Preámbulo

Metodología

Modelo νSM 00000000



Benemérita Universidad Autónoma de Puebla Facultad de Ciencias Físico Matemáticas



Decaimientos del Higgs con Violación del Sabor Leptónico y su automatización a un loop

> arxiv: 2112.08412 https://doi.org/10.1142/S0217751X22502268

> > por Moises Zeleny Mora

Colaboradores Dr. Justiniano Lorenzo Díaz Cruz Dra. Olga Guadalupe Félix Beltrán

> 15 de marzo de 2023 IF-UNAM

(日) (部) (注) (注) (三)

## Contenido

## Preámbulo

- Antecedentes
- Relevancia

## 2 Metodología

- Fórmulas para el decaimiento  $H_r 
  ightarrow I_a^- I_b^+$
- Vértices Genéricos
- Diagramas genéricos
- Factores de forma para  $H_r \rightarrow l_a^- l_b^+$
- Código en Python
- Pasos a seguir en cada modelo

## 3 Modelo $\nu$ SM

## 4 Conclusiones

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

| Preámbulo<br>●OOO | Metodología<br>0000000000 | <b>Modelo</b> ν <b>SM</b><br>00000000 | Conclusiones |
|-------------------|---------------------------|---------------------------------------|--------------|
| Antecedentes      |                           |                                       |              |
|                   |                           |                                       |              |



- En el SM, los procesos con Violación del Sabor Leptónico (LFV) están prohibidos.
- Oscilaciones de neutrinos (LFV)
   → masas de neutrinos.
- ¿Dirac o Majorana?
- Base de sabor: ν<sub>e</sub>, ν<sub>µ</sub> y ν<sub>τ</sub>, Base de masas: ν<sub>1</sub>, ν<sub>2</sub>, ν<sub>3</sub>,...
- En la extensión mínima del SM (neutrinos de Dirac),  $\mathcal{BR}(\mu \to e\gamma) = \frac{3\alpha}{32\pi} |\sum_{k} U_{ek} U_{\mu k}^* \frac{m_{\nu_k}^2}{m_W^2}| \lesssim 10^{-54}.$

#### Datos de oscilaciones de neutrinos

Valores experimentales (jerarquía normal)<sup>1</sup>.

|                                               | bfp $\pm 1\sigma$                      | $3\sigma$         |
|-----------------------------------------------|----------------------------------------|-------------------|
| $\sin^2(	heta_{12})$                          | $0.310\substack{+0.013\\-0.012}$       | 0.275 - 0.350     |
| $\sin^2(	heta_{23})$                          | $0.582\substack{+0.015\\-0.019}$       | 0.428 - 0.624     |
| $\sin^2(	heta_{13})$                          | $0.02240\substack{+0.00065\\-0.00066}$ | 0.02244 - 0.02437 |
| $\frac{\Delta m_{21}^2}{10^{-5} \text{eV}^2}$ | $7.39\substack{+0.021\\-0.020}$        | 6.79 - 8.01       |
| $\frac{\Delta m_{31}^2}{10^{-5} \text{eV}^2}$ | $2.525^{+0.033}_{-0.031}$              | 2.431 - 2.622     |

Por otro lado, podemos reescribir las masas  $\nu_{2,3}$  como sigue

$$m_i = \sqrt{m_1^2 + \Delta m_{i1}^2}, \quad i = 2, 3.$$
 (1)

El satélite Planck impone una cota superior sobre las suma de las masas de los neutrinos dada por $^2$ 

$$\sum_{i=1}^{3} m_i < 0.12 \,\mathrm{eV}. \tag{2}$$

<sup>1</sup>Ivan Esteban et al. Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of  $\theta_{23}$ ,  $\delta_{CP}$ , and the mass ordering. JHEP, 01:106, 2019.

<sup>2</sup>N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. 2018 < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 >

Modelo v SM

## Cotas experimentales

La colaboración ATLAS de LHC da las siguientes cotas superiores

> ${\cal BR}(h o e au) < 0.0047$  ${\cal BR}(h o \mu au) < 0.0028$



5 / 27

| Preámbulo | Metodología | Modelo vSM | Conclusiones |
|-----------|-------------|------------|--------------|
| 0000      | 000000000   | 0000000    | 0000         |
|           |             |            |              |

## Relevancia

- Búsqueda de nueva Física.
- Posible evidencia de nuevas partículas
- ¿El Higgs descubierto es el Higgs del SM?
- Restringir los parámetros del modelo



| Canal                        | Razón de ramificación |
|------------------------------|-----------------------|
| $H  ightarrow \gamma \gamma$ | $2.28	imes10^{-3}$    |
| H  ightarrow ZZ              | $2.64	imes10^{-2}$    |
| $H  ightarrow W^+ W^-$       | $2.15	imes10^{-1}$    |
| $H  ightarrow 	au^+ 	au^-$   | $6.32	imes10^{-2}$    |
| $H  ightarrow bar{b}$        | $5.77	imes10^{-1}$    |
| $H  ightarrow Z \gamma$      | $1.54	imes10^{-3}$    |
| $H  ightarrow \mu^+ \mu^-$   | $2.19\times 10^{-4}$  |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

6/27

En general, las amplitudes para procesos del tipo  $S \to F_1 \overline{F_2}$ , donde S y F denotan escalar y fermión, respectivamente, tienen la forma:

$$i\mathcal{M} = -i\overline{u}(p_1)(A_L^r P_L + A_R^r P_R)v(p_2)$$
(3)

Además, en el caso particular de  $S = H_r$ ,  $F_1 = I_a^-$  y  $F_2 = I_b^+$ , el ancho de decaimiento está dado por<sup>3</sup>,

$$\Gamma(H_r \to l_a^- l_b^+) = \frac{1}{8\pi m_r} \sqrt{\left[1 - \left(\frac{m_a^2 + m_b^2}{m_r}\right)^2\right] \left[1 - \left(\frac{m_a^2 - m_b^2}{m_r}\right)^2\right]} \times \left[(m_r^2 - m_a^2 - m_b^2)(|A_L^r|^2 + |A_R^r|^2) - 4m_a m_b \operatorname{Re}(A_L^r A_R^{r*})\right]$$

Las condiciones on-shell son  $p_k^2=m_k^2$  y  $p_0^2\equiv (p_1+p_2)^2=m_r^2$ .

<sup>&</sup>lt;sup>3</sup>L. T. Hue et. al. Lepton flavor violating decays of Standard-Model-like Higgs in 3-3-1 model with neutral lepton. Nucl. Phys., B907:37–76, 2016.

| Preámbulo          | Metodología<br>○●○○○○○○○○ | Modelo ν SM<br>00000000 | Conclusiones |
|--------------------|---------------------------|-------------------------|--------------|
| Vértices Genéricos |                           |                         |              |

La siguiente estructura para los vértices que pueden participar:

$$\begin{array}{ll} G(H_r S^{\pm} S^{\mp}) \to c_r^{S^{\pm}}, & G(H_r F^{\pm} F^{\mp}) \to c_r^{F^{\pm}}, \\ G(H_r V_1^{\nu \pm} V_2^{\mu \mp}) \to c_r^{V^{\pm}} g_{\mu\nu}, & G(H_r F_1^0 F_2^0) \to c_{rL}^{F^0} P_L + c_{rR}^{F^0} P_R, \\ G(H_r S^+ V^-) \to c_r^{S^+ V^-} (p_{\mu}^+ - p_{\mu}^r), & G(H_r S^- V^+) \to c_r^{S^- V^+} (p_{\mu}^r - p_{\mu}^-). \end{array}$$

$$\begin{array}{l} (4) \\ (4) \\ (4) \end{array}$$

Para los Decaimientos del Higgs con Violación del sabor Leptónico (LFVHD), el acoplamiento  $G(H_r F_1^0 F_2^0)$  es muy importante, en general este está relacionado con la generación de masa del neutrino. Por otro lado, la interacción entre fermiones, con escalares cargados y bosones vectoriales están dados por:

$$G(F_1^0 F_2^{\pm} S^{\mp}) \to c_L^{S^{\pm}} P_L + c_R^{S^{\pm}} P_R,$$
 (5a)

$$G(F_1^0 F_2^{\pm} V^{\mu \mp}) \to \gamma_{\mu} (c_L^{V^{\pm}} P_L + c_R^{V^{\pm}} P_R).$$
(5b)

| Preámbulo    | Metodología                | Modelo vSM | Conclusiones |
|--------------|----------------------------|------------|--------------|
| 0000         | 00 <b>000</b> 00000        | 0000000    | 0000         |
| Diagramas co | n dos fermiones en el lazo |            |              |

Debido a la interacción  $H_r F_1^0 F_2^0$ , tenemos dos posibles diagramas con dos neutrinos en el lazo



Figura 1: Diagramas genéricos con dos fermiones en el lazo que contribuyen a  $H_r \rightarrow l_a l_b$ .

| Preámbulo | Metodología | Modelo vSM | Conclusiones |
|-----------|-------------|------------|--------------|
| 0000      | 000000000   | 0000000    | 0000         |
|           |             |            |              |

## Diagramas con un fermión en el lazo

Además, tenemos 8 diagramas genéricos que contienen un solo fermión en el lazo



Figura 2: Diagramas genéricos con un fermión en el lazo que contribuyen a  $H_r \rightarrow I_a I_b$ 

| Preámbulo | Metodología | Modelo vSM | Conclusiones |
|-----------|-------------|------------|--------------|
| 0000      | 00000000    | 0000000    | 0000         |
|           |             |            |              |

#### Convenciones para el cálculo a un lazo



Figura 3: Convenciones para momentos, etiquetas de los vértices y partículas en diagramas a un lazo para  $H_r \rightarrow l_a l_b$ . En cada diagrama usamos lineas sólidas, en este caso, para representar todos las partículas posibles en el lazo. Los vértices son etiquetados con números dentro de paréntesis (i), i = 1, 2, 3. Finalmente, las masas para las partículas  $P_i$  en el lazo están denotadas por  $M_i$ .

| Preámbulo        | Metodología | Modelo vSM | Conclusiones |
|------------------|-------------|------------|--------------|
| 0000             | 0000000000  | 0000000    | 0000         |
| Integrales escal | ares        |            |              |
| Integrates estat | ai 55       |            |              |

Usando las convenciones de la Figura 3, en cada diagrama usaremos la notación

$$D_0 = k^2 - M_0^2 + i\delta;$$
  $D_1 = (k - p_1)^2 - M_1^2 + i\delta;$   $D_2 = (k + p_2)^2 - M_2^2 + i\delta$  (6)

Únicamente las siguientes integrales escalares serán necesarias:

$$B_0^{(1)}(M_0, M_1) = N_D \int \frac{d^D k}{D_0 D_1} \qquad B_0^{(2)}(M_0, M_2) = N_D \int \frac{d^D k}{D_0 D_2},$$
(7a)  
$$B_0^{(12)}(M_1, M_2) = N_D \int \frac{d^D k}{D_1 D_2} \qquad C_0(M_0, M_1, M_2) = \frac{1}{i\pi^2} \int \frac{d^4 k}{D_0 D_1 D_2},$$
(7b)

donde  $N_D = (2\pi\mu)^{4-D}/i\pi^2$  y  $D = 4-2\epsilon$  es la dimensión de la integral. También se tienen  $C^{\mu} = C_1 p_1^{\mu} + C_2 p_2^{\mu}$ .

$$Div[B_0^{(i)}] = Div[B_0^{(12)}] = \Delta_{\epsilon},$$

$$Div[B_1^{(1)}] = Div[B_1^{(12)}] = \frac{1}{2}\Delta_{\epsilon}, \quad Div[B_1^{(2)}] = Div[B_2^{(12)}] = -\frac{1}{2}\Delta_{\epsilon}, \quad (8b)$$

 $\Delta_{\epsilon} = 1/\epsilon + \ln 4\pi - \gamma_{E} + \ln \mu^{2}$ , con  $\gamma_{E}$  la constante de Euler.

| Preámbulo    | Metodología          | Modelo vSM | Conclusiones |
|--------------|----------------------|------------|--------------|
| 0000         | 000000 <b>00</b> 000 | 0000000    | 0000         |
| Un fermión e | n el lazo            |            |              |

En este caso, tenemos las contribuciones del tipo ( $\Omega$ : FSS, FSV, FVS, FVV, FS, SF, FV, VF). Encontramos que la estructura de los factores de forma para estas contribuciones puede ser expresada como sigue:

$$\begin{aligned} A_{R}^{r}(\Omega) &= m_{ab}^{-2} c_{r}^{l(1)} \left( c_{R}^{J(2)} c_{R}^{K(3)} \mathcal{H}_{RR}(\Omega) + c_{L}^{J(2)} c_{L}^{K(3)} \mathcal{H}_{LL}(\Omega) \right. \\ &+ c_{R}^{J(2)} c_{L}^{K(3)} \mathcal{H}_{RL}(\Omega) + c_{L}^{J(2)} c_{R}^{K(3)} \mathcal{H}_{LR}(\Omega) \right), \end{aligned} \tag{9a} \\ A_{L}^{r}(\Omega) &= m_{ab}^{-2} c_{r}^{l(1)} \left( c_{L}^{J(2)} c_{L}^{K(3)} \mathcal{H}_{RR}(\Omega) + c_{R}^{J(2)} c_{R}^{K(3)} \mathcal{H}_{LL}(\Omega) \right. \\ &+ \left. + c_{L}^{J(2)} c_{R}^{K(3)} \mathcal{H}_{RL}(\Omega) + c_{R}^{J(2)} c_{L}^{K(3)} \mathcal{H}_{LR}(\Omega) \right), \end{aligned} \tag{9b}$$

donde  $m_{ab}^2 = 1$  para contribuciones tipo triángulo y  $m_{ab}^2 = m_a^2 - m_b^2$  para contribuciones tipo burbuja,  $m_a$  y  $m_b$  son las masas de los leptones cargados en el estado final.

Metodología ○○○○○○○●○○○ Modelo νSM

#### Funciones $\mathcal{H}$

Funciones  $\mathcal{H}_{PQ}$  (P, Q = R, L) para cada tipo de diagrama.

| Ω(Figure)  | $\mathcal{H}_{RR}$                   | $\mathcal{H}_{RL}$              | $\mathcal{H}_{LR}$            | $\mathcal{H}_{LL}$           |
|------------|--------------------------------------|---------------------------------|-------------------------------|------------------------------|
| FSS (2(a)) | <i>M</i> <sub>0</sub> C <sub>0</sub> | $-m_b C_2$                      | m <sub>a</sub> C <sub>1</sub> | 0                            |
| FSV (2(b)) | $-X - 2m_{ar}^2 C_2 + m_a^2 C_1$     | $-m_a M_0(C_1 - 2C_0)$          | $-m_b M_0 (C_0 - C_2)$        | $-m_a m_b (C_1 - 2 C_2)$     |
| FVS (2(c)) | $m_a M_0(C_0 + C_1)$                 | $X - 2m_{br}^2 C_1 + m_b^2 C_2$ | $-m_a m_b (C_2 - 2 C_1)$      | $-m_b M_0(2 C_0 + C_2)$      |
| FVV(2(d))  | $-(D-2)m_a C_1$                      | $M_0 D C_0$                     | 0                             | $(D-2)m_b C_2$               |
| FS (2(e))  | $m_b M_0 B_0^{(1)}$                  | $m_a m_b B_1^{(1)}$             | $m_a^2 B_1^{(1)}$             | $m_a M_0 B_0^{(1)}$          |
| SF (2(f))  | $-m_a M_0 B_0^{(2)}$                 | $m_b^2 B_1^{(2)}$               | $m_a m_b B_1^{(2)}$           | $-m_b M_0 B_0^{(2)}$         |
| FV (2(g))  | $(D-2)m_am_b{\sf B}_1^{(1)}$         | $-Dm_b M_0 B_0^{(1)}$           | $-Dm_a M_0  B_0^{(1)}$        | $(D-2)m_a^2{\sf B}_1^{(1)}$  |
| VF (2(h))  | $(D-2)m_b^2 B_1^{(2)}$               | $Dm_a M_0 B_0^{(2)}$            | $Dm_b M_0 B_0^{(2)}$          | $(D-2)m_am_b{\sf B}_1^{(2)}$ |

*Cuadro* 1: Expresiones analíticas para las funciones  $\mathcal{H}_{PQ}$  (P, Q = R, L) para cualquier diagrama con un único fermión en el lazo, recordando la convención  $D = 4 - 2\epsilon y \epsilon \rightarrow 0$ .

donde

$$X = B_0^{(12)} + M_0^2 C_0 + m_j^2 C_2 - m_i^2 C_1.$$
 (10)

・ロト < 
一 ト < 
一 ト < 
一 ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ト < 
ー ー < 
ー ト < 
ー ー < 
ー ー < 
ー ・ </li>

| Preámbulo | Metodología          | Modelo vSM | Conclusiones |
|-----------|----------------------|------------|--------------|
| 0000      | 000000 <b>00</b> 000 | 0000000    | 0000         |
|           |                      |            |              |

## Dos fermiones en el lazo.

**Contribución SFF:** En este caso obtenemos la siguiente estructura para los factores de forma

$$\begin{aligned} A_{R}^{r}(SFF) &= c_{rL}^{F^{0}(1)} c_{R}^{S^{\pm}(2)} c_{R}^{S^{\pm}(3)} \mathcal{H}_{1} + c_{rR}^{F^{0}(1)} c_{L}^{S^{\pm}(2)} c_{L}^{S^{\pm}(3)} \mathcal{H}_{2} + c_{rL}^{F^{0}(1)} c_{L}^{S^{\pm}(2)} c_{R}^{S^{\pm}(3)} \mathcal{H}_{3} \\ &+ c_{rR}^{F^{0}(1)} c_{R}^{S^{\pm}(2)} c_{L}^{S^{\pm}(3)} \mathcal{H}_{4} + c_{rR}^{F^{0}(1)} c_{L}^{S^{\pm}(2)} c_{R}^{S^{\pm}(3)} \mathcal{H}_{5} + c_{rL}^{F^{0}(1)} c_{R}^{S^{\pm}(2)} c_{L}^{S^{\pm}(3)} \mathcal{H}_{6}, \\ &+ c_{rR}^{F^{0}(1)} c_{R}^{S^{\pm}(2)} c_{R}^{S^{\pm}(3)} \mathcal{H}_{7}, \end{aligned} \tag{11a} \\ A_{L}^{r}(SFF) &= c_{rR}^{F^{0}(1)} c_{L}^{S^{\pm}(2)} c_{L}^{S^{\pm}(3)} \mathcal{H}_{1} + c_{rL}^{F^{0}(1)} c_{R}^{S^{\pm}(2)} c_{R}^{S^{\pm}(3)} \mathcal{H}_{2} + c_{rR}^{F^{0}(1)} c_{R}^{S^{\pm}(2)} c_{L}^{S^{\pm}(3)} \mathcal{H}_{3} \\ &+ c_{rL}^{F^{0}(1)} c_{L}^{S^{\pm}(2)} c_{R}^{S^{\pm}(3)} \mathcal{H}_{4} + c_{rL}^{F^{0}(1)} c_{R}^{S^{\pm}(2)} c_{L}^{S^{\pm}(3)} \mathcal{H}_{5} + c_{rR}^{F^{0}(1)} c_{L}^{S^{\pm}(2)} c_{R}^{S^{\pm}(3)} \mathcal{H}_{6} \\ &+ c_{rL}^{F^{0}(1)} c_{L}^{S^{\pm}(2)} c_{L}^{S^{\pm}(3)} \mathcal{H}_{7}, \end{aligned} \tag{11b}$$

donde las funciones  $\mathcal{H}_k$  (k = 1, ..., 7) están dadas por:

$$\begin{aligned} \mathcal{H}_{1} &= X, & \mathcal{H}_{2} &= m_{a}m_{b}(C_{0} + C_{2} - C_{1}), \\ \mathcal{H}_{3} &= m_{b}M_{2}C_{2}, & \mathcal{H}_{4} &= m_{a}M_{2}(C_{0} - C_{1}), \\ \mathcal{H}_{5} &= m_{b}M_{1}(C_{0} + C_{2}), & \mathcal{H}_{6} &= -m_{a}M_{1}C_{1}, \\ \mathcal{H}_{7} &= M_{1}M_{2}C_{0}. \end{aligned}$$
 (12)

Metodología ○○○○○○○○○●○ Modelo νSM

## OneLoopLFVHD

El código realizado para la evaluación tanto simbólica como numérica de los decaimientos del Higgs con LFV puede ser consultado en el repositorio de github https://github.com/moiseszeleny/OneLoopLFVHD

| moiseszeleny / OneLoopLFVH      | D (Public)                                      |                                                      |                                |                                                                | ⊙ Watch 0 |
|---------------------------------|-------------------------------------------------|------------------------------------------------------|--------------------------------|----------------------------------------------------------------|-----------|
| ↔ Code ⊙ Issues 11 Pull request | ts 💿 Actions 🖽 Projects 🖽 Wile                  | i 🕕 Security 🖂 Insights 🛞 Settings                   |                                |                                                                |           |
|                                 | P master - P 1 branch S 0 tags                  | Go                                                   | o to file Add file + Code +    | About                                                          | \$        |
|                                 | moiseszeleny 2HDM diagrams complete             | ated but with problems in divergencies 1c875         | 49 on 31 Aug 2021 🕥 21 commits | General structures of lepton flavor<br>violation Higgs decays. |           |
|                                 | Examples                                        | 2HDM diagrams completed but with problems in diverge | encies 4 months ago            | Readme                                                         |           |
|                                 | OneLoopLFVHD.egg-info                           | upgrade with 2HDM book                               | 5 months ago                   | anta GPL-3.0 License<br>☆ 1 star                               |           |
|                                 | OneLoopLFVHD                                    | upgrade with 2HDM book                               | 5 months ago                   | <ul> <li>0 watching</li> </ul>                                 |           |
|                                 | pycache                                         | upgrade with 2HDM book                               | 5 months ago                   | 약 0 forks                                                      |           |
|                                 | build/lib/OneLoopLFVHD                          | upgrade with 2HDM book                               | 5 months ago                   |                                                                |           |
|                                 | 🖿 dist                                          | upgrade with 2HDM book                               | 5 months ago                   | Releases                                                       |           |
|                                 | .gitignore                                      | Initial commit                                       | 2 years ago                    | No releases published<br>Create a new release                  |           |
|                                 | C LICENSE                                       | First complete version of OneLoopLFVHD               | 17 months ago                  |                                                                |           |
|                                 | README.md                                       | Binder link                                          | 15 months ago                  | Packages                                                       |           |
|                                 | requirements.txt                                | requeriments actualizado                             | 8 months ago                   | No packages published                                          |           |
|                                 | 🗅 setup.py                                      | First complete version of OneLoopLFVHD               | 17 months ago                  | Publish your inst package                                      |           |
|                                 | README.md                                       |                                                      | ı                              | Languages                                                      |           |
|                                 | General one loop<br>Violation Higgs D           | estructures of Lepton Fl<br>Decays.                  | avour                          | Pythen 100.0%                                                  |           |
|                                 | We code the posibles one loop feyn<br>approach. | man diagrams to Lepton Flavour Violation Higgs dea   | cays using a generic           |                                                                |           |

| Preámbulo | Metodología | Modelo vSM | Conclusiones |
|-----------|-------------|------------|--------------|
| 0000      | 0000000000  | 0000000    | 0000         |
|           |             |            |              |

Pasos a seguir en cada modelo

- Hallar las constantes de acoplamiento.
- 2 Diagramas de Feynman a un lazo.
- Obtener factores de forma.
- 9 Sumar sobre las generaciones de neutrinos, mecanismo de GIM.
- Observar que las divergencias se cancelan correctamente.
- Obtener el  $\mathcal{BR}(H_r \to I_a I_b)$ .
- Spacio de parámetros

## Modelo $\nu SM$

< □ ▶ < ⑦ ▶ < ≧ ▶ < ≧ ▶ 18/27

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 000000000 | 0000 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| $\nu$ initial i |           |      |

Se agregan tres neutrinos derechos de Majorana  $N_{R,I}$ , singletes del grupo de norma del SM y se agrega el término de Majorana para neutrinos derechos  $N_{R,I}$ 

$$-\Delta \mathcal{L} = Y_{\nu,al} \overline{\psi_{L,a}} \widetilde{\Phi} N_{R,l} + \frac{1}{2} \overline{(N_{R,l})^c} M_{N,lJ} N_{R,J} + \text{H. c.},$$
(13)

donde  $a = 1, 2, 3; I, J = 1, 2, 3; \psi_{L,a} = (v_{L,a}, l_{L,a})^{\top}$  son dobletes de  $SU(2)_L$  y  $(N_{R,I})^C = C \overline{N_{R,I}}^{\top}$ . El doblete de Higgs está dado por  $\Phi = (G_W^+, (h + iG_Z + v) / \sqrt{2})^{\top}$  con valor de expectación en el vació  $\langle \Phi \rangle = v / \sqrt{2}, v = 246$  GeV y  $\tilde{\Phi} = i\sigma_2 \Phi^*$ . El término de masa es:

$$-\mathcal{L}_{\mathrm{mass}}^{\nu} \equiv \frac{1}{2}\overline{\nu_{L}^{\prime}}M^{\nu}\left(\nu_{L}^{\prime}\right)^{c} + \mathrm{h.c.} = \frac{1}{2}\overline{\nu_{L}^{\prime}}\left(\begin{array}{cc}0&M_{D}\\M_{D}^{T}&M_{N}\end{array}\right)\left(\nu_{L}^{\prime}\right)^{c} + \mathrm{h.c.}$$
(14)

El mecanismo seesaw implica que  $|M_D| << |M_N|$ , de donde,

$$\hat{m}_{\nu} \approx M_D M_N^{-1} M_D^T.$$
(15)

イロト イロト イヨト イヨト 三日

Las bases de sabor y física están conectados por la matriz de mezcla

$$\nu'_{L} = \mathbf{U}^{\nu*} n_{L}, \qquad (\nu'_{L})^{C} = \mathbf{U}^{\nu} (n_{L})^{C},$$
 (16)

donde  $n_L \equiv (n_{L,1}, n_{L,2}, ..., n_{L,6})^{\top}$ .

19/27

| Preámbulo | Metodología | Modelo <i>ν</i> SM | Conclusiones |
|-----------|-------------|--------------------|--------------|
| 0000      | 0000000000  | 00●00000           |              |
|           |             |                    |              |

## Modelo $\nu$ SM: Acoplamientos

Se tiene que 
$$C_{ij}=\sum_{c=1}^{3}U_{ci}^{
u}U_{cj}^{
u*}$$
.

| Vértice                 | Acoplamiento                                                                                                                                         | Vértice                      | Acoplamiento                                                             |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------|
| $hW^{+\mu}W^{- u}$      | igm <sub>W</sub> g <sub>µν</sub>                                                                                                                     | $hG_W^+G_W^-$                | $\frac{-igm_h^2}{2m_W}$                                                  |
| $hG_W^+W^{-\mu}$        | $rac{ig}{2}( ho_+- ho_0)_\mu$                                                                                                                       | $hG_W^-W^{+\mu}$             | $\frac{ig}{2}(p_0-p)_{\mu}$                                              |
| $\bar{n}_i e_a W^+_\mu$ | $\frac{ig}{\sqrt{2}}U_{ai}^{\nu}\gamma^{\mu}P_{L}$                                                                                                   | $\overline{e_a}n_jW_{\mu}^-$ | $\frac{ig}{\sqrt{2}}U_{aj}^{\nu*}\gamma^{\mu}P_{L}$                      |
| $\bar{n}_i e_a G_W^+$   | $-\frac{ig}{\sqrt{2}m_W}U_{ai}^{\nu}(m_{e_a}P_R-m_{n,i}P_L)$                                                                                         | $\overline{e_a}n_jG_W^-$     | $-\frac{ig}{\sqrt{2}m_W}U_{aj}^{\nu*}\left(m_{e_a}P_L-m_{n,j}P_R\right)$ |
| h <del>n</del> inj      | $\left  \frac{-lg}{2m_W} \left[ C_{ij} \left( P_L m_{n_i} + P_R m_{n_j} \right) + C_{ij}^* \left( P_L m_{n_j} + P_R m_{n_i} \right) \right] \right $ | h <del>e</del> aea           | $\frac{-igm_{e_a}}{2m_W}$                                                |

*Cuadro 2:* Acoplamientos involucrados en los decaimientos del Higgs con violación del sabor leptónico en el  $\nu SM^4$ .

## Diagramas

|    | Estructura | Diagrama | $P_0$          | <i>P</i> <sub>1</sub> | <i>P</i> <sub>2</sub> |
|----|------------|----------|----------------|-----------------------|-----------------------|
| 1  | SFF        | 1(a)     | G <sub>W</sub> | <b>n</b> <sub>i</sub> | nj                    |
| 2  | VFF        | 1(b)     | W              | $\overline{n}_i$      | nj                    |
| 3  | FSS        | 2(a)     | ni             | G <sub>W</sub>        | G <sub>W</sub>        |
| 4  | FSV        | 2(b)     | ni             | G <sub>W</sub>        | W                     |
| 5  | FVS        | 2(c)     | ni             | W                     | G <sub>W</sub>        |
| 6  | FVV        | 2(d)     | ni             | W                     | W                     |
| 7  | FV         | 2(g)     | ni             | W                     | —                     |
| 8  | FS         | 2(e)     | ni             | Gw                    | —                     |
| 9  | VF         | 2(h)     | ni             | —                     | W                     |
| 10 | SF         | 2(f)     | ni             | —                     | G <sub>W</sub>        |

Cuadro 3: Resumen de los diagramas que contribuyen a  $h \rightarrow l_a^+ l_b^-$  en el modelo  $\nu SM$ .

| Preámbulo      | Metodología | Modelo vSM | Conclusiones |
|----------------|-------------|------------|--------------|
| 0000           | 0000000000  | 00000000   | 0000         |
|                |             |            |              |
| Eactores do fo | rma         |            |              |

#### Diagrama 1

Este diagrama corresponde a la estructura SFF, y sus factores de forma están dados por:

$$\begin{split} A_{L}^{(1)}(G\overline{n}_{i}n_{j}) &= m_{a}\sum_{i,j=1}^{K+3} \left[ \left( \left( \mathsf{B}_{0}^{(12)} + m_{W}^{2} \mathsf{C}_{0} \right) m_{nj}^{2} - \left( m_{a}^{2}m_{nj}^{2} + m_{b}^{2}m_{ni}^{2} - 2m_{ni}^{2}m_{nj}^{2} \right) \mathsf{C}_{1} \right) \mathsf{C}_{ij} \\ &+ \left( \mathsf{B}_{0}^{(12)} + m_{W}^{2} \mathsf{C}_{0} - \left( m_{a}^{2} + m_{b}^{2} - m_{ni}^{2} - m_{nj}^{2} \right) \mathsf{C}_{1} \right) \mathsf{C}^{*}{}_{ij}m_{ni}m_{nj} \right] \Delta_{ij}^{ab}, \\ A_{R}^{(1)}(G\overline{n}_{i}n_{j}) &= m_{b}\sum_{i,j=1}^{K+3} \left[ \left( \left( \mathsf{B}_{0}^{(12)} + m_{W}^{2} \mathsf{C}_{0} \right) m_{ni}^{2} + \left( m_{a}^{2}m_{nj}^{2} + m_{b}^{2}m_{ni}^{2} - 2m_{ni}^{2}m_{nj}^{2} \right) \mathsf{C}_{2} \right) \mathsf{C}_{ij} \\ &+ \left( \mathsf{B}_{0}^{(12)} + m_{W}^{2} \mathsf{C}_{0} + \left( m_{a}^{2} + m_{b}^{2} - m_{ni}^{2} - m_{nj}^{2} \right) \mathsf{C}_{2} \right) \mathsf{C}^{*}{}_{ij}m_{ni}m_{nj} \right] \Delta_{ij}^{ab}. \end{split}$$

Definimos

$$\Delta_{ij}^{ab} = \frac{g^3}{64\pi^2 m_W^3} U_{bj}^{\nu} U_{ai}^{\nu*}.$$
 (17)

< □ > < 部 > < 臣 > < 臣 > 三 の Q (~ 22 / 27

| Preámbulo<br>0000    | Metodología | Modelo <i>∨</i> SM<br>○○○○●●○○ | Conclusiones |
|----------------------|-------------|--------------------------------|--------------|
| Factores de forma II |             |                                |              |

#### Diagrama 8

$$\begin{split} A_{L}^{(8)} &= \frac{m_{a}m_{b}^{2}}{m_{a}^{2} - m_{b}^{2}} \sum_{i=1}^{K+3} \left( -\left(m_{a}^{2} + m_{ni}^{2}\right) \mathsf{B}_{1}^{(1)} + 2 \,\mathsf{B}_{0}^{(1)} \,m_{ni}^{2} \right) \Delta_{ii}^{ab}, \\ A_{R}^{(8)} &= \frac{m_{b}}{m_{a}^{2} - m_{b}^{2}} \sum_{i=1}^{K+3} \left( \left(m_{a}^{2} + m_{b}^{2}\right) \mathsf{B}_{0}^{(1)} \,m_{ni}^{2} - \left(m_{b}^{2} + m_{ni}^{2}\right) \mathsf{B}_{1}^{(1)} \,m_{a}^{2} \right) \Delta_{ii}^{ab}. \end{split}$$

#### Diagrama 10

$$\begin{split} A_{L}^{(10)} &= -\frac{m_{a}}{m_{a}^{2}-m_{b}^{2}} \sum_{i=1}^{K+3} \left( \left(m_{a}^{2}+m_{b}^{2}\right) \mathsf{B}_{0}^{(2)} m_{ni}^{2} + \left(m_{a}^{2}+m_{ni}^{2}\right) \mathsf{B}_{1}^{(2)} m_{b}^{2} \right) \Delta_{ii}^{ab}, \\ A_{R}^{(10)} &= -\frac{m_{a}^{2}m_{b}}{m_{a}^{2}-m_{b}^{2}} \sum_{i=1}^{K+3} \left( \left(m_{b}^{2}+m_{ni}^{2}\right) \mathsf{B}_{1}^{(2)} + 2 \,\mathsf{B}_{0}^{(2)} m_{ni}^{2} \right) \Delta_{ii}^{ab}. \end{split}$$

# Las Divergencias se cancelan correctamente al sumar los diagramas 4 con 5, 7 con 9 y 1 con 8 y $10.^{\rm 5}$

| Preámbulo         | Metodología<br>00000000000 | <b>Modelo</b> <i>ν</i> <b>SM</b><br>000000●0 | Conclusiones |
|-------------------|----------------------------|----------------------------------------------|--------------|
| Análisis numérico |                            |                                              |              |

Siguiendo la parametrización Casas-Ibarra<sup>6</sup>:

$$M_D^T = i U_N^* \left( \hat{M}_N \right)^{1/2} \xi \left( \hat{m}_v \right)^{1/2} U_{\rm PMNS}^{\dagger}$$
(18)

donde  $\hat{m}_{\nu} = \text{diag}(m_{n_1}, m_{n_2}, m_{n_3})$ ,  $\hat{M}_N = \text{diag}(m_{n_4}, m_{n_5}, m_{n_6})$  y  $U_N$  es una matriz unitaria que diagonaliza a  $M_N$ . Por simplicidad, consideramos  $U_N = \xi = I \text{ con } I$ la matriz identidad, como consecuencia  $M_N = \hat{M}_N$ . Consideramos dos caso.

**1** Degenerado:  $m_{n_4} = m_{n_5} = m_{n_6}$ 

3 No degenerado:  $m_{n_4} = m_{n_6}/3$  y  $m_{n_5} = m_{n_6}/2$  (Thao et al.)

<sup>6</sup>J.A. Casas and A. Ibarra. Oscillating neutrinos and  $\mu \to e\gamma$ . Nuclear Physics B, 618(1):171 – 204, 2001.

| Preámbulo      | Metodología<br>0000000000               | Modelo <i>∨</i> SM<br>0000000● | Conclusiones |
|----------------|-----------------------------------------|--------------------------------|--------------|
| Deserves de ve | $\mathbf{P}(\mathbf{h} \to \mathbf{h})$ |                                |              |

Razones de ramificación  $\mathcal{BR}(h \rightarrow I_a I_b)$ 

 $\mathcal{BR}(h 
ightarrow l_a l_b) \propto m_{n_6}^2 ext{ con } m_{n_6} > 10^5.$ 



| Preámbulo    | Metodología | <b>Modelo</b> ν <b>SM</b> | Conclusiones |
|--------------|-------------|---------------------------|--------------|
|              | 0000000000  | 00000000                  | ●○○○         |
| Conclusiones |             |                           |              |

- Se ha calculado de forma general los LFVHD a un lazo.
- Se creó la librería OneLoopLFVHD, que permite la manipulación simbólica y numérica (precisión arbitraria) de los factores de forma.
- Estos resultados pueden ser aplicados a diferentes modelos, con masas de neutrinos y LFVHD inducidos a un lazo. También pueden ser utilizados para otros escalares.

En el modelo  $\nu$ SM:

- $m_{n_6} < 10^4$  GeV dominan los diagramas de un fermión en el lazo.
- $m_{n_6} > 10^4$  GeV dominan los diagramas con dos fermiones en el lazo,  $\mathcal{BR}(h \to \mu \tau) \propto m_n^2$ , debido a CI.
- Los  $\mathcal{BR}(h \to l_a l_b)$  máximos son del orden  $\mathcal{O}(10^{-12})$  para masas grandes de  $m_{n_6}$ .

| Preámbulo         | Metodología | <b>Modelo</b> ν <b>SM</b> | Conclusiones |
|-------------------|-------------|---------------------------|--------------|
| 0000              | 0000000000  | 00000000                  |              |
| Perspectivas a fi | uturo       |                           |              |

- Aplicación de los resultados generales de los factores de forma a otros modelos.
- Estudio de la señal  $Z \to \ell_a \ell_b$ .
- Estudio de la sección transversal de producción de pp → h → μτ. Por medio de la aproximación narrow width, y tomando el canal de producción del Higgs dominante, fusión de gluones, la sección transversal de producción está dada por

$$\sigma(pp \rightarrow \mu \tau) = \sigma(gg \rightarrow h) \mathcal{BR}(h \rightarrow \mu \tau)$$

27 / 27

| Preámbulo<br>0000                               | Metodología<br>0000000000 | Modelo vSM<br>00000000 | Conclusiones |  |  |
|-------------------------------------------------|---------------------------|------------------------|--------------|--|--|
| mplicaciones de la parametrización Casas-Ibarra |                           |                        |              |  |  |
|                                                 |                           |                        |              |  |  |

En el caso degenerado,

$$\begin{split} \mathbf{M}_{D} &= i \sqrt{m_{n_{6}}} \mathbf{U}_{\mathrm{PMNS}}^{*} \left( \hat{\mathbf{m}}_{\nu} \right)^{1/2} \quad \Rightarrow \quad \frac{v}{\sqrt{m_{n_{6}}}} \mathbf{Y}_{\nu} = \mathbf{U}_{\mathrm{PMNS}}^{*} \left( \hat{\mathbf{m}}_{\nu} \right)^{1/2} \\ \frac{v^{2}}{m_{n_{6}}} (\mathbf{Y}_{\nu} \mathbf{Y}_{\nu}^{\dagger})_{ab} = (\mathbf{U}_{\mathrm{PMNS}}^{*} \hat{\mathbf{m}}_{\nu} \mathbf{U}_{\mathrm{PMNS}}^{\top})_{ab} \quad \Rightarrow \quad (\mathbf{Y}_{\nu} \mathbf{Y}_{\nu}^{\dagger})_{ab} \propto m_{n_{6}} \end{split}$$

Una aproximación para  $\mathcal{BR}(I_a \to I_b \gamma)$  fue encontrada en<sup>7</sup>, la cual es valida en el régimen de neutrinos muy pesados, a saber,  $\mathcal{BR}(I_a \to I_b \gamma)_{approx} \propto |\frac{\nu^2}{2m_{h_6}^2} (\mathbf{Y}_{\nu} \mathbf{Y}_{\nu}^{\dagger})_{ab}|^2$ , entonces concluimos que  $\mathcal{BR}(I_a \to I_b \gamma)_{approx} \propto m_{n_6}^{-2}$ . Además, en el caso degenerado,

$$(\mathbf{M}_{D})_{ab} = (\mathbf{U}^{\nu*} \hat{\mathbf{M}}^{\nu} \mathbf{U}^{\nu\dagger})_{a(b+3)}$$
$$= \sum_{k=1}^{6} U_{ak}^{\nu*} m_{n_{k}} U_{(b+3)k}^{\nu*}$$
$$\approx m_{n_{6}} \sum_{k=4}^{6} U_{ak}^{\nu*} U_{(b+3)k}^{\nu*}$$
(19)

<sup>7</sup>E. Arganda et al. Phys. Rev. D 91, 015001 (2015)

| Preámbulo                                        | Metodología | <b>Modelo</b> ν <b>SM</b> | Conclusiones |  |  |
|--------------------------------------------------|-------------|---------------------------|--------------|--|--|
| 0000                                             | 0000000000  | 00000000                  | ○○○●         |  |  |
| Implicaciones de la parametrización Casas-Ibarra |             |                           |              |  |  |

Por otro lado,

$$\sum_{k=4}^{6} U_{ak}^{\nu*} U_{(b+3)k}^{\nu*} \approx \frac{i}{\sqrt{m_{n_6}}} (\mathbf{U}_{\rm PMNS}^* \left( \hat{\mathbf{m}}_{\nu} \right)^{1/2})_{ab}$$
(20)

Pilaftsis et. al.<sup>8</sup> obtuvieron una aproximación para masas grandes de los neutrinos pesados dada por  $\mathcal{BR}(h \to I_a I_b) \propto m_n^4 |F_N|^2$  y  $F_N = U_{bj}^{\nu} C_{ij} U_{ai}^{\nu*}$ . En nuestro caso, de la ecuación (20) obtenemos  $F_N \propto m_n^{-1}$ , entonces  $\mathcal{BR}(h \to I_a I_b) \propto m_{n_5}^2$ .

<sup>&</sup>lt;sup>8</sup>A. Pilaftsis, Physics Letters B 285, 68 (1992).