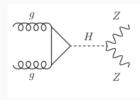
The ZZH vertex and CP violation

Taller: Más allá del Modelo Estándar y Astropartículas

CUAUTITLÁN

A. I. Hernández-Juárez [†] G. Tavares-Velasco ^{*}, A. Fernández-Téllez ^{*} March 16, 2023

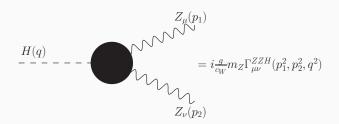
[†]FESC-UNAM, ^{*}FCFM-BUAP


Motivation

MOTIVATION

Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production

The CMS Collaboration*⊠



The *HZZ* vertex and its anomalous couplings

The HZZ vertex and its anomalous couplings 0000000

The $H^* \rightarrow ZZ$ process OO OOOOOOOO Final remarks

THE HZZ VERTEX AND ITS ANOMALOUS COUPLINGS

◊ The HZZ coupling can be induced by the Lagrangian

$$\mathcal{L} = \frac{g}{c_W} m_Z \Big[\frac{(1 - a_Z)}{2} H Z_\mu Z^\mu + \frac{1}{2m_Z^2} \Big\{ \hat{b}_Z H Z_{\mu\nu} Z^{\mu\nu} + \hat{c}_Z H Z_\mu \partial_\nu Z^{\mu\nu} + \tilde{b}_Z H Z_{\mu\nu} \tilde{Z}^{\mu\nu} \Big\} \Big],$$
(1)

where $Z_{\mu\nu} = \partial_{\mu}Z_{\nu} - \partial_{\nu}Z_{\mu}$ and $\tilde{Z}_{\mu\nu} = \epsilon_{\mu\nu\alpha\beta}Z^{\alpha\beta}/2$.

<i>lotivation</i>	

Final remarks

THE HZZ VERTEX AND ITS ANOMALOUS COUPLINGS

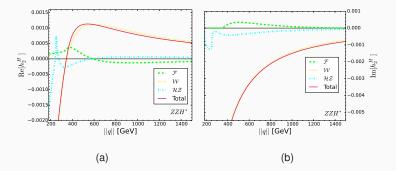
 The vertex function for the general case where the three bosons are off-shell

$$\Gamma_{\mu\nu}^{ZZH} = h_1^V(q^2, p_1^2, p_2^2) g_{\mu\nu} + \frac{h_2^V(q^2, p_1^2, p_2^2)}{m_Z^2} p_{1\nu} p_{2\mu} + \frac{h_3^V(q^2, p_1^2, p_2^2)}{m_Z^2} \epsilon_{\mu\nu\alpha\beta} p_1^\alpha p_2^\beta.$$
(2)

♦ The relation between the form factors h_i and the parameters of Lagrangian (1) for the kinematics $H^* \rightarrow ZZ (Z^* \rightarrow HZ)$ are

$$\begin{split} h_1(q^2,p_1^2,p_2^2) &= 1 + a_Z - \hat{b}_Z \frac{q^2 - p_1^2 - p_2^2}{m_Z^2} + \frac{\hat{c}_Z}{2} \frac{p_1^2 + p_2^2}{m_Z^2}, \quad \mbox{(3)} \\ h_2(q^2,p_1^2,p_2^2) &= \pm 2\hat{b}_Z, \quad \mbox{(4)} \\ h_3(q^2,p_1^2,p_2^2) &= \pm 2\tilde{b}_Z. \end{split}$$

THE HZZ VERTEX AND ITS ANOMALOUS COUPLINGS


- ♦ The form factors h_1^V and h_2^V are *CP*-conserving, whereas h_3^V is related to *CP* violation.
- ◊ In the SM:
 - at tree level $h_1^V = 1$,
 - at one-loop level the anomalous coupling \hat{b}_Z is induced,
 - and at three-loop¹ level $\tilde{b}_Z \approx 10^{-11}$.
 - At one-loop there are more than 37 contributing Feynman diagrams.

¹A. Soni and R. M. Xu, Probing CP violation via Higgs decays to four leptons, Phys. Rev. D 48, 5259 (1993).

The $H^* \rightarrow ZZ$ process OO OOOOOOOO Final remarks

The HZZ vertex and its anomalous couplings

 Analytical results in terms of the Passarino-Veltman scalar functions for h₂^H can be found at https://gitlab.com/ fcfm-buap-rc-group/zzh-anomalous-couplings.

Figure 1: One loop contributions to the real (left plot) and absorptive (right plot) parts of the form factor h_2^H .

Final remarks

THE HZZ VERTEX AND ITS ANOMALOUS COUPLINGS

◊ Using the current LHC data and our results for h^H₂ we can obtain bounds on the remaining anomalous couplings.

Table 1: Allowed intervals of the real and absorptive parts of the *CP* violating form factor of the *HZZ* coupling for a few values of the transfer momentum. We consider three different schemes: the LHC framework (a_3^{ZZ}) , a general effective Lagrangian approach (\tilde{b}_Z) and the SMEFT (\tilde{c}_{zz}) .

$\ q\ $	$\operatorname{Re}\left[a_{3}^{ZZ}\right]$	$\operatorname{Re}[\tilde{b}_Z]$	$\operatorname{Re}\left[\tilde{c}_{zz}\right]$
190	[-0.024, 0.009]	[-0.0045, 0.012]	[-0.033, 0.088]
285	$\left[-0.0029, 0.0011 ight]$	$\left[-0.00055, 0.0014 ight]$	[-0.004, 0.01]
400	$\left[-0.00053, 0.0014 ight]$	$\left[-0.0007, 0.00026 ight]$	[-0.0051, 0.0019]
800	$\left[-0.00069, 0.0018 ight]$	$\left[-0.0009, 0.00034 ight]$	[-0.0066, 0.0025]
1500	[-0.00036, 0.00095]	[-0.00047, 0.00018]	[-0.0034, 0.0013]

The $H^* \rightarrow ZZ$ process OO OOOOOOOO

The HZZ vertex and its anomalous couplings

Table 2: Allowed intervals of the real and absorptive parts of the *CP* violating form factor of the *HZZ* coupling for a few values of the transfer momentum. We consider three different schemes: the LHC framework (a_3^{ZZ}) , a general effective Lagrangian approach (\tilde{b}_Z) and the SMEFT (\tilde{c}_{zz}) .

$\ q\ $	$\operatorname{Im}\left[a_{3}^{ZZ}\right]$	$\operatorname{Im}[\tilde{b}_Z]$	$\operatorname{Im}[\tilde{c}_{zz}]$
190	[-0.026, 0.01]	[-0.005, 0.013]	[-0.037, 0.096]
285	[-0.018, 0.0069]	[-0.0034, 0.009]	[-0.025, 0.066]
400	[-0.012, 0.0044]	[-0.0022, 0.006]	[-0.016, 0.044]
800	[-0.0039, 0.0015]	[-0.00075, 0.0019]	[-0.0055, 0.014]
1500	[-0.0015, 0.00057]	[-0.00028, 0.00075]	[-0.002, 0.0055]

The $H^* \rightarrow ZZ$ process OO OOOOOOOO

THE HZZ VERTEX AND ITS ANOMALOUS COUPLINGS

Table 3: Allowed intervals for the real and absorptive parts of one of the *CP* conserving form factors of the *HZZ* coupling for a few values of the transfer momentum. We consider three different schemes: the LHC framework (κ_1^{ZZ}), a general effective Lagrangian approach (\hat{c}_Z) and the SMEFT ($\tilde{c}_{z\Box}$).

q	$\operatorname{Re}[k_1^{ZZ}](\operatorname{Re}[\hat{c}_Z])$	$\operatorname{Re}[c_{z\Box}]$	$\operatorname{Im}[k_1^{ZZ}](\operatorname{Im}[\hat{c}_Z])$	$\operatorname{Im}[c_{z\Box}]$
190	[-0.0024, 0.0046]	[-0.0058, 0.011]	[-0.0026, 0.005]	[-0.0063, 0.012]
285	[-0.00028, 0.00055]	[-0.00068, 0.0013]	[-0.0018, 0.0035]	[-0.0043, 0.0085]
400	[-0.00027, 0.00014]	[-0.00065, 0.00034]	[-0.0012, 0.0023]	[-0.0029, 0.0055]
800	[-0.00034, 0.00017]	[-0.00082, 0.00041]	[-0.00038, 0.00075]	[-0.00092, 0.0018]
1500	[-0.00019,0.0001]	[-0.00046, 0.00024]	[-0.00015, 0.00029]	[-0.00036, 0.0007]

 Our limits are one or two orders of magnitude tighter than previous results.

The $H^* \to ZZ$ process

◇ To study the role of the imaginary part of the anomalous couplings in the Z boson pair production, we consider the h^H_i form factors as complex quantities

$$h_i^H = \operatorname{Re}[h_i^H] + i \operatorname{Im}[h_i^H], \qquad (6)$$

 $\diamond~$ and the amplitude for the $H^* \to ZZ$ process is

$$\mathcal{M}(\lambda_{1},\lambda_{2}) = \frac{g}{c_{W}} m_{Z} \left\{ g^{\mu\nu} \left(\operatorname{Re}\left[h_{1}^{H}\right] + i \operatorname{Im}\left[h_{1}^{H}\right] \right) + \frac{p_{2}^{\mu} p_{1}^{\nu}}{m_{Z}^{2}} \left(\operatorname{Re}\left[h_{2}^{H}\right] + i \operatorname{Im}\left[h_{2}^{H}\right] \right) + \frac{\epsilon^{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta}}{m_{Z}^{2}} \left(\operatorname{Re}\left[h_{3}^{H}\right] + i \operatorname{Im}\left[h_{3}^{H}\right] \right) \right\} \epsilon_{\mu}^{*}(p_{1},\lambda_{1}) \epsilon_{\nu}^{*}(p_{2},\lambda_{2}),$$

$$(7)$$

Motivation OO	The HZZ vertex and its anomalous couplings	The $H^* \rightarrow ZZ$ process $\bigcirc \bigcirc $	Final remarks

 From the amplitude (7), the partial decay width in terms of the real and adsorptive parts of the h^H_i form factors can be obtained:

$$\Gamma_{H^* \to ZZ} = \frac{g^2 \sqrt{q^2 - 4m_Z^2}}{512\pi q^2 c_W^2 m_Z^6} \mathcal{T},$$

where \mathcal{T} is in terms of $\operatorname{Re}[h_i^H]$ and $\operatorname{Im}[h_i^H]$.

♦ Eq. (8) reduces to the SM tree-level result when $\operatorname{Re}[h_1^H] = 1$, $\operatorname{Re}[h_{2,3}^H] = \operatorname{Im}[h_{1,2,3}^H] = 0$:

$$\Gamma_{H^* \to ZZ}^{\text{Tree}} = \frac{g^2 \sqrt{q^2 - 4m_Z^2}}{512\pi c_W^2 m_Z^6} \left(4q^2 m_Z^4 - 16m_Z^6 + 48\frac{m_Z^8}{q^2} \right).$$
(9)

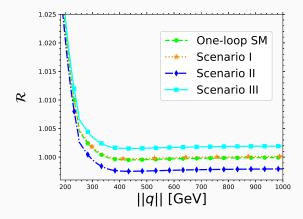
(8)

Motivation	The <i>HZZ</i> vertex and its anomalous couplings	The $H^* \rightarrow ZZ$ process $\bigcirc \bigcirc $	Final remarks

The $H^* \to ZZ$ process

 $\diamond\,$ To study the anomalous couplings contributions we define the ratio $$\Gamma_{\rm T}$$

$$\mathcal{R} = \frac{\Gamma_{H^* \to ZZ}}{\Gamma_{H^* \to ZZ}^{\text{Tree}}}.$$
(10)


- We also consider the following scenarios:
 - Scenario I: $\operatorname{Re}[\hat{c}_Z] = 0.0001$, $\operatorname{Im}[\hat{c}_Z] = 0.001$, $\operatorname{Re}[\tilde{b}_Z] = 0.0001$ and $\operatorname{Im}[\tilde{b}_Z] = 0.001$.
 - Scenario II: $\operatorname{Re}[\hat{c}_Z] = -0.001$, $\operatorname{Im}[\hat{c}_Z] = 0.001$, $\operatorname{Re}[\tilde{b}_Z] = -0.0001$ and $\operatorname{Im}[\tilde{b}_Z] = 0.001$.
 - Scenario III: $\operatorname{Re}[\hat{c}_Z] = 0.001$, $\operatorname{Im}[\hat{c}_Z] = -0.0001$, $\operatorname{Re}[\tilde{b}_Z] = 0.0001$ and $\operatorname{Im}[\tilde{b}_Z] = -0.001$.

The HZZ vertex and its anomalous couplings

The $H^* \rightarrow ZZ$ process

Final remarks

The $H^* \to ZZ$ process

Figure 2: Behavior of the ratio \mathcal{R} as function of the transfer momentum of the Higgs Boson ||q||.

Motivation	The HZZ vertex and its anomalous couplings	The $H^* \rightarrow ZZ$ process $\circ \circ$ $\circ \circ $	Final remarks

The $H^* \to ZZ$ process

◊ From the amplitude (7) it is also possible to obtain the partial decay width $Γ_{H^* → ZZ}$ for polarized Z gauge bosons

$$\mathcal{M}^2 = \left(\frac{g}{c_W}\right)^2 m_Z^2 \left(\mathcal{M}_{LL}^2 + \mathcal{M}_{RR}^2 + \mathcal{M}_{00}^2\right),\tag{11}$$

The polarized partial width can be defined as

$$\Gamma_{H^* \to Z_{\lambda_i} Z_{\lambda_i}} = \frac{g^2 m_Z^2 \sqrt{q^2 - 4m_Z^2}}{32\pi q^2 c_W^2} \mathcal{M}_{\lambda_i \lambda_i}^2.$$
(12)

Motivation 00 The $H^* \rightarrow ZZ$ process 00 00000000

The $H^* \to ZZ$ process

The transversal amplitudes are

$$\mathcal{M}_{LL}^{2} = \frac{1}{4m_{Z}^{4}} \Big\{ 4m_{Z}^{2} \sqrt{q^{4} - 4q^{2}m_{Z}^{2}} \Big(\operatorname{Re}[h_{1}^{H}]\operatorname{Im}[h_{3}^{H}] - \operatorname{Im}[h_{1}^{H}]\operatorname{Re}[h_{3}^{H}] \Big) \\ + q^{2} \left(q^{2} - 4m_{Z}^{2} \right) \left(\operatorname{Re}[h_{3}^{H}]^{2} + \operatorname{Im}[h_{3}^{H}]^{2} \right) + 4m_{Z}^{4} \Big(\operatorname{Re}[h_{1}^{H}]^{2} + \operatorname{Im}[h_{1}^{H}]^{2} \Big) \Big\},$$
(13)

$$\mathcal{M}_{RR}^{2} = \frac{1}{4m_{Z}^{4}} \Big\{ -4m_{Z}^{2}\sqrt{q^{4}-4q^{2}m_{Z}^{2}} \Big(\operatorname{Re}[h_{1}^{H}]\operatorname{Im}[h_{3}^{H}] - \operatorname{Im}[h_{1}^{H}]\operatorname{Re}[h_{3}^{H}] \Big) \\ + q^{2} \left(q^{2}-4m_{Z}^{2}\right) \left(\operatorname{Re}[h_{3}^{H}]^{2} + \operatorname{Im}[h_{3}^{H}]^{2} \right) + 4m_{Z}^{4} \Big(\operatorname{Re}[h_{1}^{H}]^{2} + \operatorname{Im}[h_{1}^{H}]^{2} \Big) \Big\},$$

$$(14)$$

Motivation 00	The <i>HZZ</i> vertex and its anomalous couplings	The $H^* \rightarrow ZZ$ process 00 000000000	Final remarks

The left-right asymmetry can be written as

$$\mathcal{A}_{LR} = \frac{\Gamma_{H^* \to Z_L Z_L} - \Gamma_{H^* \to Z_R Z_R}}{\Gamma_{H^* \to Z_L Z_L} + \Gamma_{H^* \to Z_R Z_R}},$$
(15)

which can be expressed in terms of the real and imaginary parts of the form factors via Eqs. (13) and (14):

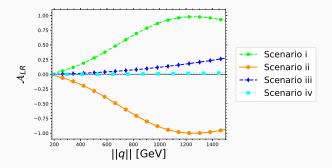
$$\mathcal{A}_{LR} = \frac{4m_Z^2 \|q\| \sqrt{q^2 - 4m_Z^2} \left(\operatorname{Re}[h_1^H] \operatorname{Im}[h_3^H] - \operatorname{Re}[h_3^H] \operatorname{Im}[h_1^H] \right)}{q^2 \left(q^2 - 4m_Z^2 \right) \left(\operatorname{Re}[h_3^H]^2 + \operatorname{Im}[h_3^H]^2 \right) + 4m_Z^4 \left(\operatorname{Im}[h_1^H]^2 + \operatorname{Re}[h_1^H]^2 \right)}.$$
(16)

◊ It is worth noting that the size of this asymmetry is dominated by the *CP*-violating form factor h^H₃.

The $H^* \to ZZ$ process

◊ In the SM

$$\mathcal{A}_{LR}^{SM} \approx 10^{-8} - 10^{-9},\tag{17}$$


- ♦ To assess the importance of the *CP*-violating form factor, together with the complete anomalous couplings contributions and their allowed values obtained, we fix $\operatorname{Re}[\hat{c}_Z] = \operatorname{Im}[\hat{c}_Z] = 0.001$ and consider the following four scenarios:
 - Scenario i: $\operatorname{Re}[\tilde{b}_Z] = 0.001$ and $\operatorname{Im}[\tilde{b}_Z] = 0.01$.
 - Scenario ii: $\operatorname{Re}[\tilde{b}_Z] = 0.001$ and $\operatorname{Im}[\tilde{b}_Z] = -0.01$.
 - Scenario iii: $\operatorname{Re}[\tilde{b}_Z] = 0.0001$ and $\operatorname{Im}[\tilde{b}_Z] = 0.001$.
 - Scenario iv: $\operatorname{Re}[\tilde{b}_Z] = \operatorname{Im}[\tilde{b}_Z] = 0.0001.$

The HZZ vertex and its anomalous couplings

The $H^* \rightarrow ZZ$ process 00 0000000

Final remarks

The $H^* \to ZZ$ process

Figure 3: A_{LR} asymmetry as a function of the transfer momentum of the Higgs boson ||q|| for the four scenarios.

Final remarks

Motivation 00	The HZZ vertex and its anomalous couplings	The $H^* \rightarrow ZZ$ process OO OOOOOOOO	Final remarks O●O

FINAL REMARKS

- We presented for the first time the imaginary one-loop contributions to the anomalous couplings (\hat{b}_Z) of H^*ZZ vertex in the SM.
- New bounds on \hat{c}_Z and \tilde{b}_Z were obtained considering the Higgs virtuality dependence. They are smaller than previous results.
- The imaginary parts of the anomalous couplings and the *CP*-violating form factor (\tilde{b}_Z) play a relevant role in the production of polarized *Z* bosons.
- A new Left-Right asymmetry (A_{LR}) in the process H^{*} → ZZ is reported for the firs time, which is more relevant at high energies.

For more details see:

https://arxiv.org/pdf/2301.13127.pdf

Motivation	The HZZ vertex and its anomalous couplings	The $H^* \rightarrow ZZ$ process 00 0000000	Final remarks OO●

PERSPECTIVES

 We are interested in the implications of the asymmetry (A_{LR}), imaginary parts of the anomalous couplings in the process

$$H^* \to ZZ \to 2\ell_1^{\pm} 2\ell_2^{\pm}.$$
 (18)

• Then,

$$gg \to H^* \to ZZ \to 2\ell_1^{\pm}2\ell_2^{\pm}$$
 (19)

• The implementation of our results in MC generators.