direct (a-e & h-i)

— direct

250

150

200

300

350

M,, (GeV)

- "Born & Box" diagrams
- Single Fragmentation (f)
- Double Fragmentation (g)

----- one fragmentation

Finding a Photon

- D0 Electromagnetic Calorimeter
 - Approx 20 radiation lengths thick
 - Coverage |η| < 1.1 &
 1.5<|η|<3.2
 - $\Delta \eta x \Delta \phi = 0.1 x 0.1$ (0.05x0.05 at shower max)
- High precision tracking
 - Silicon microstrip tracker
 - Central fiber tracker
 - Central & forward preshower detectors

Finding a Photon

- Central photons are selected from EM clusters reconstructed within a cone with radius R=0.2 requiring:
 - High EM fraction: >97%
 - Isolated in the calorimeter
 - Isolated in the tracker
 - Shower width in 3rd EM layer consistent with an EM object.
- Photon purity is further improved by using an Artificial Neural Net (ANN) for identification
- Inputs:
 - Tracker isolation
 - Number of EM1 cells within R<0.2
 - Number of EM1 cells within 0.2<R<0.4
 - Number CPS clusters within R<0.1
 - Squared-energy-weighted width of energy deposition in the CPS

Photon efficiency: 98%. Systematic uncertainty 1.5%. Rejects ~40% of misidentified jets.

Direct Diphotons

"Measurement of direct photon pair production cross sections in pp collisions at $\sqrt{s} = 1.96$ TeV", V. Abazov, et al. (Submitted to Phys. Lett. B, arXiv.org:1002.4917)

- In 4.2 fb-1 of data collected with a variety of di-EM triggers
 - Trigger efficiency after offline selection is $\sim 100\%$
- Require
 - 2 photons with p_T >21(20) GeV, $|\eta|$ <0.9, E_T^{iso} <2.5 GeV
 - ΔR(γ,γ)>0.4
 - $p_T(\gamma\gamma) < M(\gamma\gamma)$
- Primary vertex with highest number of tracks required to have $|z_{PV}| < 60$ cm.
 - Photon kinematics computed with respect to this vertex.
- Results compared to RESBOS, DIPHOX, PYTHIA
 - See talk by Steffen Schumann at the MC4LHC Workshop for comparisons to SHERPA

Single Differential Cross-Sections

Single Differential Cross-Sections

Double Differential Cross-Sections

$30 < M\gamma\gamma < 50 \text{ GeV}$

Double Differential Cross-Sections

$50 < M_{\gamma\gamma} < 80 \text{ GeV}$

Double Differential Cross-Sections

80 < Mγγ < 350 GeV

Direct Photon Predictions

RESBOS, Phys. Rev. D 76, 013009 (2007) :

- + Quark Scattering qqbar $\rightarrow \gamma\gamma$ and Gluon Fusion gg $\rightarrow \gamma\gamma$ up to **NLO**
- + Fragmentation at LO, with additional NLO approximation
- + Resummation of soft/collinear terms of initial gluons up to all orders, cancelling divergence at NLO as p_T(γγ)→0

Generators and Tunes

- > PYTHIA, *Comp. Phys. Comm. 135, 238 (2001)* :
 - LO 2-jet Maxtrix Elements plus Parton Showers
 - Tunes: Field's (see arXiv:hep-ph/0610012 for details)
 - Tune A Q²-ordered showers, large starting scale for ISR. Fit using CDF underlying data
 - Tune DW Q²-ordered showers, tuned to match Z p_T-distribution, D0 dijet Δφ results.
 - Tune BW Q²-ordered showers, softer ISR than DW

Sandhoff-Skands, et al. (see arXiv:hep-ph/0905.3418, and *Eur. Phys. J. C 39 (2005)* for details)

- Tune S0 p_T-order showers, annealing color reconnection.
 - "Professor pT0"
 - Perugia Series of Tunes Refinements on Tune s0
- General Area Law (GAL) S0 tune with GAL color reconnections

> SHERPA, *JHEP 0902, 007 (2009)* :

Matched tree-level 2-,3-, and 4-jet Matrix Elements plus Parton Showers