El reto de sabor con cuerdas

Saúl Ramos-Sánchez

BSM \& Astroparticles

Marzo 16, 2023

De colaboraciones con
M-C. Chen, V. Knapp-Pérez, M. Ramos-Hamud, M. Ratz \& S. Shukla: 1909.06910 \& 2108.02240
A. Baur, M. Kade, H.P. Nilles \& P. Vaudrevange: 2001.01736, 2008.07534, 2010.13798, 2104.03981, 2107.10677,...
Y. Olguín-Trejo \& R. Pérez-Martínez: 1808.06622 \& 2105.03460

Flavor puzzle

Despite the great success of the SM

- Need to explain $\left\{\begin{array}{l}\text { three flavors of SM particles } \\ \text { observed mass hierarchies } \\ \text { observed quark and lepton mixing textures } \\ \text { CP violation in CKM and PMNS } \\ \text { neutrino physics } \\ \ldots\end{array}\right.$

$$
\left.\left.\begin{array}{lll}
0.974 & 0.224 & 0.0039 \\
0.218 & 0.997 & 0.042 \\
0.008 & 0.039 & 1.019
\end{array}\right) \quad C K M . \begin{array}{ccc}
0.829 & 0.539 & 0.147 \\
0.493 & 0.584 & 0.645 \\
0.262 & 0.607 & 0.75
\end{array}\right) P M N S
$$

[Talks by Myriam, Enrique, Antonio (yesterday)]

Approaches towards solving the flavor puzzle

Traditional: discrete non-Abelian flavor symmetries $G_{\text {flavor }}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0, \ldots$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)
[Talks by Myriam, Enrique, Antonio (yesterday)]

Matter fields transform as $\quad \phi \rightarrow \underbrace{\rho_{\phi}(g)} \phi, \quad g \in G_{\text {flavor }}=S_{3}, A_{4}, \ldots$

Approaches towards solving the flavor puzzle

Traditional: discrete non-Abelian flavor symmetries $G_{\text {flavor }}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0, \ldots$ requiring careful choice of flavon sector and flavon vevs
see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)
[Talks by Myriam, Enrique, Antonio (yesterday)]
flavon vev alignment is very challenging $;$

Approaches towards solving the flavor puzzle

Traditional: discrete non-Abelian flavor symmetries $G_{\text {flavor }}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0, \ldots$ requiring careful choice of flavon sector and flavon vevs
see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)
[Talks by Myriam, Enrique, Antonio (yesterday)]
Modular: Yukawa couplings are modular forms $Y=Y(T)$
$Y(T) \rightarrow Y(\gamma T)=(c T+d)^{n_{Y}} \rho_{Y}(\gamma) Y(T), \quad \gamma \in \Gamma=\mathrm{SL}(2, \mathbb{Z}), \rho_{Y} \in \Gamma_{N}$

Approaches towards solving the flavor puzzle

Traditional: discrete non-Abelian flavor symmetries $G_{\text {flavor }}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0, \ldots$ requiring careful choice of flavon sector and flavon vevs

Modular: Yukawa couplings are modular forms $Y=Y(T)$
$Y(T) \rightarrow Y(\gamma T)=(c T+d)^{n_{Y}} \rho_{Y}(\gamma) Y(T), \quad \gamma \in \Gamma=\mathrm{SL}(2, \mathbb{Z}), \rho_{Y} \in \Gamma_{N}$
Matter fields transform similarly: $\phi \rightarrow \underbrace{(c T+d)^{n_{\phi}}}_{\text {automorphy }} \rho_{\phi}(\gamma) \phi$

Approaches towards solving the flavor puzzle

Traditional: discrete non-Abelian flavor symmetries $G_{\text {flavor }}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0, \ldots$ requiring careful choice of flavon sector and flavon vevs
see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)
[Talks by Myriam, Enrique, Antonio (yesterday)]
Modular: Yukawa couplings are modular forms $Y=Y(T)$
$Y(T) \rightarrow Y(\gamma T)=(c T+d)^{n_{Y}} \rho_{Y}(\gamma) Y(T), \quad \gamma \in \Gamma=\mathrm{SL}(2, \mathbb{Z}), \rho_{Y} \in \Gamma_{N}$
Matter fields transform similarly: $\phi \rightarrow(c T+d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$
\Rightarrow finite modular groups $\Gamma_{N}=$ modular flavor symmetry $G_{\text {modular }}$

Approaches towards solving the flavor puzzle

Traditional: discrete non-Abelian flavor symmetries $G_{\text {flavor }}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0, \ldots$ requiring careful choice of flavon sector and flavon vevs
see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)
[Talks by Myriam, Enrique, Antonio (yesterday)]
Modular: Yukawa couplings are modular forms $Y=Y(T)$

Matter fields transform similarly: $\phi \rightarrow(c T+d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$
\Rightarrow finite modular groups $\Gamma_{N}=$ modular flavor symmetry $G_{\text {modular }}$

- $\Gamma_{N} \cong S_{3}, A_{4}, S_{4}, A_{5} \quad$ for $\quad N=2,3,4,5$

$$
n_{Y} \in 2 \mathbb{Z}
$$

$\Rightarrow \quad 9 \nu$ observables ($m_{\nu}, \theta_{i j}$, phases) by fixing 3 parameters!

Approaches towards solving the flavor puzzle

Traditional: discrete non-Abelian flavor symmetries $G_{\text {flavor }}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0, \ldots$ requiring careful choice of flavon sector and flavon vevs
see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)
[Talks by Myriam, Enrique, Antonio (yesterday)]
Modular: Yukawa couplings are modular forms $Y=Y(T)$

Matter fields transform similarly: $\phi \rightarrow(c T+d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$
\Rightarrow finite modular groups $\Gamma_{N}=$ modular flavor symmetry $G_{\text {modular }}$

- $\Gamma_{N} \cong S_{3}, A_{4}, S_{4}, A_{5} \quad$ for $\quad N=2,3,4,5$
- double cover $\Gamma_{N}^{\prime} \cong S_{3}, T^{\prime}, \operatorname{SL}(2,4), \operatorname{SL}(2,5) \quad$ for $\quad N=2,3,4,5$

$$
n_{Y} \in \mathbb{Z}
$$

Approaches towards solving the flavor puzzle

Traditional: discrete non-Abelian flavor symmetries $G_{\text {flavor }}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0, \ldots$ requiring careful choice of flavon sector and flavon vevs
see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)
[Talks by Myriam, Enrique, Antonio (yesterday)]
Modular: Yukawa couplings are modular forms $Y=Y(T)$
Feruglio (2017) $Y(T) \rightarrow Y(\gamma T)=(c T+d)^{n_{Y}} \rho_{Y}(\gamma) Y(T), \quad \gamma \in \Gamma=\mathrm{SL}(2, \mathbb{Z}), \rho_{Y} \in \Gamma_{N}$

Matter fields transform similarly: $\phi \rightarrow(c T+d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$
\Rightarrow finite modular groups $\Gamma_{N}=$ modular flavor symmetry $G_{\text {modular }}$

- $\Gamma_{N} \cong S_{3}, A_{4}, S_{4}, A_{5} \quad$ for $\quad N=2,3,4,5$
- double cover $\Gamma_{N}^{\prime} \cong S_{3}, T^{\prime}, \operatorname{SL}(2,4), \operatorname{SL}(2,5) \quad$ for $\quad N=2,3,4,5$
- 4-fold cover $\widetilde{\Gamma}_{4} \cong[96,67], \widetilde{\Gamma}_{8} \cong[768,1085324], \widetilde{\Gamma}_{12} \cong[2304, \ldots]$

$$
n_{Y} \in \mathbb{Z} / 2 \quad \rightarrow \quad \text { metaplectic }
$$

Liu,Ding(2019); Liu,Yau, Qu,Ding(2020)

Approaches towards solving the flavor puzzle

Traditional: discrete non-Abelian flavor symmetries $G_{\text {flavor }}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0, \ldots$ requiring careful choice of flavon sector and flavon vevs
see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)
[Talks by Myriam, Enrique, Antonio (yesterday)]
Modular: Yukawa couplings are modular forms $Y=Y(T)$
Feruglio (2017) $Y(T) \rightarrow Y(\gamma T)=(c T+d)^{n_{Y}} \rho_{Y}(\gamma) Y(T), \quad \gamma \in \Gamma=\mathrm{SL}(2, \mathbb{Z}), \rho_{Y} \in \Gamma_{N}$

Matter fields transform similarly: $\phi \rightarrow(c T+d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$
\Rightarrow finite modular groups $\Gamma_{N}=$ modular flavor symmetry $G_{\text {modular }}$

- $\Gamma_{N} \cong S_{3}, A_{4}, S_{4}, A_{5} \quad$ for $\quad N=2,3,4,5$
- double cover $\Gamma_{N}^{\prime} \cong S_{3}, T^{\prime}, \operatorname{SL}(2,4), \operatorname{SL}(2,5) \quad$ for $\quad N=2,3,4,5$
- 4-fold cover $\widetilde{\Gamma}_{4} \cong[96,67], \widetilde{\Gamma}_{8} \cong[768,1085324], \widetilde{\Gamma}_{12} \cong[2304, \ldots]$
- Siegel modular groups $\Gamma_{g, N} \cong \operatorname{Sp}(2 g, \mathbb{Z}) / K_{N}$ with multiple moduli

Approaches towards solving the flavor puzzle

Traditional: discrete non-Abelian flavor symmetries $G_{\text {flavor }}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0, \ldots$ requiring careful choice of flavon sector and flavon vevs
see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)
[Talks by Myriam, Enrique, Antonio (yesterday)]
Modular: Yukawa couplings are modular forms $Y=Y(T)$
Feruglio (2017) $Y(T) \rightarrow Y(\gamma T)=(c T+d)^{n_{Y}} \rho_{Y}(\gamma) Y(T), \quad \gamma \in \Gamma=\mathrm{SL}(2, \mathbb{Z}), \rho_{Y} \in \Gamma_{N}$

Matter fields transform similarly: $\phi \rightarrow(c T+d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$
\Rightarrow finite modular groups $\Gamma_{N}=$ modular flavor symmetry $G_{\text {modular }}$

- $\Gamma_{N} \cong S_{3}, A_{4}, S_{4}, A_{5} \quad$ for $\quad N=2,3,4,5$
- double cover $\Gamma_{N}^{\prime} \cong S_{3}, T^{\prime}, \operatorname{SL}(2,4), \operatorname{SL}(2,5) \quad$ for $\quad N=2,3,4,5$
- 4-fold cover $\widetilde{\Gamma}_{4} \cong[96,67], \widetilde{\Gamma}_{8} \cong[768,1085324], \widetilde{\Gamma}_{12} \cong[2304, \ldots]$
- Siegel modular groups $\Gamma_{g, N} \cong \operatorname{Sp}(2 g, \mathbb{Z}) / K_{N}$ with multiple moduli
- $\Gamma / \operatorname{ker}(\varrho)$ with vector-valued modular forms

Liu,Ding(2019); Liu, Yau, Qu,Ding(2020);Ding,Feruglio,Liu(2020);Ding,Liu(2021)

Approaches towards solving the flavor puzzle

Traditional: discrete non-Abelian flavor symmetries $G_{\text {flavor }}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0, \ldots$ requiring careful choice of flavon sector and flavon vevs
see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)
[Talks by Myriam, Enrique, Antonio (yesterday)]
Modular: Yukawa couplings are modular forms $Y=Y(T)$
Feruglio (2017) $Y(T) \rightarrow Y(\gamma T)=(c T+d)^{n_{Y}} \rho_{Y}(\gamma) Y(T), \quad \gamma \in \Gamma=\mathrm{SL}(2, \mathbb{Z}), \rho_{Y} \in \Gamma_{N}$

Matter fields transform similarly: $\phi \rightarrow(c T+d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$
\Rightarrow finite modular groups $\Gamma_{N}=$ modular flavor symmetry $G_{\text {modular }}$

- $\Gamma_{N} \cong S_{3}, A_{4}, S_{4}, A_{5} \quad$ for $\quad N=2,3,4,5$
- double cover $\Gamma_{N}^{\prime} \cong S_{3}, T^{\prime}, \operatorname{SL}(2,4), \operatorname{SL}(2,5) \quad$ for $\quad N=2,3,4,5$
- 4-fold cover $\widetilde{\Gamma}_{4} \cong[96,67], \widetilde{\Gamma}_{8} \cong[768,1085324], \widetilde{\Gamma}_{12} \cong[2304, \ldots]$
- Siegel modular groups $\Gamma_{g, N} \cong \operatorname{Sp}(2 g, \mathbb{Z}) / K_{N}$ with multiple moduli
- $\Gamma / \operatorname{ker}(\varrho)$ with vector-valued modular forms

Stringy ingredients

particles \longleftrightarrow strings

- Supersymmetry (in fact, supergravedad - SUGRA) \& 10D space-time \rightarrow compactify 6D on spaces with shapes and sizes set by moduli
- matter fields get all their properties from string features \rightarrow all field charges are computable
- field couplings arise from string interactions \rightarrow coupling strengths are computable modular forms

Heterotic Orbifolds

Dixon, Harvey, Vafa, Witten (1985-86)
Ibáñez, Nilles, Quevedo (1987)
Font, Ibáñez, Quevedo, Sierra (1990)
Katsuki, Kawamura, Kobayashi, Ohtsubo, Ono, Tanioka (1990)
Kobayashi, Raby, Zhang (2004)
Buchmüller, Hamaguchi, Lebedev, Ratz (2004-06)
Kobayashi, Nilles, Plöger, Raby, Ratz (2006)
Lebedev, Nilles, Ratz, SRS, Vaudrevange, Wingerter (2006-08)

Mütter, Parr, Vaudrevange + Biermann, Ratz (2018-19)
Baur, Nilles, Trautner, Vaudrevange (2018-19)

1D S^{1} / \mathbb{Z}_{2} orbifold

1D S^{1} / \mathbb{Z}_{2} orbifold

In general, an orbifold $\mathcal{O}:=X / S$

$2 \mathrm{D} \mathbb{T}^{2} / \mathbb{Z}_{N}$ orbifolds and $G_{\text {flavor }}$

- $\mathbb{T}^{2} / \mathbb{Z}_{3}$

triangular pillow \rightarrow symmetry of a triangle $\left(S_{3} \rightarrow \Delta(27)\right)$

$2 \mathrm{D} \mathbb{T}^{2} / \mathbb{Z}_{N}$ orbifolds and $G_{\text {flavor }}$

- $\mathbb{T}^{2} / \mathbb{Z}_{3}$

triangular pillow \rightarrow symmetry of a triangle $\left(S_{3} \rightarrow \Delta(27)\right.$)
- $\mathbb{T}^{2} / \mathbb{Z}_{2}$

tetrahedron \rightarrow symmetry of a tetrahedron $\left(A_{4} \rightarrow\left(D_{8} \times D_{8}\right) / \mathbb{Z}_{2}\right)$

In Abelian, toroidal heterotic orbifolds

- Orbifold $\mathcal{O}=\mathbb{R}^{6} / S \leftarrow$ space group: rotations, reflexions and shifts
- Localized states are subject to 2 kinds of symmetries

A: geometric symmetries $G_{\text {flavor }}$
B: stringy modular symmetries $\rightarrow \Gamma_{N}, \Gamma_{N}^{\prime}, \ldots$
(Technically, both arise as outer automorphisms of S in Narain formalism)
Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)

In Abelian, toroidal heterotic orbifolds

- Orbifold $\mathcal{O}=\mathbb{R}^{6} / S \leftarrow$ space group: rotations, reflexions and shifts
- Localized states are subject to 2 kinds of symmetries

A: geometric symmetries $G_{\text {flavor }}$
B: stringy modular symmetries $\rightarrow \Gamma_{N}, \Gamma_{N}^{\prime}, \ldots$
(Technically, both arise as outer automorphisms of S in Narain formalism)
Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)
Strings offer a common origin for all possible flavor symmetries

In Abelian, toroidal heterotic orbifolds

- Orbifold $\mathcal{O}=\mathbb{R}^{6} / S \leftarrow$ space group: rotations, reflexions and shifts
- Localized states are subject to 2 kinds of symmetries

A: geometric symmetries $G_{\text {flavor }}$
B: stringy modular symmetries $\rightarrow \Gamma_{N}, \Gamma_{N}^{\prime}, \ldots$
(Technically, both arise as outer automorphisms of S in Narain formalism)
Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)
Strings offer a common origin for all possible flavor symmetries
A \& B combine to provide an eclectic picture of flavor
Nilles, SRS, Vaudrevange (2004.05200, 2006.03059, 2010.13798)

In Abelian, toroidal heterotic orbifolds

- Orbifold $\mathcal{O}=\mathbb{R}^{6} / S \leftarrow$ space group: rotations, reflexions and shifts
- Localized states are subject to 2 kinds of symmetries

A: geometric symmetries $G_{\text {flavor }}$
B : stringy modular symmetries $\rightarrow \Gamma_{N}, \Gamma_{N}^{\prime}, \ldots$
(Technically, both arise as outer automorphisms of S in Narain formalism)
Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)
Strings offer a common origin for all possible flavor symmetries
A \& B combine to provide an eclectic picture of flavor
Nilles, SRS, Vaudrevange (2004.05200, 2006.03059, 2010.13798)
Key eclectic obs: eclectic flavor $=A \rtimes B \quad$ and $\quad B \subset \operatorname{Out}(A)$
e.g. in $\mathbb{T}^{2} / \mathbb{Z}_{3}$, eclectic flavor $=\Delta(27) \rtimes T^{\prime} \quad$ and $T^{\prime} \subset \operatorname{Out}(\Delta(27))$

In Abelian, toroidal heterotic orbifolds

- Orbifold $\mathcal{O}=\mathbb{R}^{6} / S \leftarrow$ space group: rotations, reflexions and shifts
- Localized states are subject to 2 kinds of symmetries

A: geometric symmetries $G_{\text {flavor }}$
B : stringy modular symmetries $\rightarrow \Gamma_{N}, \Gamma_{N}^{\prime}, \ldots$
(Technically, both arise as outer automorphisms of S in Narain formalism)
Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)
Strings offer a common origin for all possible flavor symmetries
A \& B combine to provide an eclectic picture of flavor

Key eclectic obs: eclectic flavor $=A \rtimes B \quad$ and $\quad B \subset \operatorname{Out}(A)$
e.g. in $\mathbb{T}^{2} / \mathbb{Z}_{3}$, eclectic flavor $=\Delta(27) \rtimes T^{\prime} \quad$ and $T^{\prime} \subset \operatorname{Out}(\Delta(27))$

Advantage vs pure modular symmetries: kinetic terms (Kähler potential) under full control!

MSSM with stringy flavor

Flavor in

semi-realistic orbifold models

Explicit string model $\mathbb{T}^{6} / \mathbb{Z}_{3} \times \mathbb{Z}_{3}$

- Contains a sector $\mathbb{T}^{2} / \mathbb{Z}_{3}$

triangular pillow \rightarrow traditional symmetry (moduli independent)

$$
\Delta(27) \cup\left\{\mathrm{S}^{2}\right\} \cong \Delta(54)
$$

Explicit string model $\mathbb{T}^{6} / \mathbb{Z}_{3} \times \mathbb{Z}_{3}$

- Contains a sector $\mathbb{T}^{2} / \mathbb{Z}_{3}$
triangular pillow \rightarrow traditional symmetry (moduli independent) $\Delta(27) \cup\left\{S^{2}\right\} \cong \Delta(54)$
- Toroidal modulus T is free $\quad \rightarrow \quad \mathrm{SL}(2, \mathbb{Z})$ modular symmetry

Explicit string model $\mathbb{T}^{6} / \mathbb{Z}_{3} \times \mathbb{Z}_{3}$

- Contains a sector $\mathbb{T}^{2} / \mathbb{Z}_{3}$
triangular pillow \rightarrow traditional symmetry (moduli independent) $\Delta(27) \cup\left\{S^{2}\right\} \cong \Delta(54)$
- Toroidal modulus T is free $\quad \rightarrow \quad \mathrm{SL}(2, \mathbb{Z})$ modular symmetry linearly realized as $G_{\text {modular }}=T^{\prime} \cong \Gamma_{3}^{\prime} \quad$ finite modular group

Explicit string model $\mathbb{T}^{6} / \mathbb{Z}_{3} \times \mathbb{Z}_{3}$

- Contains a sector $\mathbb{T}^{2} / \mathbb{Z}_{3}$
triangular pillow \rightarrow traditional symmetry (moduli independent)

$$
\Delta(27) \cup\left\{\mathrm{S}^{2}\right\} \cong \Delta(54)
$$

- Toroidal modulus T is free $\quad \rightarrow \mathrm{SL}(2, \mathbb{Z})$ modular symmetry linearly realized as $G_{\text {modular }}=T^{\prime} \cong \Gamma_{3}^{\prime} \quad$ finite modular group Lauer, Mas, Nilles (89-90) and only few (not ad hoc) representations for quarks and leptons:

Explicit string model $\mathbb{T}^{6} / \mathbb{Z}_{3} \times \mathbb{Z}_{3}$

- Contains a sector $\mathbb{T}^{2} / \mathbb{Z}_{3}$
triangular pillow \rightarrow traditional symmetry (moduli independent)

$$
\Delta(27) \cup\left\{\mathrm{S}^{2}\right\} \cong \Delta(54)
$$

- Toroidal modulus T is free $\rightarrow \mathrm{SL}(2, \mathbb{Z})$ modular symmetry
linearly realized as $G_{\text {modular }}=T^{\prime} \cong \Gamma_{3}^{\prime} \quad$ finite modular group
Lauer, Mas, Nilles (89-90)
and only few (not ad hoc) representations for quarks and leptons:

	quarks and leptons							Higgs fields	
label	q	\bar{u}	\bar{d}	ℓ	\bar{e}	$\bar{\nu}$	H_{u}	H_{d}	
$\mathrm{SU}(3)_{c}$	$\mathbf{3}$	$\overline{\mathbf{3}}$	$\overline{\mathbf{3}}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	
$\mathrm{SU}(2)_{L}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	2	$\mathbf{2}$	
$\mathrm{U}(1)_{Y}$	$1 / 6$	$-2 / 3$	$1 / 3$	$-1 / 2$	1	0	$1 / 2$	$-1 / 2$	
$\Delta(54)$	$\mathbf{3}_{2}$	$\mathbf{3}_{2}$	3_{2}	$\mathbf{3}_{2}$	$\mathbf{3}_{2}$	$\mathbf{3}_{2}$	$\mathbf{1}$	$\mathbf{1}$	
T^{\prime}	$\mathbf{2}^{\prime} \oplus \mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$						

Baur, Nilles, SRS, Trautner, Vaudrevange (2207.10677)

Explicit string model $\mathbb{T}^{6} / \mathbb{Z}_{3} \times \mathbb{Z}_{3}$

After

- writing the corresponding action,
- fitting the value of the modulus $(\langle T\rangle \sim 3 i)$, and
- computing effective particle interactions (with 20 params)

Explicit string model $\mathbb{T}^{6} / \mathbb{Z}_{3} \times \mathbb{Z}_{3}$

After

- writing the corresponding action,
- fitting the value of the modulus $(\langle T\rangle \sim 3 i)$, and
- computing effective particle interactions (with 20 params)

Predictions:

Explicit string model $\mathbb{T}^{6} / \mathbb{Z}_{3} \times \mathbb{Z}_{3}$

Predictions:

	observable	model best fit	exp. best fit	$\exp .1 \sigma$ interval
	$m_{\mathrm{u}} / m_{\mathrm{c}}$	0.00193	0.00193	$0.00133 \rightarrow 0.00253$
	$m_{\mathrm{c}} / m_{\mathrm{t}}$	0.00280	0.00282	$0.00270 \rightarrow 0.00294$
	$m_{\mathrm{d}} / m_{\mathrm{s}}$	0.0505	0.0505	$0.0443 \rightarrow 0.0567$
	$m_{\mathrm{s}} / m_{\mathrm{b}}$	0.0182	0.0182	$0.0172 \rightarrow 0.0192$
	$\vartheta_{12}[\mathrm{deg}]$	13.03	13.03	$12.98 \rightarrow 13.07$
	ϑ_{13} [deg]	0.200	0.200	$0.193 \rightarrow 0.207$
	∂_{23} [deg]	2.30	2.30	$2.26 \rightarrow 2.34$
	$\delta_{\mathcal{C P}}^{q}[\mathrm{deg}]$	69.2	69.2	$66.1 \rightarrow 72.3$
	m_{e} / m_{μ}	0.00473	0.00474	$0.00470 \rightarrow 0.00478$
	m_{μ} / m_{τ}	0.0586	0.0586	$0.0581 \rightarrow 0.0590$
	$\sin ^{2} \theta_{12}$	0.303	0.304	$0.292 \rightarrow 0.316$
	$\sin ^{2} \theta_{13}$	0.0225	0.0225	$0.0218 \rightarrow 0.0231$
	$\sin ^{2} \theta_{23}$	0.449	0.450	$0.434 \rightarrow 0.469$
	$\delta_{c p}^{l} / \pi$	1.28	1.28	$1.14 \rightarrow 1.48$
	η_{1} / π	0.029	-	
	η_{2} / π	0.994	-	-
	$J_{C P}$	-0.026	-0.026	$-0.033 \rightarrow-0.016$
	$J_{\mathcal{C P}}^{\text {max }}$	0.0335	0.0336	$0.0329 \rightarrow 0.0341$
	$\Delta m_{21}^{2} / 10^{-5}\left[\mathrm{eV}^{2}\right]$	7.39	7.42	$7.22 \rightarrow 7.63$
	$\Delta m_{31}^{2} / 10^{-3}\left[\mathrm{eV}^{2}\right]$	2.521	2.510	$2.483 \rightarrow 2.537$
	$m_{1}[\mathrm{eV}]$	0.0042	<0.037	-
	$m_{2}[\mathrm{eV}]$	0.0095	-	-
	$m_{3}[\mathrm{eV}]$	0.0504	-	-
	$\sum_{i} m_{i}[\mathrm{eV}]$	0.0641	<0.120	-
	$m_{\beta \beta}[\mathrm{eV}]$	0.0055	<0.036	-
	$m_{8}[\mathrm{eV}]$	0.0099	<0.8	-
	χ^{2}	0.11		

Baur, Nilles, SRS, Trautner, Vaudrevange (2207.10677)

Stringy Siegel Flavor Symmetries

Siegel modular flavor group

from string theory

Baur, Kade, Nilles, SRS, Vaudrevange: 2008.07534, 2012.09586, 2104.03981

Siegel modular symmetries from $\mathbb{T}^{2} / \mathbb{Z}_{2}$

- Recall that $\mathbb{T}^{2} / \mathbb{Z}_{2}$ yields $G_{\text {flavor }}=\left(D_{8} \times D_{8}\right) / \mathbb{Z}_{2}$

Siegel modular symmetries from $\mathbb{T}^{2} / \mathbb{Z}_{2}$

- Recall that $\mathbb{T}^{2} / \mathbb{Z}_{2}$ yields $G_{\text {flavor }}=\left(D_{8} \times D_{8}\right) / \mathbb{Z}_{2}$
- BUT there are TWO free moduli $U, T \Rightarrow \mathrm{SL}(2, \mathbb{Z})_{U} \times \mathrm{SL}(2, \mathbb{Z})_{T}$?

Siegel modular symmetries from $\mathbb{T}^{2} / \mathbb{Z}_{2}$

- Recall that $\mathbb{T}^{2} / \mathbb{Z}_{2}$ yields $G_{\text {flavor }}=\left(D_{8} \times D_{8}\right) / \mathbb{Z}_{2}$
- BUT there are TWO free moduli $U, T \Rightarrow \mathrm{SL}(2, \mathbb{Z})_{U} \times \operatorname{SL}(2, \mathbb{Z})_{T}$? NO!

Siegel modular symmetries from $\mathbb{T}^{2} / \mathbb{Z}_{2}$

- Recall that $\mathbb{T}^{2} / \mathbb{Z}_{2}$ yields $G_{\text {flavor }}=\left(D_{8} \times D_{8}\right) / \mathbb{Z}_{2}$
- BUT there are TWO free moduli $U, T \Rightarrow \mathrm{SL}(2, \mathbb{Z})_{U} \times \operatorname{SL}(2, \mathbb{Z})_{T}$? NO!
- The resulting modular symmetry is

$$
\mathrm{Sp}(4, \mathbb{Z}) \supset \mathrm{SL}(2, \mathbb{Z})_{U} \times \mathrm{SL}(2, \mathbb{Z})_{T}
$$

Siegel modular symmetries from $\mathbb{T}^{2} / \mathbb{Z}_{2}$

- Recall that $\mathbb{T}^{2} / \mathbb{Z}_{2}$ yields $G_{\text {flavor }}=\left(D_{8} \times D_{8}\right) / \mathbb{Z}_{2}$
- BUT there are TWO free moduli $U, T \Rightarrow \mathrm{SL}(2, \mathbb{Z})_{U} \times \mathrm{SL}(2, \mathbb{Z})_{T}$? NO!
- The resulting modular symmetry is

$$
\mathrm{Sp}(4, \mathbb{Z}) \supset \mathrm{SL}(2, \mathbb{Z})_{U} \times \mathrm{SL}(2, \mathbb{Z})_{T}
$$

Linearly realized as $G_{\text {modular }}=\left(S_{3}^{T} \times S_{3}^{U}\right) \rtimes \mathbb{Z}_{4}^{M}$

Siegel modular symmetries from $\mathbb{T}^{2} / \mathbb{Z}_{2}$

- Recall that $\mathbb{T}^{2} / \mathbb{Z}_{2}$ yields $G_{\text {flavor }}=\left(D_{8} \times D_{8}\right) / \mathbb{Z}_{2}$
- BUT there are TWO free moduli $U, T \Rightarrow \mathrm{SL}(2, \mathbb{Z})_{U} \times \mathrm{SL}(2, \mathbb{Z})_{T}$? NO!
- The resulting modular symmetry is

$$
\mathrm{Sp}(4, \mathbb{Z}) \supset \mathrm{SL}(2, \mathbb{Z})_{U} \times \mathrm{SL}(2, \mathbb{Z})_{T}
$$

Linearly realized as $G_{\text {modular }}=\left(S_{3}^{T} \times S_{3}^{U}\right) \rtimes \mathbb{Z}_{4}^{M}$

- Eclectic structure: $G_{\text {eclectic }}=G_{\text {flavor }} \rtimes G_{\text {modular }}$, order $=4608$

Siegel modular symmetries from $\mathbb{T}^{2} / \mathbb{Z}_{2}$

- Recall that $\mathbb{T}^{2} / \mathbb{Z}_{2}$ yields $G_{\text {flavor }}=\left(D_{8} \times D_{8}\right) / \mathbb{Z}_{2}$
- BUT there are TWO free moduli $U, T \Rightarrow \mathrm{SL}(2, \mathbb{Z})_{U} \times \mathrm{SL}(2, \mathbb{Z})_{T}$? NO!
- The resulting modular symmetry is

$$
\mathrm{Sp}(4, \mathbb{Z}) \supset \mathrm{SL}(2, \mathbb{Z})_{U} \times \mathrm{SL}(2, \mathbb{Z})_{T}
$$

Linearly realized as $G_{\text {modular }}=\left(S_{3}^{T} \times S_{3}^{U}\right) \rtimes \mathbb{Z}_{4}^{M}$

- Eclectic structure: $G_{\text {eclectic }}=G_{\text {flavor }} \rtimes G_{\text {modular }}$, order $=4608$
bottom-up and top-down phenomenology unexplored !!

Quasi-eclectic symmetries for model building

Quasi-Eclectic realization
 of a simple lepton model

Quasi-eclectic picture $A_{4} \times \Gamma_{3} \rightarrow A_{4}$

Chen, Knapp-Pérez, Ramos-Hamud, SRS, Ratz, Shukla (2021)

	$\left(E_{1}^{\mathcal{C}}, E_{2}^{\mathcal{C}}, E_{3}^{\mathcal{C}}\right)$	L	H_{d}	H_{u}	χ	φ	S_{χ}	S_{φ}	Y
$A_{4}^{\text {traditional }}$	$\left(\mathbf{1}_{0}, \mathbf{1}_{\mathbf{2}}, \mathbf{1}_{\mathbf{1}}\right)$	$\mathbf{3}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$
Γ_{3}	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{3}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{3}$
modular weights	$(1,1,1)$	-1	0	0	0	0	0	0	2

Alternative to eclectic: quasi-eclectic picture $G_{\text {modular }} \times G_{\text {flavor }}$

Quasi-eclectic picture $A_{4} \times \Gamma_{3} \rightarrow A_{4}$

Chen, Knapp-Pérez, Ramos-Hamud, SRS, Ratz, Shukla (2021)

	$\left(E_{1}^{\mathcal{C}}, E_{2}^{\mathcal{C}}, E_{3}^{\mathcal{C}}\right)$	L	H_{d}	H_{u}	χ	φ	S_{χ}	S_{φ}	Y
$A_{4}^{\text {traditional }}$	$\left(\mathbf{1}_{0}, \mathbf{1}_{\mathbf{2}}, \mathbf{1}_{\mathbf{1}}\right)$	$\mathbf{3}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$
Γ_{3}	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{3}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{3}$
modular weights	$(1,1,1)$	-1	0	0	0	0	0	0	2

Alternative to eclectic: quasi-eclectic picture $G_{\text {modular }} \times G_{\text {flavor }}$ Inherits control over the Kähler potential because of $G_{\text {flavor }}$

Quasi-eclectic picture $A_{4} \times \Gamma_{3} \rightarrow A_{4}$

Chen, Knapp-Pérez, Ramos-Hamud, SRS, Ratz, Shukla (2021)

	$\left(E_{1}^{\mathcal{C}}, E_{2}^{\mathcal{C}}, E_{3}^{\mathcal{C}}\right)$	L	H_{d}	H_{u}	χ	φ	S_{χ}	S_{φ}	Y
$A_{4}^{\text {traditional }}$	$\left(\mathbf{1}_{0}, \mathbf{1}_{\mathbf{2}}, \mathbf{1}_{\mathbf{1}}\right)$	$\mathbf{3}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$
Γ_{3}	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{3}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{3}$
modular weights	$(1,1,1)$	-1	0	0	0	0	0	0	2

Alternative to eclectic: quasi-eclectic picture $G_{\text {modular }} \times G_{\text {flavor }}$ Inherits control over the Kähler potential because of $G_{\text {flavor }}$ Choose flavon $\chi:(\mathbf{3}, \mathbf{3})$ and a diagonal VEV $\langle\chi\rangle=v_{1} \operatorname{diag}\{1,1,1\}$

Quasi-eclectic picture $A_{4} \times \Gamma_{3} \rightarrow A_{4}$

Chen, Knapp-Pérez, Ramos-Hamud, SRS, Ratz, Shukla (2021)

	$\left(E_{1}^{\mathcal{C}}, E_{2}^{\mathcal{C}}, E_{3}^{\mathcal{C}}\right)$	L	H_{d}	H_{u}	χ	φ	S_{χ}	S_{φ}	Y
$A_{4}^{\text {traditional }}$	$\left(\mathbf{1}_{0}, \mathbf{1}_{\mathbf{2}}, \mathbf{1}_{\mathbf{1}}\right)$	$\mathbf{3}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$
Γ_{3}	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{3}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{1}_{0}$	$\mathbf{3}$
modular weights	$(1,1,1)$	-1	0	0	0	0	0	0	2

Alternative to eclectic: quasi-eclectic picture $G_{\text {modular }} \times G_{\text {flavor }}$ Inherits control over the Kähler potential because of $G_{\text {flavor }}$
Choose flavon $\chi:(\mathbf{3}, \mathbf{3})$ and a diagonal VEV $\langle\chi\rangle=v_{1} \operatorname{diag}\{1,1,1\}$
canonical

$m_{\nu}=\frac{v_{u}^{2} \varepsilon_{1}}{\sqrt{3} \Lambda}\left(\begin{array}{ccc}2 Y_{1}(\tau) & -Y_{3}(\tau) & -Y_{2}(\tau) \\ -Y_{3}(\tau) & 2 Y_{2}(\tau) & -Y_{1}(\tau) \\ -Y_{2}(\tau) & -Y_{1}(\tau) & 2 Y_{3}(\tau)\end{array}\right)$
phenomenology like Feruglio's first model canonical kinetic terms

Concluding remarks

In summary

Concluding remarks

- Flavor puzzle: open questions about flavor (number and mixings of particles)

Concluding remarks

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions

Concluding remarks

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions
- Toroidal orbifold compactifications of string theory reveal an eclectic flavor structure $=$ non-modular \rtimes modular symmetries

Concluding remarks

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions
- Toroidal orbifold compactifications of string theory reveal an eclectic flavor structure $=$ non-modular \rtimes modular symmetries
- Symmetries, representations and charges fixed by the compactification

Concluding remarks

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions
- Toroidal orbifold compactifications of string theory reveal an eclectic flavor structure $=$ non-modular \rtimes modular symmetries
- Symmetries, representations and charges fixed by the compactification
- Many string models that reproduce features of SM

Olguín-Trejo, Pérez-Martínez, SRS (1808.06622)

Concluding remarks

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions
- Toroidal orbifold compactifications of string theory reveal an eclectic flavor structure $=$ non-modular \rtimes modular symmetries
- Symmetries, representations and charges fixed by the compactification
- Many string models that reproduce features of SM

Olguín-Trejo, Pérez-Martínez, SRS (1808.06622)

- Consequences for flavor in explicit constructions are studied

Concluding remarks

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions
- Toroidal orbifold compactifications of string theory reveal an eclectic flavor structure $=$ non-modular \rtimes modular symmetries
- Symmetries, representations and charges fixed by the compactification
- Many string models that reproduce features of $\begin{gathered}\text { olgunn-Trejo, P }\end{gathered}$

Olguín-Trejo, Pérez-Martínez, SRS (1808.06622)

- Consequences for flavor in explicit constructions are studied
- (Solve many challenges of existing particle physics models with flavor symmetries!)

Concluding remarks

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions
- Toroidal orbifold compactifications of string theory reveal an eclectic flavor structure $=$ non-modular \rtimes modular symmetries
- Symmetries, representations and charges fixed by the compactification
- Many string models that reproduce features of $\begin{gathered}\text { olgunn-Trejo, P }\end{gathered}$

Olguín-Trejo, Pérez-Martínez, SRS (1808.06622)

- Consequences for flavor in explicit constructions are studied
- (Solve many challenges of existing particle physics models with flavor symmetries!)
- Interesting predictions on neutrino physics

Caveat: some free parameters, less than the number of predictions

Concluding remarks

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions
- Toroidal orbifold comnartifiratinne of ctrino thennv raveal an eclectic flavor To work on
- flavor with $\mathbb{T}^{2} / \mathbb{Z}_{4} \& \mathbb{T}^{2} / \mathbb{Z}_{6}$?
- $\mathcal{C P}$ and $\mathcal{C P}$ violation ?
- Symmetries, represe
- Many string models
- Consequences for fla
- (Solve many challen symmetries!)
- Interesting predictio

Nilles, Ratz, Trautner, Vaudrevange (2018)

- bottom-up pheno with $\Gamma_{N}, N>6$?

Arriaga, SRS,... (2023)
or

- dynamic moduli stabilization \& de Sitter ?

Knapp, Liu, Nilles, SRS, Ratz (2023)

- more pheno in these models ?
- non-supersymmetric constructions ?

Pérez-Martínez, SRS, Vaudrevange (2105.03460)

- already testable predictions ?

Concluding remarks

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions
- Toroidal orbifold compactifications of string theory reveal an eclectic flavor structure $=$ non-modular \rtimes modular symmetries
- Symmetries, representations and charges fixed by the compactification
- Many string models And beyond...
- Consequences for fla
- (Solve many challen symmetries!)
- Interesting predictio Caveat: some free p
- DM + inflation with KK ALPs?

Gordillo, Morales, SRS (2023)

- DM in multi-Higgs non-SUSY models ?

Cervantes, Pérez-Figueroa, Pérez-Martínez, SRS (2302.08520)

- Spectral distortions in inflation?

Baur, Henríquez, García, SRS (2023)

- non-Abelian orbifolds \& flavor?

Hernández-Segura, SRS (2023)

- Machine learning for better models?

Escalante-Notario, Portillo-Castillo, SRS (2212.00821,23xx.xxxx)

- ...

Just in case...

Backup slides

Modular symmetries as flavor symmetries

Congruence modular subgroups: $\Gamma(N) \subset \mathrm{SL}(2, \mathbb{Z})$

$$
\Gamma(N)=\{\gamma \in \operatorname{SL}(2, \mathbb{Z}) \mid \gamma=\mathbb{1} \quad \bmod N\}
$$

are normal subgroups of $\mathrm{SL}(2, \mathbb{Z})$

Modular symmetries as flavor symmetries

Congruence modular subgroups: $\Gamma(N) \subset \mathrm{SL}(2, \mathbb{Z})$

$$
\Gamma(N)=\{\gamma \in \operatorname{SL}(2, \mathbb{Z}) \mid \gamma=\mathbb{1} \quad \bmod N\}
$$

are normal subgroups of $\mathrm{SL}(2, \mathbb{Z})$
(Double-cover) finite modular subgroups: $\Gamma_{N}^{\prime} \cong \mathrm{SL}(2, \mathbb{Z}) / \Gamma(N)$

$$
\Gamma_{N}^{\prime}=\left\langle\mathrm{S}, \mathrm{~T} \mid \mathrm{S}^{4}=(\mathrm{ST})^{3}=T^{N}=\mathbb{1}, \quad \mathrm{S}^{2} \mathrm{~T}=\mathrm{TS}^{2}, \quad N=2,3,4,5\right\rangle
$$

$$
\Gamma_{2}^{\prime} \cong S_{3}, \Gamma_{3}^{\prime} \cong T^{\prime}, \Gamma_{4} \cong \mathrm{SL}(2,4), \Gamma_{5} \cong \mathrm{SL}(2,5), \ldots
$$

Modular symmetries as flavor symmetries

Congruence modular subgroups: $\Gamma(N) \subset \mathrm{SL}(2, \mathbb{Z})$

$$
\Gamma(N)=\{\gamma \in \operatorname{sL}(2, \mathbb{Z}) \mid \gamma=\mathbb{1} \quad \bmod N\}
$$

are normal subgroups of $\mathrm{SL}(2, \mathbb{Z})$
(Double-cover) finite modular subgroups: $\Gamma_{N}^{\prime} \cong \mathrm{SL}(2, \mathbb{Z}) / \Gamma(N)$
$\Gamma_{N}^{\prime}=\left\langle\mathrm{S}, \mathrm{T} \mid \mathrm{S}^{4}=(\mathrm{ST})^{3}=T^{N}=\mathbb{1}, \quad \mathrm{S}^{2} \mathrm{~T}=\mathrm{TS}^{2}, \quad N=2,3,4,5\right\rangle$

$$
\Gamma_{2}^{\prime} \cong S_{3}, \Gamma_{3}^{\prime} \cong T^{\prime}, \Gamma_{4} \cong \mathrm{SL}(2,4), \Gamma_{5} \cong \mathrm{SL}(2,5), \ldots
$$

e.g. Liu, Ding (2019)

Finite modular subgroups: $\Gamma_{N} \cong \operatorname{PSL}(2, \mathbb{Z}) / \bar{\Gamma}(N)(\operatorname{PSL}(2, \mathbb{Z}) \cong \operatorname{SL}(2, \mathbb{Z}) /\{ \pm \mathbb{1}\})$

$$
\begin{gathered}
\Gamma_{N}=\left\langle\mathrm{S}, \mathrm{~T} \mid \mathrm{S}^{2}=(\mathrm{ST})^{3}=T^{N}=\mathbb{1}, \quad N=2,3,4,5\right\rangle \\
\Gamma_{2} \cong S_{3}, \Gamma_{3} \cong A_{4}, \Gamma_{4} \cong S_{4}, \Gamma_{5} \cong A_{5}, \ldots, \Gamma_{7} \cong \Sigma(168), \ldots
\end{gathered}
$$

e.g. de Adelhaart, Feruglio, Hagedorn (2011)

Modular symmetries as flavor symmetries

Thus far, models with modular flavor symmetries are supersymmetric

Modular symmetries as flavor symmetries

Thus far, models with modular flavor symmetries are supersymmetric Superfields build reps. of Γ_{N} or Γ_{N}^{\prime}; transform as

$$
\Phi_{n_{i}} \xrightarrow{\gamma}(c T+d)^{n_{i}} \rho(\gamma) \Phi_{n_{i}}, \quad \Phi_{n_{i}} \in\left\{(e, \mu, \tau)^{T},(u, c, t)^{T}, \ldots\right\}
$$

n_{i} : modular weight, $\rho(\gamma)$: matrix rep. of γ for $\Phi_{n_{i}}$

Modular symmetries as flavor symmetries

Thus far, models with modular flavor symmetries are supersymmetric Superfields build reps. of Γ_{N} or Γ_{N}^{\prime}; transform as

$$
\Phi_{n_{i}} \xrightarrow{\gamma}(c T+d)^{n_{i}} \rho(\gamma) \Phi_{n_{i}}, \quad \Phi_{n_{i}} \in\left\{(e, \mu, \tau)^{T},(u, c, t)^{T}, \ldots\right\}
$$

n_{i} : modular weight, $\rho(\gamma)$: matrix rep. of γ for $\Phi_{n_{i}}$
Couplings $\hat{Y}^{\left(n_{Y}\right)}(T)$ are modular forms

$$
W \supset \sum \hat{Y}^{\left(n_{Y}\right)}(T) \Phi_{n_{1}} \Phi_{n_{2}} \Phi_{n_{3}}, \quad \hat{Y}^{\left(n_{Y}\right)} \xrightarrow{\gamma}(c T+d)^{n_{Y}} \rho(\gamma) \hat{Y}^{\left(n_{Y}\right)}
$$

n_{Y} : modular weight, $\quad \rho(\gamma)$: matrix rep. of γ for $\hat{Y}^{\left(n_{Y}\right)}(T)$

Modular symmetries as flavor symmetries

Thus far, models with modular flavor symmetries are supersymmetric Superfields build reps. of Γ_{N} or Γ_{N}^{\prime}; transform as

$$
\Phi_{n_{i}} \xrightarrow{\gamma}(c T+d)^{n_{i}} \rho(\gamma) \Phi_{n_{i}}, \quad \Phi_{n_{i}} \in\left\{(e, \mu, \tau)^{T},(u, c, t)^{T}, \ldots\right\}
$$

n_{i} : modular weight, $\rho(\gamma)$: matrix rep. of γ for $\Phi_{n_{i}}$
Couplings $\hat{Y}^{\left(n_{Y}\right)}(T)$ are modular forms

$$
W \supset \sum \hat{Y}^{\left(n_{Y}\right)}(T) \Phi_{n_{1}} \Phi_{n_{2}} \Phi_{n_{3}}, \quad \hat{Y}^{\left(n_{Y}\right)} \xrightarrow{\gamma}(c T+d)^{n_{Y}} \rho(\gamma) \hat{Y}^{\left(n_{Y}\right)}
$$

n_{Y} : modular weight, $\rho(\gamma)$: matrix rep. of γ for $\hat{Y}^{\left(n_{Y}\right)}(T)$
Admissible iff
$W\left(\Phi_{n_{1}}, \ldots\right) \xrightarrow{\gamma}(c T+d)^{-1} \mathbb{1} W\left(\Phi_{n_{1}}, \ldots\right), \quad$ i.e. $n_{Y}+\sum n_{i}=-1, \quad \Pi \rho(\gamma)=\mathbb{1}$
Note the nontrivial automorphy factor $(c T+d)^{-1} \rightarrow W$ covariant

How to proceed with modular flavor symmetries

- Take your favorite symmetry: $G_{m o d}=\Gamma_{N} \in\left\{S_{3}, A_{4}, S_{4}, A_{5}, \ldots\right\}$
- Choose your favorite representations $\rho(\gamma)$ for quark and lepton fields e.g. quark doublets Q as $\mathbf{3}$ or $\mathbf{1} \oplus \mathbf{1}^{\prime} \oplus \mathbf{1}^{\prime \prime}$ of $\Gamma_{3} \cong A_{4}, \ldots$
- Pick your favorite modular weights n_{i} and n_{Y}
- Write your $G_{m o d}$-covariant superpotential W

$$
\text { e.g. } W \supset \hat{Y}^{u} H_{u} Q \bar{u}+\hat{Y}^{d} H_{d} Q \bar{d}+\hat{Y}^{e} H_{d} L \bar{e}+\frac{\hat{Y}}{\Lambda} L H_{u} L H_{u}
$$

- Take your favorite inv. Kähler potential K; typical choice $K=\sum\left|\Phi_{n_{i}}\right|^{2}$ MANY other modular invariant K possible! - Chen, SR-S, Ratz (1909.06910)
- Choose a $\langle T\rangle \neq 0 \rightarrow$ nontrivial rep. of $\hat{Y}(\langle T\rangle)$ breaks $G_{\text {mod }}$
- EW breakdown with $\left\langle H_{u}\right\rangle,\left\langle H_{d}\right\rangle \neq 0$
- Diagonalize quark and lepton matrices to compute $V_{C K M}$ and $U_{P M N S}$ and adjust only $\langle T\rangle$ to data

Eclectic flavor symmetries

From top-down to bottom-up eclectic flavor symmetries

Eclectic flavor groups

Key observation: T^{\prime} is an outer automorphism group of $\Delta(54) \odot$

Eclectic flavor groups

Key observation: T^{\prime} is an outer automorphism group of $\Delta(54) \odot$
Recipe to get the eclectic flavor group associated with a $G_{\text {flavor }}$:

- Determine Out $\left(G_{\text {flavor }}\right)$

Eclectic flavor groups

Key observation: T^{\prime} is an outer automorphism group of $\Delta(54) \odot$
Recipe to get the eclectic flavor group associated with a $G_{\text {flavor }}$:

- Determine Out $\left(G_{\text {flavor }}\right)$
- Pick two outer automorphisms satisfying modular Γ_{N}-like relations

Eclectic flavor groups

Key observation: T^{\prime} is an outer automorphism group of $\Delta(54) \odot$
Recipe to get the eclectic flavor group associated with a $G_{\text {flavor }}$:

- Determine Out $\left(G_{\text {flavor }}\right)$
- Pick two outer automorphisms satisfying modular Γ_{N}-like relations
- Verify that there are suitable (triplet) representations for matter fields

Eclectic flavor groups

Key observation: T^{\prime} is an outer automorphism group of $\Delta(54) \odot$
Recipe to get the eclectic flavor group associated with a $G_{\text {flavor }}$:

- Determine Out $\left(G_{\text {flavor }}\right)$
- Pick two outer automorphisms satisfying modular Γ_{N}-like relations
- Verify that there are suitable (triplet) representations for matter fields
- Determine which $G_{\text {modular }}$ is generated (via e.g. GAP)

Eclectic flavor groups

Key observation: T^{\prime} is an outer automorphism group of $\Delta(54) \odot$
Recipe to get the eclectic flavor group associated with a $G_{\text {flavor }}$:

- Determine Out $\left(G_{\text {flavor }}\right)$
- Pick two outer automorphisms satisfying modular Γ_{N}-like relations
- Verify that there are suitable (triplet) representations for matter fields
- Determine which $G_{\text {modular }}$ is generated (via e.g. GAP)
- $G_{\text {eclectic }} \cong$ multiplicative closure of $G_{\text {flavor }}$ and $G_{\text {modular }}$

Eclectic flavor groups

Key observation: T^{\prime} is an outer automorphism group of $\Delta(54) ;$
Recipe to get the eclectic flavor group associated with a $G_{\text {flavor }}$:

- Determine $\operatorname{Out}\left(G_{\text {flavor }}\right)$
- Pick two outer automorphisms satisfying modular Γ_{N}-like relations
- Verify that there are suitable (triplet) representations for matter fields
- Determine which $G_{m o d u l a r}$ is generated (via e.g. GAP)
- $G_{\text {eclectic }} \cong$ multiplicative closure of $G_{\text {flavor }}$ and $G_{\text {modular }}$
- Verify whether there is a third (class-inverting) outer automorphism that act as a \mathbb{Z}_{2} CP-like transformation to further enhance the eclectic flavor symmetry

Eclectic flavor groups

flavor group $\mathcal{G}_{\text {fl }}$	$\begin{gathered} \text { GAP } \\ \text { ID } \end{gathered}$	$\operatorname{Aut}\left(\mathcal{G}_{\text {f }}\right)$	finite modular groups		eclectic flavor group
Q_{8}	[8,4]	S_{4}	without $\mathcal{C P}$	S_{3}	GL(2,3)
			with $\mathcal{C P}$	-	-
$\mathbb{Z}_{3} \times \mathbb{Z}_{3}$	9, 2]	GL(2,3)	without $\mathcal{C P}$	S_{3}	$\Delta(54)$
			with $\mathcal{C P}$	$S_{3} \times \mathbb{Z}_{2}$	108, 17]
A_{4}	[12, 3]	S_{4}	without $\mathcal{C P}$	S_{3}	$\begin{aligned} & S_{4} \\ & S_{4} \end{aligned}$
			with $\mathcal{C P}$	-	-
T^{\prime}	[24, 3]	S_{4}	without $\mathcal{C P}$	S_{3}	GL(2,3)
			with $\mathcal{C P}$	-	-
$\Delta(27)$	[27, 3]	[432, 734]	without $\mathcal{C P}$	S_{3}	$\Delta(54)$
				T^{\prime}	$\Omega(1)$
			with $\mathcal{C P}$	$\begin{array}{r} S_{3} \times \mathbb{Z}_{2} \\ \mathrm{GL}(2.3) \end{array}$	$[108,17]$ [1296, 2891]
$\Delta(54)$	[54, 8]	[432, 734]	without $\mathcal{C P}$	T^{\prime}	$\Omega(1)$
			with $\mathcal{C P}$	GL $(2,3)$	[1296, 2891]

Nilles, SR-S, Vaudrevange (2001.01736)

Back in the $\mathbb{T}^{2} / \mathbb{Z}_{3}$ example

Restricted superpotential

$$
\Rightarrow \mathcal{W} \supset c\left[\hat{Y}_{2}(T)\left(X_{1} X_{2} X_{3}+Y_{1} Y_{2} Y_{3}+Z_{1} Z_{2} Z_{3}\right)\right.
$$

Back in the $\mathbb{T}^{2} / \mathbb{Z}_{3}$ example

Restricted superpotential

$$
\Rightarrow \mathcal{W} \supset c\left[\hat{Y}_{2}(T)\left(X_{1} X_{2} X_{3}+Y_{1} Y_{2} Y_{3}+Z_{1} Z_{2} Z_{3}\right)\right.
$$

More interestingly

$$
K=-\log (-\mathrm{i} T+\mathrm{i} T)+\sum_{i}(-\mathrm{i} T+\mathrm{i} T)^{-2 / 3}\left|\Phi_{-2 / 3}^{i}\right|^{2}
$$

Only canonical terms are allowed
$\rightarrow \quad$ predictability of bottom-up models with Γ_{N}^{\prime} recovered!

Towards the eclectic flavor picture

Use Narain formalism: split string in independent components

$$
X(\tau, \sigma)=X_{R}(\sigma-\tau)+X_{L}(\sigma+\tau)
$$

Groot-Nibbelink, Vaudrevange (2017)

Towards the eclectic flavor picture

Use Narain formalism: split string in independent components

$$
X(\tau, \sigma)=X_{R}(\sigma-\tau)+X_{L}(\sigma+\tau)
$$

Groot-Nibbelink, Vaudrevange (2017)
Perform \mathbb{T}^{2} / Θ (e.g. $\Theta=\mathbb{Z}_{3}$) on each 2 D independent string component

$$
\mathcal{O}_{\text {Narain }}=\left(\mathbb{R}_{R}^{2} \otimes \mathbb{R}_{L}^{2}\right) / S_{\text {Narain }}
$$

Towards the eclectic flavor picture

Use Narain formalism: split string in independent components

$$
X(\tau, \sigma)=X_{R}(\sigma-\tau)+X_{L}(\sigma+\tau)
$$

Groot-Nibbelink, Vaudrevange (2017)
Perform \mathbb{T}^{2} / Θ (e.g. $\Theta=\mathbb{Z}_{3}$) on each 2D independent string component

$$
\mathcal{O}_{\text {Narain }}=\left(\mathbb{R}_{R}^{2} \otimes \mathbb{R}_{L}^{2}\right) / S_{\text {Narain }}
$$

Inspiration: C, P, T in SM are outer automorphisms of the Poincaré symmetry group

Towards the eclectic flavor picture

Use Narain formalism: split string in independent components

$$
X(\tau, \sigma)=X_{R}(\sigma-\tau)+X_{L}(\sigma+\tau)
$$

Groot-Nibbelink, Vaudrevange (2017)
Perform \mathbb{T}^{2} / Θ (e.g. $\Theta=\mathbb{Z}_{3}$) on each 2D independent string component

$$
\mathcal{O}_{\text {Narain }}=\left(\mathbb{R}_{R}^{2} \otimes \mathbb{R}_{L}^{2}\right) / S_{\text {Narain }}
$$

Inspiration: C, P, T in SM are outer automorphisms of the Poincaré symmetry group

What are the outer automorphisms of $S_{\text {Narain }}=\{g\}$?

$$
\operatorname{Out}\left(S_{\text {Narain }}\right)=\left\{h=(\Sigma, t) \notin S_{\text {Narain }} \mid h g h^{-1} \in S_{\text {Narain }}\right\}
$$

Rotations: $h_{\Sigma}=(\Sigma, 0) \rightarrow O(2,2 ; \mathbb{Z}), \quad$ Translations: $h_{t}=\left(\mathbb{1}_{4}, t\right)$

Towards the eclectic picture: what $\operatorname{Out}\left(S_{\text {Narain }}\right)$ is

String 2D toroidal compactifications have two moduli: T, U

$$
G=\frac{\operatorname{Im} T}{\operatorname{Im} U}\left(\begin{array}{cc}
1 & \operatorname{Re} U \\
\operatorname{Re} U & |U|^{2}
\end{array}\right), \quad B=\operatorname{Re} T\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Towards the eclectic picture: what $\operatorname{Out}\left(S_{\text {Narain }}\right)$ is

String 2D toroidal compactifications have two moduli: T, U

$$
G=\frac{\operatorname{Im} T}{\operatorname{Im} U}\left(\begin{array}{cc}
1 & \operatorname{Re} U \\
\operatorname{Re} U & |U|^{2}
\end{array}\right), \quad B=\operatorname{Re} T\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Elements $h_{\Sigma} \in \operatorname{Out}\left(S_{\text {Narain }}\right)$ transform metric G, thus T, U !!

Towards the eclectic picture: what $\operatorname{Out}\left(S_{\text {Narain }}\right)$ is

String 2D toroidal compactifications have two moduli: T, U

$$
G=\frac{\operatorname{Im} T}{\operatorname{Im} U}\left(\begin{array}{cc}
1 & \operatorname{Re} U \\
\operatorname{Re} U & |U|^{2}
\end{array}\right), \quad B=\operatorname{Re} T\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Elements $h_{\Sigma} \in \operatorname{Out}\left(S_{\text {Narain }}\right)$ transform metric G, thus T, U !!

$h_{\Sigma}=$	S_{U}	$\mathrm{~T}_{U}$	$\mathrm{~S}_{T}$	$\mathrm{~T}_{T}$	M	K_{*}
$U \xrightarrow{h_{\Sigma}}$	$-1 / U$	$U+1$	U	U	T	$-\bar{U}$
$T \xrightarrow{h_{\Sigma}}$	T	T	$-1 / T$	$T+1$	U	$-\bar{T}$

Towards the eclectic picture: what $\operatorname{Out}\left(S_{\text {Narain }}\right)$ is

 String 2D toroidal compactifications have two moduli: $T, U$$$
G=\frac{\operatorname{Im} T}{\operatorname{Im} U}\left(\begin{array}{cc}
1 & \operatorname{Re} U \\
\operatorname{Re} U & |U|^{2}
\end{array}\right), \quad B=\operatorname{Re} T\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Elements $h_{\Sigma} \in \operatorname{Out}\left(S_{\text {Narain }}\right)$ transform metric G, thus T, U !!

$h_{\Sigma}=$	S_{U}	$\mathrm{~T}_{U}$	$\mathrm{~S}_{T}$	$\mathrm{~T}_{T}$	M	K_{*}
$U \xrightarrow{h_{\Sigma}}$	$-1 / U$	$U+1$	U	U	T	$-\bar{U}$
$T \xrightarrow{h_{\Sigma}}$	T	T	$-1 / T$	$T+1$	U	$-\bar{T}$

Recall: in $\mathrm{SL}(2, \mathbb{Z}) \quad T \xrightarrow{\mathrm{~S}}-\frac{1}{T}, \quad T \xrightarrow{\mathrm{~T}} T+1$

Towards the eclectic picture: what $\operatorname{Out}\left(S_{\text {Narain }}\right)$ is

String 2D toroidal compactifications have two moduli: T, U

$$
G=\frac{\operatorname{Im} T}{\operatorname{Im} U}\left(\begin{array}{cc}
1 & \operatorname{Re} U \\
\operatorname{Re} U & |U|^{2}
\end{array}\right), \quad B=\operatorname{Re} T\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Elements $h_{\Sigma} \in \operatorname{Out}\left(S_{\text {Narain }}\right)$ transform metric G, thus T, U !!

$h_{\Sigma}=$	S_{U}	$\mathrm{~T}_{U}$	$\mathrm{~S}_{T}$	$\mathrm{~T}_{T}$	M	K_{*}
$U \xrightarrow{h_{\Sigma}}$	$-1 / U$	$U+1$	U	U	T	$-\bar{U}$
$T \xrightarrow{h_{\Sigma}}$	T	T	$-1 / T$	$T+1$	U	$-\bar{T}$

$$
\mathrm{SL}(2, Z)_{T}=\left\langle\mathrm{S}_{T}, \mathrm{~T}_{T}\right\rangle, \quad \mathrm{SL}(2, Z)_{U}=\left\langle\mathrm{S}_{U}, \mathrm{~T}_{U}\right\rangle
$$

M: mirror symmetry, $\quad \mathrm{K}_{*}: \mathcal{C P}$-like transformation ()

Nilles, Ratz, Trautner, Vaudrevange (2018); Novichkov, Penedo, Petcov, Titov (2019)

Towards the eclectic picture: what $\operatorname{Out}\left(S_{\text {Narain }}\right)$ is

String 2D toroidal compactifications have two moduli: T, U

$$
G=\frac{\operatorname{Im} T}{\operatorname{Im} U}\left(\begin{array}{cc}
1 & \operatorname{Re} U \\
\operatorname{Re} U & |U|^{2}
\end{array}\right), \quad B=\operatorname{Re} T\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Elements $h_{\Sigma} \in \operatorname{Out}\left(S_{\text {Narain }}\right)$ transform metric G, thus T, U !!

$h_{\Sigma}=$	S_{U}	$\mathrm{~T}_{U}$	$\mathrm{~S}_{T}$	$\mathrm{~T}_{T}$	M	K_{*}
$U \xrightarrow{h_{\Sigma}}$	$-1 / U$	$U+1$	U	U	T	$-\bar{U}$
$T \xrightarrow{h_{\Sigma}}$	T	T	$-1 / T$	$T+1$	U	$-\bar{T}$

$$
\mathrm{SL}(2, Z)_{T}=\left\langle\mathrm{S}_{T}, \mathrm{~T}_{T}\right\rangle, \quad \mathrm{SL}(2, Z)_{U}=\left\langle\mathrm{S}_{U}, \mathrm{~T}_{U}\right\rangle
$$

M: mirror symmetry, $\quad \mathrm{K}_{*}$: $\mathcal{C} \mathcal{P}$-like transformation \odot
Nilles, Ratz, Trautner, Vaudrevange (2018); Novichkov, Penedo, Petcov, Titov (2019)
Further, $\left\{h_{t}\right\}$ don't change T, U, but do transform fields \rightarrow traditional flavor symmetry

Common origin of modular and traditional flavor

Modular weights n_{i}, representations and couplings of $\Phi_{n_{i}}$ not $a d$ hoc!

Common origin of modular and traditional flavor

Modular weights n_{i}, representations and couplings of $\Phi_{n_{i}}$ not ad hoc!
Example $\mathbb{T}^{2} / \mathbb{Z}_{3}$: must fix U to $\langle U\rangle=\omega=e^{2 \pi \mathrm{i} / 3} \rightarrow$ broken $\operatorname{SL}(2, \mathbb{Z})_{U}$

By using CFT formalism, inspect $\mathrm{SL}(2, \mathbb{Z})_{T}$ on the triplet of matter fields:

$$
h_{\Sigma}: \rho\left(\mathrm{S}_{T}\right)=\frac{\mathrm{i}}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega^{2} & \omega \\
1 & \omega & \omega^{2}
\end{array}\right), \quad \rho\left(\mathrm{T}_{T}\right)=\left(\begin{array}{ccc}
\omega^{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$\rho\left(\mathrm{S}_{T}\right)$ and $\rho\left(\mathrm{S}_{T}\right)$ build the reps. $\mathbf{2}^{\prime} \oplus \mathbf{1}$ of modular group $\Gamma_{3}^{\prime}=T^{\prime} \odot$

$$
\Phi_{n=-2 / 3,-5 / 3} \xrightarrow{\mathrm{~S}_{T}}(-T)^{n} \rho\left(\mathrm{~S}_{T}\right) \Phi_{n}, \quad \Phi_{n} \xrightarrow{\mathrm{~T}_{T}} \rho\left(\mathrm{~T}_{T}\right) \Phi_{n}
$$

Common origin of modular and traditional flavor

Modular weights n_{i}, representations and couplings of $\Phi_{n_{i}}$ not ad hoc!
Example $\mathbb{T}^{2} / \mathbb{Z}_{3}$: must fix U to $\langle U\rangle=\omega=e^{2 \pi \mathrm{i} / 3} \rightarrow$ broken $\operatorname{SL}(2, \mathbb{Z})_{U}$

By using CFT formalism, inspect $\mathrm{SL}(2, \mathbb{Z})_{T}$ on the triplet of matter fields:

$$
h_{t}: \rho(\mathrm{A})=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \rho(\mathrm{B})=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right), \rho(\mathrm{C})=\rho\left(\mathrm{S}_{T}^{2}\right)
$$

$\rho(\mathrm{A}), \rho(\mathrm{B})$ and $\rho(\mathrm{C})$ build the reps $3_{2(1)}$ and $3_{1(1)}$ of traditional flavor group $\Delta(54)$ for $\Phi_{-2 / 3}$ and $\Phi_{-5 / 3} \quad$ cf. also in Kobayshi, Plöger, Niles, Raby, Ratz (2006)

Common origin of modular and traditional flavor

Modular weights n_{i}, representations and couplings of $\Phi_{n_{i}}$ not ad hoc!
Example $\mathbb{T}^{2} / \mathbb{Z}_{3}$: must fix U to $\langle U\rangle=\omega=e^{2 \pi \mathrm{i} / 3} \rightarrow$ broken $\operatorname{SL}(2, \mathbb{Z})_{U}$

first eclectic flavor symmetry: modular + traditional flavor

$$
\begin{gathered}
\Delta(54) \cup T^{\prime} \cong \Omega(1)=S G[648,533] \\
\text { with } \mathcal{C P}: \Delta(54) \cup T^{\prime} \cup \mathbb{Z}_{2}^{\mathcal{C} \mathcal{P}} \cong S G[1296,2891]
\end{gathered}
$$

Common origin of modular and traditional flavor

Modular weights n_{i}, representations and couplings of $\Phi_{n_{i}}$ not ad hoc!
Example $\mathbb{T}^{2} / \mathbb{Z}_{3}$: must fix U to $\langle U\rangle=\omega=e^{2 \pi \mathrm{i} / 3} \rightarrow$ broken $\operatorname{SL}(2, \mathbb{Z})_{U}$

first eclectic flavor symmetry: modular + traditional flavor

$$
\begin{gathered}
\Delta(54) \cup T^{\prime} \cong \Omega(1)=S G[648,533] \\
\text { with } \mathcal{C P}: \Delta(54) \cup T^{\prime} \cup \mathbb{Z}_{2}^{\mathcal{C} \mathcal{P}} \cong S G[1296,2891]
\end{gathered}
$$

Can we generalize this in a bottom-up fashion ?

