Estudio numérico de un modelo para la evolución de las cuerdas cósmicas

E. N. Polanco-Euán, J. F. Nieto-Castellanos, E. López-Contreras, W. Bietenholz

Instituto de Ciencias Nucleares UNAM

Marzo 2023

- Defectos topológicos que pudieron haber sido formados en las transiciones de fase del universo en la etapa inflacionaria (alrededor de 10⁻³³s después del Big Bang) [1].
- Se han encontrado análogos en algunos sistemas de materia condensada [2].

Kibble, T. W. B. J. Phys. A: Math. Gen. 9 1387 (1976)
 Zurek, W. Nature 317, 505–508 (1985)

Mecanismo Kibble-Zurek (KZM)

Una transición de fase de segundo orden puede ser caracterizada tanto por la longitud de correlación en equilibrio ξ

$$\xi(\epsilon) = rac{C_{\xi}}{|\epsilon|^{
u}},$$

como por el tiempo de relajación en equilibrio τ

$$\tau(\epsilon) = \frac{C_{\tau}}{|\epsilon|^{z\nu}}.$$

 C_{ξ} y C_{τ} son constantes del ajuste, ν y z dependen de la clase de universalidad de la transición.

3 / 18

Mecanismo Kibble-Zurek

 ϵ es la temperatura reducida

$$\epsilon = \frac{T_c - T}{T_c}.$$

El KZM describe la dinámica de una transición de fase cerca de T_c , donde la dependencia de la temperatura con el tiempo puede asumirse lineal

$$T(t) = T_c[1 - \epsilon(t)],$$

de tal manera que la temperatura reducida es caracterizada por la tasa de enfriamiento τ_Q y varía linealmente de acuerdo a

$$\epsilon(t) = rac{t}{ au_Q}, \quad t \in [- au_Q, au_Q].$$

Mecanismo Kibble-Zurek

La frontera entre el escenario en equilibrio (adiabático) y fuera del equilibrio (congelamiento) puede ser estimada al comparar $\tau(t)$ en equilibrio con el tiempo para cruzar el punto crítico.

Imagen: Int. J. Mod. Phys. A **29**, 1430018 (2014).

La dependencia de defectos topológicos con la tasa de enfriamiento obedece una ley de potencia [2]

$$\rho_{\mathbf{v}} \sim A \Big(\frac{1}{\tau_Q} \Big)^{\frac{2\nu}{1+z\nu}}$$

[2] Kibble, T. W. B. J. Phys. A: Math. Gen. 9 1387 (1976)

Predicción del KZM

Lin, SZ., Wang, X., Kamiya, Y. et al. Nature Phys 10, 970-977 (2014)

El modelo en tres dimensiones XY es definido por el Hamiltoniano

$$H = -\sum_{\langle x,y
angle} ec{s}_x \cdot ec{s}_y$$

- Los espines \vec{s}_x son variables clásicas localizadas en S^1 .
- La suma corre sobre los vecinos más cercanos en una *lattice* de volumen *L*³.
- Se usan condiciones de frontera periódicas.

Observables

• Susceptibilidad magnética

$$\chi_{M} = \frac{1}{L^{3}} \left(\langle \vec{M}^{2} \rangle - \langle |\vec{M}| \rangle^{2} \right), \qquad \vec{M} = \sum_{x} \vec{s}_{x}.$$

 Densidad de vórtices ρ_ν
 Para determinarlos, se calcula la diferencia entre dos ángulos de dos espines consecutivos en una plaqueta:

$$\Delta_{i,x} = [\theta_{x+i} - \theta_x]_{\pi}$$

donde $[...]_{\pi}$ significa (...) mod 2π con un resultado entre el intervalo $(-\pi, \pi]$.

El número de vueltas en una plaqueta es

$$\frac{1}{2\pi}(\Delta_{i,x}+\Delta_{j,x+i}-\Delta_{i,x+j}-\Delta_{j,x})\in\{1,0,-1\}$$

Con ello se determina la *vorticidad* de una plaqueta. Éstos son los defectos topológicos en el modelo.

Líneas de vórtices

Se pueden formar líneas siguiendo las direcciones de cada vórtice en cada plaqueta. Las cuerdas cósmicas están relacionadas con las líneas de vórtices del modelo.

Susceptibilidad magnética

 β es el inverso de la temperatura (en unidades de *lattice*). El ajuste es compatible con $\beta_c = 0.454165$, es decir $T_c \approx 2.201847$

Densidad de vórtices en equilibrio

Densidad de vórtices como función del tiempo durante un proceso de enfriamiento fuera del equilibrio

14/18

Densidad de vórtices al final del enfriamiento, en dependencia de la tasa τ_Q

 $T_f = 0.001, L = 50$

Densidad de vórtices al final del enfriamiento, en dependencia de la tasa τ_Q

 $T_f = 0.6, L = 50$

Exponentes de escalamiento para diferentes temperaturas

T _f	Exponente
0.001	-0.8583(74)
0.01	-0.8489(32)
0.1	-0.8878(45)
0.2	-0.8978(50)
0.3	-0.8887(36)
0.4	-0.8860(25)
0.5	-0.9021(44)
0.6	-0.9128(39)
0.9	-1.0525(93)
1.3	-0.8825(98)
1.5	-0.6746(92)
1.6	-0.5612(80)
2.13	-0.063(20)

- Los defectos toplógicos son los vórtices, en el escenario congelado su densidad aumenta comparado con el escenario adiabático.
- Se confirma la predicción del mecanismo de Kibble y Zurek para la densidad de vórtices como propocional a una ley de potencia de τ_Q.
- Sin embargo, el exponente de escalamiento depende de la temperatura final. El papel del valor predicho se queda para ser clarificado.