Probing high energy QCD via Correlations

Jamal Jalilian-Marian Baruch College, New York NY

5th international workshop on high p_t physics at LHC Instituto de Ciencias Nucleares, Mexico, Sept. 2010

QCD

Asymptotic freedom

pQCD - collinear factorization

QCD at high energy: CGC

Probes and signatures

pQCD in pp Collisions

Collinear factorization: separation of long and short distances

QCD: the old paradigm

but bulk of QCD phenomena happens at low Q

pp collisions at LHC

High energy nucleus- nucleus collisions

most produced particles are soft $\left(x \sim \frac{Pt}{\sqrt{S}} \to 0\right)$ thermalization?

Hadronic collisions at small x

A hadron at small **x**

 $\begin{array}{c} \mathbf{p}^{\top} \\ \mathbf{p}^{\top} \\ \mathbf{p}^{\top} \end{array} \quad \text{is the fraction of hadron} \\ \text{energy carried by a parton} \end{array}$

 \mathbf{X}

gluon radiation at small x :pQCD

The infrared sensitivity of bremsstrahlung favors the emission of 'soft' (= small-x) gluons

$$\mathrm{d}\mathcal{P} \propto \alpha_s \frac{\mathrm{d}k_z}{k_z} = \alpha_s \frac{\mathrm{d}x}{x}$$

The 'price' of an additional gluon:

$$\mathcal{P}(1) \propto \alpha_s \int_x^1 \frac{\mathrm{d}x_1}{x_1} = \alpha_s \ln \frac{1}{x} \qquad n \sim e^{\alpha_s \ln 1/x}$$

Gluon saturation

Effective Action + RGE

The Classical Field

saddle point of effective action-> Yang-Mills equations

A hadron at high energy is a Color Glass Condensate

a state with large (gluon) occupation number $O[\frac{1}{\alpha_s}]$ very different time scales between large and small x modes $Q_s(x, b_t, A)$ can provide a <u>hard</u> infrared cutoff

QCD at High Energy: Wilsonian RG

JIMWLK eq. describes x evolution of observables

Evolution of the 2-point function

Basic building block in DIS, pA processes

$$egin{aligned} rac{\mathrm{d}}{\mathrm{d}\mathbf{y}} < \mathrm{Tr}\mathbf{V}^{\dagger}_{\mathbf{x}}\,\mathbf{V}_{\mathbf{y}} > &= -rac{ar{lpha}_{\mathbf{s}}}{2\pi}\int\mathrm{d}^{2}\mathbf{z}\,rac{(\mathbf{x}-\mathbf{y})^{2}}{(\mathbf{x}-\mathbf{z})^{2}(\mathbf{y}-\mathbf{z})^{2}} imes \ &\left[< \mathrm{Tr}\mathbf{V}^{\dagger}_{\mathbf{x}}\,\mathbf{V}_{\mathbf{y}} > -rac{1}{\mathrm{N}_{\mathbf{c}}} < \mathrm{Tr}\mathbf{V}^{\dagger}_{\mathbf{x}}\,\mathbf{V}_{\mathbf{z}}\,\mathrm{Tr}\mathbf{V}^{\dagger}_{\mathbf{z}}\,\mathbf{V}_{\mathbf{y}} >
ight] \end{aligned}$$

Evolution of 2-point function depends on 4-point function

$$rac{\mathbf{d}}{\mathbf{d}\mathbf{y}} < \mathrm{Tr}\mathbf{V}^{\dagger}_{\mathbf{x}}\,\mathbf{V}_{\mathbf{z}}\,\mathrm{Tr}\mathbf{V}^{\dagger}_{\mathbf{z}}\,\mathbf{V}_{\mathbf{y}} > \sim \mathbf{V}^{\mathbf{4}} + \cdots$$

Infinitely many coupled equations!

Evolution of the 2-point function

RW, NPA739 (2004) 183

Mean field + large N_c (BK eq.)

$$rac{\mathbf{d}}{\mathbf{d}\mathbf{y}} < \mathbf{Tr} \mathbf{V}^{\dagger}_{\mathbf{x}} \, \mathbf{V}_{\mathbf{y}} > = -rac{ar{lpha}_{\mathbf{s}}}{2\pi} \int \mathbf{d}^{\mathbf{2}} \mathbf{z} \, rac{(\mathbf{x}-\mathbf{y})^{\mathbf{2}}}{(\mathbf{x}-\mathbf{z})^{\mathbf{2}}(\mathbf{y}-\mathbf{z})^{\mathbf{2}}} imes$$

$$igg | < {
m Tr} {
m V}_{{f x}}^{\dagger} \, {
m V}_{{f y}} > - rac{1}{{
m N}_{{f c}}} < {
m Tr} {
m V}_{{f x}}^{\dagger} \, {
m V}_{{f z}} > < {
m Tr} {
m V}_{{f z}}^{\dagger} \, {
m V}_{{f y}} > igg |$$

All higher point functions are expressed in terms of the 2-point function

extended scaling region: $< {
m Tr} {f V}_{f x}^{\dagger} {f V}_{f y} > = {f F} ig[({f x} - {f y}) {f Q}_{f s}^2 ig]$

IIM, NPA708 (2002) 327

Running coupling BK

Output: Modified evolution kernel:

$$\begin{array}{ll} \Rightarrow \text{ Leading order:} & \frac{\partial S(\underline{x},\underline{y};Y)}{\partial Y} = \int d^2z \ K^{LO}(\underline{r},\underline{r_1},\underline{r_2}) \ \left[S(\underline{x},\underline{z}) \ S(\underline{z},\underline{y}) - S(\underline{x},\underline{y})\right] \\ & \downarrow \\ \Rightarrow \text{ Running coupling:} & \frac{\partial S(\underline{x},\underline{y};Y)}{\partial Y} = \int d^2z \ \tilde{K}(\underline{r},\underline{r_1},\underline{r_2}) \ \left[S(\underline{x},\underline{z}) \ S(\underline{z},\underline{y}) - S(\underline{x},\underline{y})\right] \\ \end{array}$$

$$\tilde{K}_{Bal}(\underline{r},\underline{r}_1,\underline{r}_2) = \frac{N_c \,\alpha_s(r^2)}{2\pi^2} \left[\frac{r^2}{r_1^2 r_2^2} + \frac{1}{r_1^2} \left(\frac{\alpha_s(r_1^2)}{\alpha_s(r_2^2)} - 1 \right) + \frac{1}{r_2^2} \left(\frac{\alpha_s(r_2^2)}{\alpha_s(r_1^2)} - 1 \right) \right]$$

Road Map of QCD Phase Space

Probes and Signatures

effective degrees of freedom: Wilson line $V(x_t)$

evolution with $\ln(1/x) \longrightarrow$ suppression

Nuclear shadowing

Observables

DIS:

structure functions single and double inclusive spectra

PA (dilute-dense): multiplicities single and double inclusive spectra

AA, pp (dense-dense): multiplicities, spectra long range rapidity correlation RIDGE

only the 2-pt function contributes $N\equiv rac{1}{N_c} < Tr[1-V^{\dagger}(x_t)V(y_t)] >$

where JIMWLK eqs. determine the x dependence of N

CGC at HERA? Extended scaling

pA (dilute-dense) scattering

Single inclusive hadron production in pA

$$\frac{d\sigma^{pA \to hX}}{dY \, d^2 P_t \, d^2 b} = \frac{1}{(2\pi)^2} \int_{x_F}^1 dx \, \frac{x}{x_F} \qquad \qquad \text{AD} \\
 and \\
 JJM \\
 (2004) \\
 f_{q/p}(x, Q^2) \, N_F[\frac{x}{x_F} P_t, b, y] \, D_{h/q}(\frac{x_F}{x}, Q^2) + \\
 f_{g/p}(x, Q^2) \, N_A[\frac{x}{x_F} P_t, b, y] \, D_{h/g}(\frac{x_F}{x}, Q^2) \\
 \end{cases}$$

2-point function only: same as in DIS and photon, dilepton production in pA (FG and JJM)

UNIVERSALITY

Single inclusive hadron production $\mathrm{S}=200\,\mathrm{GeV}$

PRD74 (2006) 074018

dA at RHIC

J. Albacete + C. Marquet with running coupling BK equation

Also, KKT, BUW, RS,.....

Two-hadron Correlations

Two hadron correlations: DIS

$$\gamma^{\star} \mathbf{p}(\mathbf{A}) \to \mathbf{q} \, \bar{\mathbf{q}} \, \mathbf{X}$$

FG-JJM, PRD67 (2003)

 $\gamma^{\star} \mathbf{p}(\mathbf{A}) \to \mathbf{g} \mathbf{g} \mathbf{X}$

JJM-YK, PRD70 (2004) AK-ML, JHEP (2006)

two hadron production in DIS probes higher point functions

Two hadron correlation: pA

JJM and YK, PRD70 (2004), AK and ML, JHEP (2006), FGV, NPA (2006), CM, NPA796 (2007), KT, NPA (2010)

two hadron production in pA probes higher point functions (up to 6-pt function)

dA: two hadron production

$$O_{2}(r,\bar{r}) \equiv TrV_{r} V_{\bar{r}}^{\dagger} - \mathbf{F2} \text{ in DIS, single hadron in pA}$$

$$O_{4}(r,\bar{r}:s) \equiv \frac{1}{2} \left[TrV_{r}^{\dagger} V_{s} \ TrV_{\bar{r}} V_{s}^{\dagger} - \frac{1}{N_{c}} TrV_{r}^{\dagger} V_{\bar{r}} \right]$$

$$O_{6}(r,\bar{r}:s,\bar{s}) \equiv \frac{1}{2} \left[TrV_{r} V_{\bar{r}}^{\dagger} V_{\bar{s}} V_{s}^{\dagger} TrV_{s} V_{\bar{s}}^{\dagger} - \frac{1}{N_{c}} TrV_{r} V_{\bar{r}}^{\dagger} \right]$$

Dipole + large Nc approximation:

 $\begin{array}{ll} \langle O_4(r,\bar{r}:s)\rangle &\simeq & \langle O_2(r-s)\rangle \left\langle O_2(s-\bar{r})\right\rangle \\ \langle O_6(r,\bar{r}:s,\bar{s})\rangle &\simeq & \langle O_2(r-s)\rangle \left\langle O_2(\bar{r}-\bar{s})\right\rangle \left\langle O_2(s-\bar{s})\right\rangle \\ &+ & \langle O_2(r-\bar{r})\rangle \left\langle O_2(\bar{s}-s)\right\rangle \left\langle O_2(s-\bar{s})\right\rangle \end{array}$

Beyond dipole + large Nc

JIMWLK evolution equation:

$$\frac{d}{dy}\langle O\rangle = \frac{1}{2} \left\langle \int d^2x \, d^2y \, \frac{\delta}{\delta \alpha_x^b} \, \eta_{xy}^{bd} \, \frac{\delta}{\delta \alpha_y^d} \, O \right\rangle$$

$$\eta_{xy}^{bd} = \frac{1}{\pi} \int \frac{d^2z}{(2\pi)^2} \frac{(x-z) \cdot (y-z)}{(x-z)^2 (y-z)^2} \left[1 + U_x^{\dagger} U_y - U_x^{\dagger} U_z - U_z^{\dagger} U_y \right]^{bd}$$

JIMWLK: Beyond dipole + large Nc

AD-JJM, arXiv:1008.0480

Recall evolution of S2 is sensitive to S4 only

Leading Nc:
$$\frac{d}{dy}S_4(r,\bar{r}:s) \simeq \frac{d}{dy}[S_2(s-\bar{r})S_2(r-s)]$$

DIS, single inclusive production in pA probe S2

$$\frac{d}{dy}S_6(r,\bar{r}:s,\bar{s}) \simeq \frac{d}{dy}\left[S(r-s)\ S(\bar{s}-\bar{r})\ S(s-\bar{s}) + S(r-\bar{r})\ S(s-\bar{s})\ S(s-\bar{s})\ S(s-\bar{s})\ S(s-\bar{s})\right] + \mathbf{MANYMORE}$$

Beyond dipole + large Nc approximation

Dipole approximation

Making the dipole approximation before the evolution misses many leading Nc terms Two hadron production is sensitive to JIMWLK

disappearance of back to back jets

Experimental evidence for "monojet" production

"Coincidence probability" measured by STAR Coll. at forward rapidities:

$$CP(\Delta\phi) = \frac{1}{N_{trig}} \frac{dN_{pair}}{d\Delta\phi}$$

- ΔΦ=0 (near side) peak originates from two pion fragments within the same quark jet

- ΔΦ=Π (away side) peak suppressed in central d+Au coll with respect to p+p collisions

theory fits from Albacete + Marquet, PRL (2010)

Photon-Hadron correlations:dA

- another process to test CGC formalism
- less inclusive than single inclusive particle production
- one less hadron fragmentation function

theoretically cleaner: 2-point function only

- lower rates compared to two hadron production
- photons are hard to measure

will help distinguish between different approaches

 $\mathbf{q}(\mathbf{p}) \mathbf{T} \rightarrow \mathbf{q}(\mathbf{q}) \gamma(\mathbf{k}) \mathbf{X}$

$$\frac{d\sigma^{d\,\mathbf{A}\to\mathbf{h}\,\gamma\,\mathbf{X}}}{d^{2}b_{t}\,dq_{t}^{2}\,dk_{t}^{2}\,dy_{\gamma}\,dy_{h}\,d\theta} = \mathbf{a}\,\int_{\mathbf{z_{min}}}^{1}\,\frac{dz}{z^{5}}\,\mathbf{f}_{q/d}(\mathbf{x_{p}},\mathbf{Q^{2}})$$

$$\mathbf{D_{h/q}(z, Q^2)[z^2 + (\frac{q^-}{q^- + zk^-})^2]} \frac{(\tilde{\mathbf{q}_t} + zk_t)^2}{(k^- \tilde{\mathbf{q}_t} - q^- \tilde{\mathbf{k}_t})^2} \mathbf{N_F(|\tilde{\mathbf{q}_t}/z + \tilde{\mathbf{k}_t}|)^2}$$

FG-JJM, PRD66 (2002) 014021 JJM, EPJC61 (2009) 789

Kopeliovich et al., Rezaeian 2010

pQCD limit

Photon-Hadron correlations:dA

AA/pp Collisions at High Energy

Factorization theorems Gelis, Lappi, Venugopalan quantum corrections (ln 1/x) absorbed into $\mathbf{W}[\rho]$

Colliding Sheets of Color Glass

before the collision:

$$\mathbf{A^{+} = A^{-} = 0}$$

$$\mathbf{A^{i} = A^{i}_{1} + A^{i}_{2}}$$

$$\mathbf{A^{i}_{1} = \theta(\mathbf{x}^{-})\theta(-\mathbf{x}^{+})\alpha^{i}_{1}}$$

$$\mathbf{A^{i}_{2} = \theta(-\mathbf{x}^{-})\theta(\mathbf{x}^{+})\alpha^{i}_{2}}$$

after the collision:

solve for \mathbf{A}_{μ}

in the forward LC

GLASMA:

gluon fields produced in collision of two sheets of color glass

Early on glasma fields (E and B) are longitudinal

Classical solutions are boost invariant

Transverse size of these flux tubes is $\sim \frac{1}{Q_s}$

Ridge in AA (long-range rapidity correlations)

$$au \leq au_{\mathbf{fo}} \, \mathbf{e}^{-rac{1}{2}|\mathbf{y}_{\mathbf{A}} - \mathbf{y}_{\mathbf{B}}|}$$

DGMV: NPA810 (2008) 91

Two-gluon production in AA/pp

$$\frac{dN_{2}}{d^{2}p_{\perp}dy_{p}d^{2}q_{\perp}dy_{q}} = \frac{\alpha_{s}^{2}}{16\pi^{10}} \frac{N_{c}^{2}S_{\perp}}{(N_{c}^{2}-1)^{3} p_{\perp}^{2}q_{\perp}^{2}} \times \int d^{2}k_{\perp} \left\{ \Phi_{A}^{2}(y_{p}, \mathbf{k}_{\perp})\Phi_{B}(y_{p}, \mathbf{p}_{\perp} - \mathbf{k}_{\perp}) \times [\Phi_{B}(y_{q}, \mathbf{q}_{\perp} + \mathbf{k}_{\perp}) + \Phi_{B}(y_{q}, \mathbf{q}_{\perp} - \mathbf{k}_{\perp})] + \Phi_{B}^{2}(y_{q}, \mathbf{k}_{\perp})\Phi_{A}(y_{p}, \mathbf{p}_{\perp} - \mathbf{k}_{\perp}) \times [\Phi_{A}(y_{q}, \mathbf{q}_{\perp} + \mathbf{k}_{\perp}) + \Phi_{A}(y_{q}, \mathbf{q}_{\perp} - \mathbf{k}_{\perp})] \right\} \times \left[\Phi_{A}(y_{q}, \mathbf{q}_{\perp} + \mathbf{k}_{\perp}) + \Phi_{A}(y_{q}, \mathbf{q}_{\perp} - \mathbf{k}_{\perp})] \right\}$$

Ridge in AA

CGC glasma flux tubes DGMV: NPA810 (2008) 91

Azimuthal angle dependence enhanced by radial flow in QGP

Ridge in pp at LHC

High energy QCD: Color Glass Condensate

A new region of QCD phase space

A systematic approach with controlled approximations

Q_s: a dynamical semi-hard scale Evidence for CGC at HERA, RHIC soon to be tested at LHC

CMS data on high multiplicity events in pp are in qualitative agreement with CGC predictions