Charged particle multiplicities in inelastic pp events with the ATLAS detector at the LHC

2010-03-30, 12:58 CEST Run 152166, Event 316199 5th International Workshop on High-Pt Physics at LHC Thomas Kittelmann (University of Pittsburgh) **On behalf of the ATLAS collaboration**

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Collision event at 7 TeV

Brief motivation

- Physics motivation: Improve understanding of non-perturbative soft QCD processes.
 - > Study the properties of inelastic proton-proton collisions.
- Experimental motivation: model the pile-up and underlying event.
 - Necessary for measuring physics processes at high energies.

Measurement strategy

As inclusive and model-independent as possible

- Single-arm trigger (enhanced sensitivity to diffractive components)
- No (model-dependent) corrections back to particular components (e.g. non-single-diffractive).
- Correct for detector effects
- > Well defined phase space
 - \Rightarrow Facilitates comparison with and tuning of MC models
- Measurements provided:

$$\frac{1}{N_{ev}} \cdot \frac{dN_{ch}}{d\eta}, \quad \frac{1}{N_{ev}} \cdot \frac{1}{2\pi p_{T}} \cdot \frac{d^{2}N_{ch}}{d\eta dp_{T}}, \quad \frac{1}{N_{ev}} \cdot \frac{dN_{ev}}{dn_{ch}} \quad \text{and} \quad \langle p_{T} \rangle \text{ vs. } n_{ch}$$

$$\text{Angular correlations.}$$

$$\frac{n_{ch}}{N_{ev}} : \text{Number of particles in event in chosen phase-space} \\ N_{ev} : \text{Total number of events in sample satisfying cut on } n_{ch} \\ N_{ev} : \text{Sum of } n_{ch} \text{ over all } N_{ev} \text{ events}$$

Studied phase-spaces

- > Multiplicity and p_{τ} related distributions:
- > ≥ 1 particle, p_{τ} > 500 MeV, $|\eta|$ < 2.5: 0.9 TeV, 2.36 TeV, 7.0 TeV
 - > 2.36 TeV analysis based on runs with lowered SCT voltage
- > \geq 2 particles, p_T > 100 MeV, |η| < 2.5: **0.9 TeV**, **7.0 TeV**
- > ≥ 6 particles, p_{τ} > 500 MeV, $|\eta|$ < 2.5: **0.9 TeV**,
 - Suppressed diffractive contribution.
 - > Used for new AMBT1 Pythia 6 tune.
- > Angular correlations:
- > ≥ 2 particles, p₁ > 500 MeV, |η| < 1/2/2.5: **0.9 TeV**, **7.0 TeV**
 - > p_{τ} > 500 MeV for more uniform tracking efficiency
 - Multiple eta ranges increase information for MC comparisons

7.0 TeV

A word on ATLAS Monte Carlo Simulation

- Generator output is propagated through detailed detector geometry with GEANT4
 - Geometry presently mainly based on technical drawings, test-beam & cosmics studies, component weighing, etc.
- Custom code simulates detailed response of sensors and electronics
 - > Includes detailed detector conditions (thresholds, inactive modules, ...)
- Output reconstructed with same reconstruction algorithms as are used for actual data
- Simulation time: ~20 mins/event
 - Frameworks for faster simulation based on parameterisations available, but not directly used in analyses presented here.

Datasets and event selection

Crossing bunches, MBTS single hit trigger

- Detector ready (2.36 TeV special case)
- > Vertex formed from 2+ tracks (p_{τ} > 100 MeV) + beam spot constraint
 - > Used tracks compatible with beam spot ($d_n^{BS} < 4mm$)
- Reject events with a second vertex with at least 4 tracks.
 - Rejects events with multiple collisions (pile-up)
- Phase-space dependent cut, requiring at least 1, 2 or 6 selected tracks with:

> $p_{_{T}}$ > 100 MeV or 500 MeV, $|\eta|$ < 1.0 or 2.0 or 2.5

- Selected tracks must furthermore satisfy certain quality cuts:
 - > Minimal number of hits (depending on p_{τ} and direction)
 - > Impact par. cut: $d_0 < 1.5$ mm, $|z_0| sin(\theta) < 1.5$ mm (reduce secondaries)
 - > Track χ^2 prob. cut when $p_{\tau} > 10$ GeV (against low- p_{τ} contamination)

1	0.9 TeV (~7μb¹)	350k	4.5M tracks	
	2.36 TeV (~0.1µb ⁻¹)	6k events	~40k tracks	
	7.0 TeV (~190µb¹)	10M events	210M tracks	

Later data has significant
pile-up \Rightarrow only small fraction
of integrated lumi. used here

Background: Events with multiple pp collisions

- The fraction of events with more than 1 pp interaction is estimated to be around 0.1% for the 7 TeV data sample considered for this analysis.
 - > Such events might bias the tail of the n_{ch} distribution
 - Expect 1% of events with second vertex (mostly fakes and low multiplicity decays of secondaries)
- Remove events with more than 3 tracks in a second vertex
- Residual effects after this removal:
 - Non pileup events removed: 0.03%

Other backgrounds

- > Cosmic ray events passing MBTS trigger \Rightarrow negligible level of < 10⁻⁶
 - Based on cosmic ray studies, number of proton bunches and the trigger window of 25ns.
- Beam-background events passing MBTS trigger at low level before cuts
 - Single-beam data provides robust cross-check
 - Requirement of reconstructed vertex particularly powerful

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Correcting back to particle level

Event wise (events lost to trigger & vertexing):

$$w_{\rm ev}(n_{\rm Sel}^{\rm BS}) = \frac{1}{\epsilon_{\rm trig}(n_{\rm Sel}^{\rm BS})} \frac{1}{\epsilon_{\rm vtx}(n_{\rm Sel}^{\rm BS})}$$

 n_{ch} : Number of charged particles n_{Sel} : Number of selected tracks n^{BS}_{Sel} : Same, but without vertex constraints (substituting beam-spot)

- Track wise:
 - > Tracking efficiency (directly from MC)
 - Contamination from secondaries
 - Contamination from particles outside kinematic range

From MC (small effect)

$$w_{\rm trk}(p_{\rm T},\eta) = \frac{1}{\epsilon_{\rm trk}(p_{\rm T},\eta)} \cdot (1 - f_{\rm sec}(p_{\rm T})) \cdot (1 - f_{\rm okr}(p_{\rm T},\eta))$$
from MC (biggest systematics)

- > Correct for bin-migrations in both n_{ch} and p_{τ} (iterative Bayesian unfolding)
- > Correct content of each n_{ch} bin for events lost. E.g. for ≥2 particles cut, this happens when had ≥2 particles but <2 tracks:

$$w_{\rm out}(n_{\rm ch}) = \frac{1}{1 - (1 - \epsilon_{\rm trk})^{n_{\rm ch}} - n_{\rm ch} \cdot (1 - \epsilon_{\rm trk})^{n_{\rm ch} - 1}}$$

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Trigger efficiency

Determined from data by comparison with orthogonal trigger:

- Random beam-pickup based trigger selects crossings with colliding bunches
- Require inner tracker activity (a number of pixel and SCT hits)
- Study performed without vertexing requirement to avoid correlation with vertex efficiency (⇒ use beam spot instead of vertex)
 - > Introduces no observable bias on p_{τ} and eta distributions.
 - > Above lowest multiplicities, efficiency essentially 100%

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Efficiency of vertexing

- Determined from data by looking at the number of events before and after the vertexing requirement.
- > Taking into account beam-backgrounds, estimated from single-beam data

> Contamination less than 0.8% even at $n_{sel}^{BS} = 2$

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Tracking efficiency

Final tracking efficiency is gained from MC by matching reco-level tracks to generated particles:

$$\epsilon_{\rm trk}(p_{\rm T},\eta) = \frac{N_{\rm rec}^{\rm matched}(p_{\rm T},\eta)}{N_{\rm gen}(p_{\rm T},\eta)}$$

- > Matching is done to minimal $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ within a cone
- Plus requirement of at least one shared hit to reduce fakes

Tracking efficiency: Impact from material description

- Level of material inaccuracy (in radiation lengths) in *beampipe* and *Pixels* is sensitive to Ks-mass:
 - Pion momentum determination depends on energy-loss correction, based on MC material
 - Comparison with MC samples with inflated material densities indicates +10% to be conservative level
- Impact on tracking efficiency found by comparing efficiencies on nominal and +10% material MC samples
 - > Taken as systematic error
 - Only probes radiation lengths directly

Tracking efficiency: Impact from material description

- Service material between Pixels and SCT directly probed from data by track extension efficiency:
 - Fraction of pixel-only "tracklets" which gets extended into the SCT
 - > Sensitive to hadronic interactions, i.e. interaction lengths of material
 - Difference also taken as independent systematic error

Very conservative: Adding syst. error from both this effect and previous slide

Obviously work is ongoing to continue to improve the material description

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Secondaries

Secondary contamination reduced by cuts:

- > Small impact parameters: $|d_0| < 1.5$ mm, $|z_0 \sin(\theta)| < 1.5$ mm.
- Requirement of hit in innermost pixel layer (against conversion electrons)
- Remaining fraction estimated by fit to d₀ sidebands on data:
 - Contribution from conversion electrons and other types fitted simultaneously
- Validated by fit to longitudinal impact parameter, z₀.
 - Here contribution from conversion electrons and other secondaries look identical

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

$High-p_{T}$ tracks

> High- p_{T} spectrum has significant contamination from low- p_{T} tracks

- Steeply falling p_T spectrum in min. bias events (9 orders of magnitude between 100 MeV and 50 GeV)
- > Non-Gaussian tail in track-momentum response. Mainly due to hadronic interactions (in MC effect present for π^{\pm} , not μ^{\pm})
- > Problem mainly outside TRT acceptance of $|\eta|$ <2.1
- > Reduces by requirement of track fit prob. > 0.01 when p_{τ} > 10GeV
- Remaining effect accounted for as part of the spectrum unfolding (bin-migration correction)

 \bigcirc

A hard interaction producing a fake

high p_{\perp} track

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Bayesian unfolding: Correct for bin-migrations

> Unfold observed p_{T} and n_{sal} distributions to get particle-level p_{T} and n_{ch}

- Use MC sample to get initial guess at migration matrix connecting particle-level distribution with reconstructed distribution.
- Apply this matrix on data to get first guess at particle-level distributions
- ➤ Use this distribution to get updated estimate for matrix. Reiterate until convergence achieved ⇒ Final unfolding is data driven
- > Unfolding p_{τ} and n_{ch} separately for simplicity and numerical stability

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Systematic errors

Systematic uncertainty on the num	ber of events, N	ev	
	$\sqrt{s} = 0.9 \text{ TeV}$	$\sqrt{s} = 7 \text{ TeV}$	
Trigger efficiency	0.2%	0.2%	
Vertex-reconstruction efficiency	< 0.1%	< 0.1%	
Track-reconstruction efficiency	1.0%	0.7%	
Different Monte Carlo tunes	0.4%	0.4%	
Total uncertainty on $N_{\rm ev}$	1.1%	0.8%	Tracking eff.
Systematic uncertainty on $(1/N_{ev})$.	main source		
Track-reconstruction efficiency	3.1%	3.1%	
Trigger and vertex efficiency	< 0.1%	< 0.1%	
Secondary fraction	0.4%	0.4%	
Total uncertainty on $N_{\rm ev}$	-1.1%	-0.8%	
Total uncertainty on $(1/N_{\rm ev}) \cdot (dN_{\rm ch}/d\eta)$ at $\eta = 0$	2.1%	2.3%	Normalisation
			cancels errors

Results at 0.9 and 7 TeV (≥1 particle, p_>500MeV)

22

Special conditions for the 2.36 TeV data sample

- December 13 & 15 2009 LHC delivered pp collisions at 2.36 TeV (then world record). Stable beams were not declared ⇒ SCT in standby mode for safety reasons:
 - sensor bias voltage 20V (nominal setting is 150V)
 - > \Rightarrow heavily degraded performance
- Fortunately:
 - Pixels at nominal settings
 - Nearby reference run at 900GeV had similar detector conditions (apart from beam-spot)

Two complementary strategies for recovering use of 2.36 TeV data sample:

- ID-track method: Perform variant of standard analysis, but with relaxed tracking cuts to allow for reduced SCT performance. Correct for degraded performance.
- Pixel-track method: Perform tracking with pixel detector only, ignoring SCT+TRT. Cons: Bad p₁ resolution. Pros: Less material uncertainty.
- > 900 GeV reference run used both as input for data-driven efficiency determinations and general validation of method (must reproduce known 900 GeV results)
- Results from the two methods are cross-checked with each other

Efficiency at 2.36 TeV for ID-track method

- SCT at standby voltage means narrower depletion zone:
 - $> \Rightarrow$ Reduced hit efficiency
 - > \Rightarrow Lower intrinsic resolution
 - \rightarrow Higher relative noise level
- Effects pronounced at low incidence on the wafers
- Tracking cuts are relaxed to minimise effects, but still present

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Pixel-track method at 2.36 TeV: Tracking efficiency

Unused trackers, SCT+TRT, used for data-driven tracking eff. correction:

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

ID-track versus Pixel-track method at 2.36 TeV

- Main drawback of pixel-track method is shortened track length, leading to degraded p_r resolution by about an order of magnitude compared to ID-tracks
- But systematic errors on multiplicities significantly smaller for Pixel-track method
 - > Use Pixel-track method for all distributions apart from p_{τ} spectrum
 - > Publish no $< p_{T} > vs. n_{ch}$ result due to correlations
- Agreement between methods and published 900 GeV results

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Results at 3 energies (≥1 particle, p_>500MeV)

Results from diffractive-limited phase-space

- Modelling of diffraction and its interference with the ND part is problematic
- Provide results also in a diffractive limited phase-space:

> $n_{ch} \ge 6$, $p_{T} > 500 \text{ MeV}$

- Gives one more handle for MC comparisons and tuning
- > Analysis analogous to $n_{ch} \ge 2$, apart from also using tracks from events with $n_{cal} \le 5$:
 - > Otherwise lose most statistics for n _ _ _ _ _ _ _ just above 5 as $(\epsilon_{_{trk}})^6$ is low

PYTHIA ATLAS MC09c:

Essentially no diffractive component above cut (all generators predicts greatly limited contribution)

In such event, weigh contribution from each track with probability the track originated in event above threshold

First ATLAS PYTHIA tune to LHC data: AMBT1

- Motivation: Provide LHC-centric tune which leans towards describing the part of the spectra which is most important for future ATLAS analyses.
- > ATLAS Input:
 - > $n_{ch} \ge 6$, $p_{T} > 500$ MeV at 900 GeV & 7 TeV distributions:
 - > Underlying Event distributions with hard p_{τ} cuts (talk today by D. Kar)
- Various Tevatron input from 630 GeV to 1960 GeV
 - > For consistency, but with 1/10 weight to ensure results optimised for LHC studies
- > Pars related to fragmentation, FSR, hadronisation not tuned (constrained by LEP data)

Results (base is MC09c tune)						AMBT1 mainly changes matte		
Model	Parameter	Parameter ID	MC09c	AMBTI		listributions and CR strength		
MPI: Incoming Partons	Minimum p⊤	PARP[82]	2.31	2.292				
	Energy Extrapolation	PARP[90]	0.2487	0.250		Higher probability for		
MPI: Matter Distribution	Core Matter Fraction	PARP[83]	0.8	0.356		 high-multiplicity events 		
	Core Radial Fraction	PARP[84]	0.7	0.651				
Color Reconnection	Reconnection Strength	PARP[78]	0.224	0.538		Shorter strings \Rightarrow		
	High pt Suppression	PARP[77]	0.0	1.016		fewer, higher-p _T hadrons		

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Results: η-distributions

Distributions more flat for more inclusive PS • Feature of higher diffractive component

Shapes mostly OK (except for PYTHIA DW)

Multiplicity in data higher than any MC • Pronounced for more inclusive PS

 \Rightarrow MC has too few particles at low p_{τ}

- Looks like problem describing diffraction
- Or at least that global tunes have too limited input in diffractive regime
- Feature also affecting other distributions

NB: Slight differences in set of MC models shown in different plots...

NB: To be brief, not showing plots at 2.36 TeV or for phase-space with $n_{ch} \ge 6$, $p_{T} > 500 MeV$

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Results: Energy scaling of central multiplicity

Best agreement found in diffraction-limited phase-spaces

- Several models have very good fit here AMBT1 excellent
- Bad fit for p_{τ} >100MeV phase-space where the diffractive component is large
- Large model to model fluctuations in this phase-space

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Results: p_{T} distributions

Measurement spans 10 orders of magnitude!

No MC model describes data at all $p_{_{\rm T}}$

• Best fit at intermediate range

Models predict too few particles at low $\boldsymbol{p}_{_{\! T}}$

• Already observed from η -distributions

Larger spread in model predictions at higher $p_{\!\!\!\!\!_{}}$ values

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Results: Multiplicity distributions

Most models overshoots at low $\rm n_{_{ch}}$ and undershoots at high $\rm n_{_{ch}}$

- Connected through normalisation
- Intermediate range better
- \Rightarrow models have too low multiplicity,
- as seen on η -distributions
- Discrepancy pronounced at 7 TeV

NB: The two leftmost plots are double-log plots while the two rightmost are single-log

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

50

60

n_{ch}

In both phase-spaces curves exhibits change in slope around $n_{ch} \approx 10$

• Hinting at multiple production mechanisms?

Big variations in model predictions Low n_{ch} difficult (diffraction again?)

- Slopes at high n_{ch} mostly OK

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Angular correlations

- In addition to multiplicity distributions, event shapes can also provide constraints for MC tunes and insights into QCD
 - > <u>Underlying Event studies to be presented by D. Kar in the afternoon</u>
 - Angular correlations discussed here
- > Define leading particle as particle in phase-space with highest p_{τ}
- Define \Delta\u00e9 for each non-leading particle as unsigned azimuthal angle with respect to leading particle
- Construct robust distributions with minimal systematic errors in light of detector level tracking inefficiencies and phi-assymetries
- Use phase-space with more uniform tracking efficiencies:
 - > $p_{_{T}}$ > 500MeV, $n_{_{ch}} \ge 2$

> $|\eta| < 1.0$, 2.0 or 2.5 (multiple to provide more handles)

Angular correlations: Distributions

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Angular correlations: Uncorrected test on MC

Even without any special corrections, MC tests with raw distributions prove the methods to be quite robust:

> Remaining bias mainly due to lost tracks \Rightarrow corrections applied

Angular correlations: Corrections

Event selection:

- > Only events with low n_{sal} are lost. These contribute with few entries.
- Background tracks not correlated with leading track (from pileup, secondaries from non-leading particles, ...):
 - > Contributes relatively uniformly to $\Delta \phi \Rightarrow$ cancels out in subtractions.
- Background tracks correlated with leading track:
 - > Estimate fraction f_{bka} from MC and apply weight: 1- f_{hka}
- Misclassified due to p_r resolution (e.g. swap leading and 2rd leading):
 - > Small effect since distributions will be similar when $p_{T_1} \approx p_{T_2}$
- > Non-leading particles lost to tracking inefficiency:
 - > Correct by tracking efficiency known from MC: $1/\epsilon_{trk}$ (p_{τ},η)

Leading particle lost to tracking inefficiency:

➢ Bigger effect since angular distributions to 2rd leading track can be somewhat different ⇒ Data-driven correction implemented...

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Angular correlations: Correct for loss of leading part.

Estimate fraction of leading particles reconstructed as tracks:

- > Integrate ϵ^{MC} (p_T, \eta) over p_T and η spectrum from data
- > For $|\eta| < 2.5$ this gives 81% chance to retain track
- Artificially ignore the leading track in 0%, 20%, ..., 100% of events
- Extrapolate to 100% retained leading particles bin-by-bin

References

- > Charged-particle multiplicities in pp interactions at \sqrt{s} = 900 GeV measured with the ATLAS detector at the LHC
 - > p₁>500MeV, Phys Lett B 688, Issue 1 (2010), 21-42
- Charged particle multiplicities in pp interactions at s = 7 TeV measured with the ATLAS detector at the LHC
 - > p_>500MeV, ATLAS conference note: ATLAS-CONF-2010-024
- Charged particle multiplicities in pp interactions for track PT > 100MeV at sqrt(s) = 0.9 and 7 TeV measured with the ATLAS detector at the LHC
 - > ATLAS conference note: ATLAS-CONF-2010-046
- Charged particle multiplicities in pp interactions at sqrt(s) = 2.36 TeV measured with the ATLAS detector at the LHC
 - > p_>500MeV, ATLAS conference note: ATLAS-CONF-2010-047
- Angular correlations between charged particles from proton-proton collisions at sqrt(s) = 900 GeV and sqrt(s) = 7 TeV measured with ATLAS detector
 - > ATLAS conference note: ATLAS-CONF-2010-082
- Charged particle multiplicities in pp interactions at sqrt(s) = 0.9 and 7 TeV in a diffractive limited phase-space measured with the ATLAS detector at the LHC and a new PYTHIA6 tune
 - > ATLAS Minimum Bias Tune 1 (AMBT1), ATLAS-CONF-2010-031

Summary

Several minimum bias results from ATLAS available:

> Inclusive distributions measured at 0.9 and 7 TeV with well-defined phasespaces down to 100 MeV and 500 MeV with just 1 or 2 particles and at $|\eta|$ <2.5:

 $\frac{1}{N_{\rm ev}} \cdot \frac{\mathrm{d}N_{\rm ch}}{\mathrm{d}\eta}, \quad \frac{1}{N_{\rm ev}} \cdot \frac{1}{2\pi p_{\rm T}} \cdot \frac{\mathrm{d}^2 N_{\rm ch}}{\mathrm{d}\eta \mathrm{d}p_{\rm T}}, \quad \frac{1}{N_{\rm ev}} \cdot \frac{\mathrm{d}N_{\rm ev}}{\mathrm{d}n_{\rm ch}} \quad \text{and} \quad \langle p_{\rm T} \rangle \, \mathrm{vs.} \, n_{\rm ch}$

- Data point at 2.36 TeV where SCT was at standby was recovered for the first three distributions
- Diffractive limited phase-space used for new PYTHIA6 tune
- Angular correlations
- All data corrected back to particle level in a model-independent fashion facilitating easy comparison with MC models
 - > Many features reproduced by models, but significant discrepancies remain
- Subsystems of ATLAS relevant for such studies are all performing very well and in a well-understood manner:
 - > MBTS trigger, Inner Tracker, software, ...

Backup material

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

Inner Tracker Performance

Multiple scattering dominated at low momentum

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

More plots on beam-backgrounds

Another way to estimate the level of beam-background which does not depend on MBTS timing differences (which are not always available with a single-arm trigger):

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

η -dependence of $p_{_{\!\!\!\!-}}$ reco performance

- > Flatness of p_{τ} vs. η used to gauge uncertainty due to mis-alignments and mis-measured tracks.
- > Effects enhanced outside TRT acceptance at $2.1 < |\eta| < 2.5$

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

More on pixel-track method at 2.36 TeV

- > No SCT dependence \Rightarrow Determine tracking efficiency from nominal MC as always
- However presence of unused trackers SCT+TRT allows data-driven correction
- Find tracks using only SCT+TRT trackers and find how often they can be connected with a Pixel track ("extension rate")

In MC, only hard scatterings between Pixel & SCT should lead to difference between this extension rate and standard efficiency from pixel-track to truth particle matching:

Pixel-track p_{T} resolution at 2.36 TeV

- Main drawback of pixel-track method is shortened track length, leading to degraded p_r resolution by about an order of magnitude compared to ID-tracks
 - Can be improved by refitting selected tracks using vertex as additional measurement
 - Still ~6 times worse

Systematic errors for 2.36 TeV analysis

Uncertainty on N _{ev}			
Source of uncertainty	Pixel track Method	ID track Method	
Vertex reconstruction efficiency	0.4%	< 0.1%	
Track reconstruction efficiency	0.5%	1.8%	
Different Monte Carlo Tunes	0.1%	0.4%	
Statistical uncertainty	1.2%	1.2%	
Total uncertainty on $N_{\rm ev}$	1.4%	2.6%	
Systematic uncertainty on $(1/N_{\rm ev}) \cdot ({\rm d}N_{\rm ch}/{\rm d}\eta)$			
Source of systematic uncertainty	Pixel track method	Track method	
Trigger and Vertex reconstruction efficiency	0.1%	< 0.1%	
Track reconstruction efficiency	3.4%	6 %	
Out of phase space correction	1.1%	< 0.1%	
Secondary fraction	0.6%	0.1%	
Correlated Uncertainty on N _{ev}	-0.5%	-1.8%	
Uncorrelated Uncertainties from $N_{\rm ev}$	1.3%	1.7%	
Total systematic uncertainty on $(1/N_{\rm ev}) \cdot ({\rm d}N_{\rm ch}/{ m d}\eta)$	3.5%	4.5 %	

Again, just shown here for one measurement

Pixel-track method better for multiplicity results due to tracking eff.

T. Kittelmann / 5th Workshop on High-pT Physics at LHC / September 27, 2010

p_>100MeV results: 900 GeV (top) & 7 TeV (bottom)

p_>500MeV results: 900 GeV (top) & 7 TeV (bottom)

Angular correlations: Uncertainties

		Relative uncertainty
Source of systematic uncertainty	Implemented	in first bins
Event selection inefficiency	bin-by-bin	1%-3%
Bias remaining after corrections	2% in first 4 bins	2%
Resolution - phase space boundaries	bin-by-bin	1%-2%
Resolution - leading track	bin-by-bin	0.1%-0.2%
Efficiency of leading tracks	bin-by-bin	0.1%-0.2%
Efficiency of non-leading tracks	0.2% in each bin	0.2%
ϕ dependence of the tracking efficiency	6×10^{-5} in each bin	0.1%-0.2%
Choice of the d_0^{PV} cut	9×10^{-5} in each bin	0.1%-0.3%
Statistical uncertainty		900 GeV: 3%-4%
		7 TeV: 0.3%-0.4%

Remaining systematic uncertainties contribute mainly in the first few bins...

Two-fold reason for better statistics at 7 TeV: More events and more entries per event