El modelo 000000000	Resultados: O	Otros proyecto	References 000
			_
Primer ta	ller: Más allá del Moo	delo Estándar v	
	Astropartículas		
	Materia oscura escalar bicom	ponente.	

Lucía E. Gutiérrez

Instituto de Física Universidad Nacional Autónoma de México.

March 15, 2023

Objetivo:

Analizar la viabilidad de un modelo de materia oscura compuesta por dos campos escalares.

Falta de señales en la búsqueda directa e indirecta de materia oscura.

Figure: Cúmulo bala. Crédito : X-ray : NASA / CXC/ CfA / M.Markevitch et al. ; Lensing Map : NASA / STScl; ES WFI; Magellan / U.Arizona/ D.Clowe et al. Optical : NASA/STScl; Magellan / U.Arizona / D.Clowe et al.;

Modelo de referencia

Campo escalar clásico complejo

- $V(|\phi|) = \mu^2 |\phi|^2 + \sigma^2 |\phi|^4$
- \blacksquare $m_{\phi} \simeq 10^{-21} {\rm eV}$
- Completamente no interactuante con otro tipo de materia.
- Estructura del Universo ¹
- Estructura armónica de las perturbaciones²
- Perfiles de v_{rot} y halos galácticos ³
- Evita la súper abundancia de galaxias satélites

¹Schive, Chiueh, and Broadhurst, "Cosmic Structure as the Quantum Interference of a Coherent Dark Wave"; Mocz et al., "Galaxy formation with BECDM – II. Cosmic filaments and first galaxies"

²Cembranos, Maroto, and Núñez Jareño, "Cosmological perturbations in coherent oscillating scalar field models"; Amendola, "Perturbations in a coupled scalar field cosmology"

³Bernal, Matos, and Nunez, "Flat central density profiles from scalar field dark matter halo"

El modelo 000000000	Resultados: O	Otros proyecto	References 000
Candidatos			
	Candidatos Higgs-like (Cuánt Axion-like (Cuánt	escalares: iico) ico)	
Axión en QFT		Higgs-like	
Bosón de Goldsto U(1) SSB, f_a $m_a \approx 6\mu \text{eV} \left(\frac{10^{12}\ell}{f_a}\right)$ Escala de física no $V_a(\Phi_a) = \Lambda_a^4 \left[1 - \frac{1}{2}\right]$ Axion-like $m_a \not\leftarrow$ correccione	ne $\frac{\operatorname{GeV}}{\operatorname{p}}$) p perturbativa Λ_a $\cos\left(\frac{\Phi_a}{t_a}\right)$] s radiativas de QCD	Doblete $SU(2)$ del SM $\Phi_h = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix} =$ Higgs inerte y e $\Phi^0 \rightarrow DMC$ $V_h(\Phi_h) = m_h^2(\Phi)$ $m_h \sim \text{GeV}$	de alguna Extensión $\frac{1}{\sqrt{2}} \begin{pmatrix} \Phi_1 + i\Phi_2 \\ \Phi_3 + i\Phi_4 \end{pmatrix}$ stable $\Phi_h^{\dagger} \Phi_h) + \frac{\lambda_h}{2} (\Phi_h^{\dagger} \Phi_h)^2$
Modelos cuánticos			

Modelos de campo clásico que se puedan incluir en la acción gravitacional y que obedezcan una ecu. semiclásica de movimiento (K-G).

4/17

March 15, 2023

00000000 0 00 00 00 00		Resultados:	Otros proyecto	References
	00000000	0	00	000

Acoplamiento con el campo gravitacional.

Consideramos dos campos escalares cosmológicos (ψ_1, ψ_2), que contribuyen a la densidad de energía y materia del Universo y los acoplamos a la gravedad,

$$S = \int d^4 x \sqrt{-g} \left(\frac{c^4}{16\pi G} R + \mathcal{L}_{\Phi_1, \Phi_2} \right).$$
 (1)

En donde,

$$2\mathcal{L}_{\Phi_1,\Phi_2} = -\nabla^{\mu}\Phi_1^*\nabla_{\mu}\Phi_1 - \nabla^{\mu}\Phi_2^*\nabla_{\mu}\Phi_2 - V(\Phi_1,\Phi_2).$$
⁽²⁾

La variación de la acción con respecto a los campos Φ_1 y Φ_2 , nos da las ecuaciones de movimiento (K-G),

$$\Box \Phi_1 - \frac{dV}{d|\Phi_1|^2} \Phi_1 = 0$$

$$\Box \Phi_2 - \frac{dV}{d|\Phi_2|^2} \Phi_2 = 0$$

Instituto de Fisica

(3)

El modelo	Resultados:	Otros proyecto	References
000000000	O	OO	000

En el caso homogéneo, (FL + k = 0),

$$H^{2} = \frac{8\pi G}{3c^{2}} [\rho_{r}(t) + \rho_{b}(t) + \rho_{\Lambda}(t) + \rho_{\Phi_{1},\Phi_{2}}],$$
(4)

 ρ_x , $x = r, b, \Lambda$, es la densidad de energía asociada al tensor de energía momento.

$$\rho_{\Phi_1,\Phi_2} = \frac{1}{2c^2} |\partial_t \Phi_1|^2 + \frac{1}{2c^2} |\partial_t \Phi_2|^2 + \frac{1}{2} V(\Phi_1,\Phi_2).$$
(5)

$$p_{\Phi_1,\Phi_2} = \frac{1}{2c^2} |\partial_t \Phi_1|^2 + \frac{1}{2c^2} |\partial_t \Phi_2|^2 - \frac{1}{2} V(\Phi_1,\Phi_2).$$
(6)

Necesitamos encontrar valores para ρ_{Φ_1,Φ_2} y p_{Φ_1,Φ_2} . Suponemos,

$$V(\Phi_1, \Phi_2) = V_1(\Phi_1) + V_2(\Phi_2).$$
(7)

Por lo cual,

$$\begin{aligned} \rho_{\Phi_1,\Phi_2} &= \rho_1 + \rho_2 \qquad \rho_1 = \frac{1}{2c^2} |\partial_t \Phi_1|^2 + \frac{1}{2c^2} V_1(\Phi_1) \\ \rho_{\Phi_1,\Phi_2} &= \rho_1 + \rho_2 \qquad \rho_2 = \frac{1}{2c^2} |\partial_t \Phi_2|^2 + \frac{1}{2c^2} V_2(\Phi_2) \end{aligned}$$

Resolver el sistema de ecu. (3) y (4) considerando casos representativos para V_1 , V_2 .

El mode 0000	elo Res 0●0000 0	sultados:	Otros proyecto	References 000
Cas	sos representativos:			
	Casos representativos:			
	■ Higgs-like, <i>m_h</i> = 100GeV	$\lambda_h = 1.$		
	$V_h(\Phi_h) = m_h^2(\Phi_h^{\dagger}\Phi_h)$	$+ {\lambda_h\over 2} (\Phi_h^\dagger \Phi_h)^2,$	$\Phi_h = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Phi_1 + i \Phi_2 \\ \Phi_3 + i \Phi_4 \end{pmatrix} \ .$	
	Axion-like, $m_a \approx 6 \times \mu eV$	$\left(\frac{10^{12}\text{GeV}}{f_a}\right), f_{aGUT} = 10^{16}$	GeV y $f_{aPlank} = 10^{19}$ GeV.	
		$V_a(\Phi_a) = \frac{1}{2} \left(m_a^2 \Phi_a^2 - \right)$	$\frac{1}{12} \frac{m_a^2}{f_a^2} \Phi_a^4 \bigg) \ .$	
	Campo clásico ⁴ , m = 5.7	$ imes$ 10 ⁻¹⁰ eV y $\lambda = -5.40$	10^{-70} .	
		$V(\phi) = \mu^2 \phi ^2 - $	$+\sigma^2 \phi ^4$.	

Suponemos que los potenciales son validos durante toda la evolución del Universo.

Posibles combinaciones

Modelo I = Clásico + Higgs

Modelo II = Axión + Higgs

Modelo III = Clásico + Axión

Li, Rindler-Daller, and Shapiro, "Cosmological Constraints on Bose-Einstein-Condensed Scalar Field Dark

Matter"

Evolución temporal de la densidad

Condiciones de frontera:

- *a* = 1,
- Ω_{i0}, conocidos de las observaciones.

•
$$\Omega_{c0} = \rho_1 + \rho_2$$
, en *a* = 1.

$$\rho_1(a = 1) = k\Omega_{c0}\rho_{crit},$$

$$\rho_2(a = 1) = (1 - k) \Omega_{c0}\rho_{crit}.$$

Figure: Densidad de energía para los campos individuales. Las líneas continuas corresponden a la cosmología de referencia clásica de autointeracción positiva Li, Rindler-Daller, and Shapiro, "Cosmological Constraints on Bose-Einstein-Condensed Scalar Field Dark Matter". Las líneas punte das corresponden al Universo CDM, la cual coincide con la getier para el Higgs y el axión.

IF UNAM

Resultados:

Otros proyecto

Evolución temporal de la ecuación de estado

Figure: Ecuaciones de estado para los modelos con un solo campo escalar. El campo clásico transita por tres fases el campo Axion-like transita por dos fases y el campo Higgs-like permanece indistinguible del paradigma trade Fisic ACDM. Resultados:

Otros proyecto

References

Evolución de la densidad para el modelo de dos campos.

Figure: Evolución de los parámetros de densidad del Universo. Las líneas sólidas corresponden al modelo de campo escalar como materia oscura con dos componentes y las lineas quebradas representan al resto de contribuciones a la densidad.

00000	00000

Resultados O Otros proyecto

References 000

Número efectivo de neutrinos

Resultados:

Para un solo campo		
■ Clásico■ Higgs=ACDM■ Axión	√ X X	
Dos campos:		
axión + Higgs	Х	

 $\sqrt{}$

¡Tenemos un modelo viable!

Higgs + clásico

Si, hasta el 58% de la DM es Higgs-like.

Higgs + clásico

El modelo	Resultados: O	Otros proyecto	References 000
Trabajo en curso:			

Materia oscura escalar bicomponente

Grupo de norma: $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L} \times S3$.

Contenido extra de materia:

- 3 dobletes SU(2) en el sector de Higgs
- 3 Neutrinos de Majorana

3 Campos ϕ_i

Lagrangiana permitida por la simetría,

$$\mathcal{L}_{BL} = \mathcal{L}_{SM \times S3} - y^D \tilde{L} \tilde{H} N - \frac{1}{2} y^N \bar{N}^c \phi N - V(H, \phi), \tag{9}$$

En donde,

$$V(H,\phi) = V(\phi_i) + V(H_i) + V(H_i,\phi_i).$$

Schive et al.: Cosmic Structure as the Quantum Interference of a Coherent Dark Wave Schive:2014dra

Hsi-Yu Schive, Tzihong Chiueh, and Tom Broadhurst. "Cosmic Structure as the Quantum Interference of a Coherent Dark Wave". In: Nature Phys. 10 (2014), pp. 496–499. DOI: 10.1038/nphys2996. arXiv: 1406.6586 [astro-ph.GA].

Mocz et al.: Galaxy formation with BECDM – II. Cosmic filaments and first galaxies Mocz:2019uyd

Philip Mocz et al. "Galaxy formation with BECDM – II. Cosmic filaments and first galaxies". In: Mon. Not. Roy. Astron. Soc. 494.2 (2020), pp. 2027–2044. DOI: 10.1093/mnras/staa738. arXiv: 1911.05746 [astro-ph.CO].

J. A. R. Cembranos, A. L. Maroto, and S. J. Núñez Jareño. "Cosmological perturbations in coherent oscillating scalar field models". In: JHEP 03 (2016), p. 013. DOI: 10.1007/JHEP03(2016)013. arXiv: 1509.08819 [astro-ph.CO].

Amendola: Perturbations in a coupled scalar field cosmology

Amendola:1999dr

Luca Amendola. "Perturbations in a coupled scalar field cosmology". In: Mon. Not. Roy. Astron. Soc. 312 (2000), p. 521. DOI: 10.1046/j.1365-8711.2000.03165.x. arXiv: astro-ph/9906073.

Bernal et al.: Flat central density profiles from scalar field dark matter halo

Bernal:2003lwr

Argelia Bernal, Tonatiuh Matos, and Dario Nunez. "Flat central density profiles from scalar field dark matter halo". In: (Mar. 2003). arXiv: astro-ph/0303455.

Li et al.: Cosmological Constraints on Bose-Einstein-Condensed Scalar Field Dark Matter Li:2013nal

Bohua Li, Tanja Rindler-Daller, and Paul R. Shapiro. "Cosmological Constraints on Bose-Einstein-Condensed Scalar Field Dark Matter". In: Phys. Rev. D 89.8 (2014), p. 083536. DOI: 10.1103/PhysRevD.89.083536. arXiv: 1310.6061 [astro-ph.CO].

Dinámica del Universo

Ecuación de Friedmann, en términos del parámetro de densidad $\Omega_{tot} \equiv \rho / \rho_c$:

$$rac{k}{a^2} = H^2 \left(\Omega_{tot} - 1
ight), \ \ \Omega_{tot} = \sum_i \Omega_i + \Omega_\Lambda,$$

$$ho_c\equiv rac{3H^2}{8\pi G_N}~,~\Omega_\Lambda=\Lambda/3H^2,~H=100h.$$

Para la época actual:

 $\Omega_b, \ \ \Omega_\gamma, \ \ \Omega_
u \ \ y \ \ \Omega_c \ (\Omega_m = \Omega_b + \Omega_c)$

PDG

 $\Omega_{\gamma} h^2 = 2.47 \times 10^{-5}$ $\Omega_{\nu} h^2 = 5 \times 10^{-4}$

Muy pequeñas con respecto a Ω_m y Ω_{Λ} .

Resultados:

Historia térmica del Universo

Edad	Temperatura	Evento
0	∞	Big Bang
10 ⁻⁴³ s	10 ¹⁹ GeV	Era de Planck
10 ⁻³⁵ s	10 ¹⁶ GeV	Era de Gran Unificación
?	?	Inflación
?	?	Bariogénesis
10 ⁻¹¹ s	246 <i>GeV</i>	Rompimiento de la simetría electrodébil
10 ⁻⁵ s	200 <i>MeV</i>	Transición de fase de QCD
1 <i>s</i> — 15 <i>mn</i>	0.05 – 1 <i>MeV</i>	Big Bang Nucleosíntesis
60 <i>ka</i>	1 <i>eV</i>	Igualdad materia-radiación
370 <i>ka</i>	0.3 <i>eV</i>	Recombinación y desacoplamiento del fotón
0.2 – 1 <i>Ga</i>	15 – 50 <i>K</i>	Reionoización
1 – 10 <i>Ga</i>	3 – 15 <i>K</i>	Formación de estructura
6 <i>Ga</i>	4 <i>K</i>	Transición a un Universo acelerado
9 <i>Ga</i>	3 <i>K</i>	Formación del sistema solar
13.8 <i>Ga</i>	2.7 <i>K</i>	Actualidad
<i>ka</i> =10 ³ años	<i>Ga</i> =10 ⁹ años	K = Grados Kelvin

Table: Historia del Universo. Se muestra un resumen de los eventos más importantes en la historia del Univer desde el Big-Bang hasta la actualidad. Créditos: Cosimo Bambi y Alexandre D. Dolgov, 2016. Instituto de

UNAM

Paradigma ACDM

Cold Dark Matter (WIMPs)

Warm Dark Matter (mostly CDM but with some neutrinos as well)

Hot Dark Matter (neutrinos)

ΛCDM

- WIMPs
- Neutra
- No bariónica
- fría en el proceso de formación de estructura.
- Ω_{c0}
- Estructura a gran escala.

Inconvenientes

- SLP
- Sin señales de DM en búsqueda directa e indirecta.

Necesitamos modificar algunas hipótesis. Candidatos no SUSY y otros.

