El reto de sabor con cuerdas

Saúl Ramos-Sánchez

BSM & Astroparticles

Marzo 16, 2023

De colaboraciones con

M-C. Chen, V. Knapp-Pérez, M. Ramos-Hamud, M. Ratz & S. Shukla: 1909.06910 & 2108.02240

A. Baur, M. Kade, H.P. Nilles & P. Vaudrevange: 2001.01736, 2008.07534, 2010.13798, 2104.03981, 2107.10677,...

Y. Olguín-Trejo & R. Pérez-Martínez: 1808.06622 & 2105.03460

Flavor puzzle

Despite the great success of the SM

$$\left(\begin{array}{cccc} 0.974 & 0.224 & 0.0039 \\ 0.218 & 0.997 & 0.042 \\ 0.008 & 0.039 & 1.019 \end{array} \right)_{CKM}, \qquad \left(\begin{array}{cccc} 0.829 & 0.539 & 0.147 \\ 0.493 & 0.584 & 0.645 \\ 0.262 & 0.607 & 0.75 \end{array} \right)_{PMNS}$$

$$\begin{split} m_{u_i} &\sim 2.16, 1270, 172900 \; {\rm MeV} & \Delta m_{21}^2 = 7.4 \cdot 10^{-5}, \Delta m_{31(23)}^2 \approx 2.5 \cdot 10^{-3} \; {\rm eV}^2 \\ m_{d_i} &\sim 4.67, 93, 4180 \; {\rm MeV} & m_{e_i} \sim 0.511, 105.7, 1776.9 \; {\rm MeV} \end{split}$$

normal ordering

[Talks by Myriam, Enrique, Antonio (yesterday)]

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobavashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)

[Talks by Myriam, Enrique, Antonio (yesterday)]

Matter fields transform as

$$\rightarrow \underbrace{\rho_{\phi}(g)}{\rho_{\phi}(g)}\phi, \quad g \in G_{flavor} =$$

$$g \in G_{flavor} = S_3, A_4,$$

C

rep of a

φ-

Saúl Ramos-Sánchez (IF, UNAM)

The flavor puzzle with strings

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Okki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)

[Talks by Myriam, Enrique, Antonio (yesterday)]

flavon vev *alignment* is very challenging 😟

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) [Talks by Myriam, Enrique, Antonio (vesterday)]

<u>Modular</u>: Yukawa couplings are modular forms Y = Y(T) $Y(T) \rightarrow Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), \quad \gamma \in \Gamma = SL(2, \mathbb{Z}), \rho_Y \in \Gamma_N$

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) [Talks by Myriam, Enrique, Antonio (vesterday)]

<u>Modular</u>: Yukawa couplings are modular forms Y = Y(T) $Y(T) \rightarrow Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), \quad \gamma \in \Gamma = SL(2, \mathbb{Z}), \rho_Y \in \Gamma_N$

Matter fields transform similarly: $\phi \rightarrow \underbrace{(cT+d)^{n_{\phi}}}_{\phi} \rho_{\phi}(\gamma) \phi$

automorphy

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) [Talks by Myriam, Enrique, Antonio (yesterday)]

<u>Modular</u>: Yukawa couplings are modular forms Y = Y(T) $Y(T) \rightarrow Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), \quad \gamma \in \Gamma = SL(2, \mathbb{Z}), \rho_Y \in \Gamma_N$

Matter fields transform similarly: $\phi \rightarrow (cT + d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

 \Rightarrow finite modular groups Γ_N = modular flavor symmetry $G_{modular}$

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) [Talks by Myriam, Enrique, Antonio (yesterday)]

 $\begin{array}{ll} \underline{\text{Modular}}: \ \text{Yukawa couplings are modular forms } Y = Y(T) & \\ Y(T) \to Y(\gamma T) = (cT+d)^{n_Y} \rho_Y(\gamma) Y(T), & \gamma \in \Gamma = \mathrm{SL}(2,\mathbb{Z}), \rho_Y \in \Gamma_N \end{array}$

Matter fields transform similarly: $\phi \rightarrow (cT + d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

- \Rightarrow finite modular groups $\Gamma_N =$ modular flavor symmetry $G_{modular}$
- $\Gamma_N \cong S_3, A_4, S_4, A_5$ for N = 2, 3, 4, 5

 $n_Y \in 2\mathbb{Z}$

 \Rightarrow 9 ν observables (m_{ν} , θ_{ij} , phases) by fixing 3 parameters!

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) [Talks by Myriam, Enrique, Antonio (yesterday)]

 $\begin{array}{ll} \underline{\text{Modular}}: \ \text{Yukawa couplings are modular forms } Y = Y(T) & \\ Y(T) \to Y(\gamma T) = (cT+d)^{n_Y} \rho_Y(\gamma) Y(T), & \gamma \in \Gamma = \mathrm{SL}(2,\mathbb{Z}), \rho_Y \in \Gamma_N \end{array}$

Matter fields transform similarly: $\phi \rightarrow (cT + d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

- \Rightarrow finite modular groups $\Gamma_N =$ modular flavor symmetry $G_{modular}$
- $\Gamma_N \cong S_3, A_4, S_4, A_5$ for N=2,3,4,5

 $n_Y \in \mathbb{Z}$

Liu, Ding(2019)

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) [Talks by Myriam, Enrique, Antonio (yesterday)]

<u>Modular</u>: Yukawa couplings are modular forms Y = Y(T) $Y(T) \rightarrow Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), \quad \gamma \in \Gamma = SL(2, \mathbb{Z}), \rho_Y \in \Gamma_N$

Matter fields transform similarly: $\phi \rightarrow (cT + d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

- \Rightarrow finite modular groups $\Gamma_N =$ modular flavor symmetry $G_{modular}$
- $\Gamma_N \cong S_3, A_4, S_4, A_5$ for N=2,3,4,5
- 4-fold cover $\widetilde{\Gamma}_4 \cong [96, 67], \widetilde{\Gamma}_8 \cong [768, 1085324], \widetilde{\Gamma}_{12} \cong [2304, \ldots]$

 $n_Y \in \mathbb{Z}/2 \longrightarrow \text{metaplectic}$

Liu, Ding(2019); Liu, Yau, Qu, Ding(2020)

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) [Talks by Myriam, Enrique, Antonio (yesterday)]

<u>Modular</u>: Yukawa couplings are modular forms Y = Y(T) $Y(T) \rightarrow Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), \quad \gamma \in \Gamma = SL(2, \mathbb{Z}), \rho_Y \in \Gamma_N$

Matter fields transform similarly: $\phi \rightarrow (cT + d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

- \Rightarrow finite modular groups $\Gamma_N =$ modular flavor symmetry $G_{modular}$
- $\Gamma_N \cong S_3, A_4, S_4, A_5$ for N=2,3,4,5
- 4-fold cover $\widetilde{\Gamma}_4 \cong [96, 67], \widetilde{\Gamma}_8 \cong [768, 1085324], \widetilde{\Gamma}_{12} \cong [2304, \ldots]$
- Siegel modular groups $\Gamma_{g,N} \cong \operatorname{Sp}(2g,\mathbb{Z})/K_N$ with multiple moduli

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) [Talks by Myriam, Enrique, Antonio (yesterday)]

<u>Modular</u>: Yukawa couplings are modular forms Y = Y(T) $Y(T) \rightarrow Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), \quad \gamma \in \Gamma = SL(2, \mathbb{Z}), \rho_Y \in \Gamma_N$

Matter fields transform similarly: $\phi \rightarrow (cT + d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

- \Rightarrow finite modular groups $\Gamma_N =$ modular flavor symmetry $G_{modular}$
- $\Gamma_N \cong S_3, A_4, S_4, A_5$ for N=2,3,4,5
- 4-fold cover $\widetilde{\Gamma}_4 \cong [96, 67], \widetilde{\Gamma}_8 \cong [768, 1085324], \widetilde{\Gamma}_{12} \cong [2304, \ldots]$
- Siegel modular groups $\Gamma_{g,N} \cong \operatorname{Sp}(2g,\mathbb{Z})/K_N$ with multiple moduli
- $\Gamma/\ker(\varrho)$ with vector-valued modular forms

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) [Talks by Myriam, Enrique, Antonio (yesterday)]

<u>Modular</u>: Yukawa couplings are modular forms Y = Y(T) $Y(T) \rightarrow Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), \quad \gamma \in \Gamma = SL(2, \mathbb{Z}), \rho_Y \in \Gamma_N$

Matter fields transform similarly: $\phi \rightarrow (cT + d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

- \Rightarrow finite modular groups $\Gamma_N =$ modular flavor symmetry $G_{modular}$
- $\Gamma_N \cong S_3, A_4, S_4, A_5$ for N=2,3,4,5
- 4-fold cover $\widetilde{\Gamma}_4 \cong [96, 67], \widetilde{\Gamma}_8 \cong [768, 1085324], \widetilde{\Gamma}_{12} \cong [2304, \ldots]$
- Siegel modular groups $\Gamma_{g,N} \cong \operatorname{Sp}(2g,\mathbb{Z})/K_N$ with multiple moduli
- $\Gamma/\ker(\varrho)$ with vector-valued modular forms

All about

We have resources for all string-related topics

Stringy ingredients

 $\mathsf{particles}\longleftrightarrow\mathsf{strings}$

- Supersymmetry (in fact, supergravedad SUGRA) & 10D space-time
 → compactify 6D on spaces with shapes and sizes set by moduli
- matter fields get all their properties from string features $\rightarrow \underline{all}$ field charges are computable
- field couplings arise from string interactions
 - \rightarrow coupling strengths are computable modular forms

Heterotic Orbifolds

 (\mathbf{X}) Dixon, Harvey, Vafa, Witten (1985-86) Ibáñez, Nilles, Quevedo (1987) Font, Ibáñez, Quevedo, Sierra (1990) Katsuki, Kawamura, Kobayashi, Ohtsubo, Ono, Tanioka (1990) Kobayashi, Raby, Zhang (2004) Buchmüller, Hamaguchi, Lebedev, Ratz (2004-06) Kobayashi, Nilles, Plöger, Raby, Ratz (2006) Lebedev, Nilles, Ratz, SRS, Vaudrevange, Wingerter (2006-08) Mütter, Parr, Vaudrevange + Biermann, Ratz (2018-19)

Baur, Nilles, Trautner, Vaudrevange (2018-19)

...

Saúl Ramos-Sánchez (IF, UNAM) The flavor puzzle with strings

1D S^1/\mathbb{Z}_2 orbifold

1D S^1/\mathbb{Z}_2 orbifold

In general, an orbifold $\mathcal{O} := X/S$

2D $\mathbb{T}^2/\mathbb{Z}_N$ orbifolds and G_{flavor}

2D $\mathbb{T}^2/\mathbb{Z}_N$ orbifolds and G_{flavor}

- Orbifold $\mathcal{O} = \mathbb{R}^6/S \leftarrow$ space group: rotations, reflexions and shifts
- Localized states are subject to 2 kinds of symmetries
 - A: geometric symmetries G_{flavor}
 - B: stringy modular symmetries $\rightarrow \Gamma_N, \Gamma'_N, \ldots$

(Technically, both arise as outer automorphisms of S in Narain formalism)

Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)

- Orbifold $\mathcal{O} = \mathbb{R}^6/S \leftarrow$ space group: rotations, reflexions and shifts
- Localized states are subject to 2 kinds of symmetries
 - A: geometric symmetries G_{flavor}
 - B: stringy modular symmetries $\rightarrow \Gamma_N, \Gamma'_N, \ldots$

(Technically, both arise as outer automorphisms of S in Narain formalism)

Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)

Strings offer a common origin for all possible flavor symmetries

- Orbifold $\mathcal{O} = \mathbb{R}^6/S \leftarrow$ space group: rotations, reflexions and shifts
- Localized states are subject to 2 kinds of symmetries
 - A: geometric symmetries G_{flavor}
 - B: stringy modular symmetries $\rightarrow \Gamma_N, \Gamma'_N, \ldots$

(Technically, both arise as outer automorphisms of *S* in Narain formalism) Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)

Strings offer a common origin for all possible flavor symmetries

A & B combine to provide an *eclectic* picture of flavor

Nilles, SRS, Vaudrevange (2004.05200, 2006.03059, 2010.13798)

• Orbifold $\mathcal{O} = \mathbb{R}^6/S \leftarrow$ space group: rotations, reflexions and shifts

Localized states are subject to 2 kinds of symmetries

A: geometric symmetries G_{flavor}

B: stringy modular symmetries $\rightarrow \Gamma_N, \Gamma'_N, \ldots$

(Technically, both arise as outer automorphisms of S in Narain formalism) Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)

Strings offer a common origin for all possible flavor symmetries

A & B combine to provide an *eclectic* picture of flavor

Nilles, SRS, Vaudrevange (2004.05200, 2006.03059, 2010.13798)

Key *eclectic* obs: eclectic flavor = $A \rtimes B$ and $B \subset Out(A)$

e.g. in $\mathbb{T}^2/\mathbb{Z}_3$, eclectic flavor $= \Delta(27) \rtimes T'$ and $T' \subset Out(\Delta(27))$

- Orbifold $\mathcal{O} = \mathbb{R}^6 / S \leftarrow$ space group: rotations, reflexions and shifts
- Localized states are subject to 2 kinds of symmetries
 - A: geometric symmetries G_{flavor}
 - B: stringy modular symmetries $\rightarrow \Gamma_N, \Gamma'_N, \ldots$

(Technically, both arise as outer automorphisms of S in Narain formalism) Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)

Strings offer a common origin for all possible flavor symmetries

A & B combine to provide an *eclectic* picture of flavor

Nilles, SRS, Vaudrevange (2004.05200, 2006.03059, 2010.13798)

Key *eclectic* obs: eclectic flavor = $A \rtimes B$ and $B \subset Out(A)$

e.g. in $\mathbb{T}^2/\mathbb{Z}_3$, eclectic flavor $= \Delta(27) \rtimes T'$ and $T' \subset Out(\Delta(27))$ Advantage vs pure modular symmetries: kinetic terms (Kähler potential) under full control! \bigcirc MSSM with stringy flavor

Flavor in

semi-realistic orbifold models

Saúl Ramos-Sánchez (IF, UNAM) The flavor puzzle with strings

• Contains a sector $\mathbb{T}^2/\mathbb{Z}_3$

triangular pillow \rightarrow traditional symmetry (moduli independent) $\Delta(27) \cup \{S^2\} \cong \Delta(54)$

• Contains a sector $\mathbb{T}^2/\mathbb{Z}_3$

 $\begin{array}{rcl} \mbox{triangular pillow} & \rightarrow & \mbox{traditional symmetry (moduli independent)} \\ & & \Delta(27) \cup \{S^2\} \;\cong\; \Delta(54) \end{array}$

• Toroidal modulus T is free \rightarrow $SL(2,\mathbb{Z})$ modular symmetry

• Contains a sector $\mathbb{T}^2/\mathbb{Z}_3$

 $\begin{array}{rcl} \mbox{triangular pillow} & \rightarrow & \mbox{traditional symmetry (moduli independent)} \\ & & \Delta(27) \cup \{S^2\} \;\cong\; \Delta(54) \end{array}$

• Toroidal modulus T is free \rightarrow SL $(2, \mathbb{Z})$ modular symmetry linearly realized as $G_{modular} = T' \cong \Gamma'_3$ finite modular group Lauer, Mas, Nilles (89-90)

• Contains a sector $\mathbb{T}^2/\mathbb{Z}_3$

 $\begin{array}{rcl} \mbox{triangular pillow} & \rightarrow & \mbox{traditional symmetry (moduli independent)} \\ & & \Delta(27) \cup \{S^2\} \;\cong\; \Delta(54) \end{array}$

• Toroidal modulus T is free \rightarrow $SL(2,\mathbb{Z})$ modular symmetry linearly realized as $G_{modular} = T' \cong \Gamma'_3$ finite modular group Lauer, Mas, Nilles (89-90)

and only few (not ad hoc) representations for quarks and leptons:

• Contains a sector $\mathbb{T}^2/\mathbb{Z}_3$

 $\begin{array}{rcl} \mbox{triangular pillow} & \rightarrow & \mbox{traditional symmetry (moduli independent)} \\ & & \Delta(27) \cup \{S^2\} \;\cong\; \Delta(54) \end{array}$

• Toroidal modulus T is free \rightarrow SL $(2, \mathbb{Z})$ modular symmetry linearly realized as $G_{modular} = T' \cong \Gamma'_3$ finite modular group Lauer, Mas, Nilles (89-90)

and only few (not ad hoc) representations for quarks and leptons:

	quarks and leptons							Higgs fields	
label	q	ū	\bar{d}	l	ē	ν	H _u	$H_{\rm d}$	
$SU(3)_c$	3	3	3	1	1	1	1	1	
$SU(2)_L$	2	1	1	2	1	1	2	2	
$U(1)_Y$	1/6	-2/3	1/3	-1/2	1	0	1/2	-1/2	
$\Delta(54)$	3 ₂	3 ₂	3 ₂	3 ₂	3 ₂	3 ₂	1	1	
T'	$2' \oplus 1$	$\mathbf{2'} \oplus 1$	$\mathbf{2'} \oplus 1$	$\mathbf{2'} \oplus 1$	$\mathbf{2'} \oplus 1$	$\mathbf{2'} \oplus 1$	1	1	

Baur, Nilles, SRS, Trautner, Vaudrevange (2207.10677)

After

- writing the corresponding action,
- fitting the value of the modulus ($\langle T \rangle \sim 3 {\rm i}),$ and
- computing effective particle interactions (with 20 params)

After

- writing the corresponding action,
- fitting the value of the modulus ($\langle T \rangle \sim 3 {\rm i}),$ and
- computing effective particle interactions (with 20 params)

Predictions:

	observable	model best fit	exp. best fit	exp. 1σ interval	
	$m_{ m u}/m_{ m c}$	0.00193	0.00193	$0.00133 \rightarrow 0.00253$	
	$m_{\rm c}/m_{\rm t}$	0.00280	0.00282	$0.00270 \rightarrow 0.00294$	
quark sector	$m_{ m d}/m_{ m s}$	0.0505	0.0505	$0.0443 \rightarrow 0.0567$	
	$m_{\rm s}/m_{\rm b}$	0.0182	0.0182	$0.0172 \rightarrow 0.0192$	
	ϑ_{12} [deg]	13.03	13.03	$12.98 \rightarrow 13.07$	
	$\vartheta_{13} [\mathrm{deg}]$	0.200	0.200	$0.193 \rightarrow 0.207$	
	ϑ_{23} [deg]	2.30	2.30	2.26 ightarrow 2.34	
	$\delta^{\mathbf{q}}_{\mathcal{CP}}$ [deg]	69.2	69.2	66.1 ightarrow 72.3	
	$m_{ m e}/m_{\mu}$	0.00473	0.00474	$0.00470 \rightarrow 0.00478$	
	$m_\mu/m_ au$	0.0586	0.0586	$0.0581 \to 0.0590$	
	$\sin^2 \theta_{12}$	0.303	0.304	$0.292 \rightarrow 0.316$	
	$\sin^2 \theta_{13}$	0.0225	0.0225	$0.0218 \rightarrow 0.0231$	
	$\sin^2 \theta_{23}$	0.449	0.450	$0.434 \rightarrow 0.469$	
	δ_{CP}^{ℓ}/π	1.28	1.28	$1.14 \rightarrow 1.48$	
	η_1/π	0.029	-	3	
or	η_2/π	0.994	14 M	-	
sect	J_{CP}	-0.026	-0.026	$-0.033 \rightarrow -0.016$	
OD	J_{CP}^{\max}	0.0335	0.0336	$0.0329 \rightarrow 0.0341$	
lept	$\Delta m_{21}^2/10^{-5} \ [eV^2]$	7.39	7.42	$7.22 \rightarrow 7.63$	
	$\Delta m_{31}^2 / 10^{-3} [\text{eV}^2]$	2.521	2.510	$2.483 \rightarrow 2.537$	
	m_1 [eV]	0.0042	< 0.037		
	$m_2 [eV]$	0.0095	12	12	
	m_3 [eV]	0.0504	-		
	$\sum_{i} m_i [eV]$	0.0641	< 0.120	17	
	$m_{\beta\beta}$ [eV]	0.0055	< 0.036	2	
	m_β [eV]	0.0099	< 0.8		
	χ^2	0.11			

Baur, Nilles, SRS, Trautner, Vaudrevange (2207.10677)

Stringy Siegel Flavor Symmetries

Siegel modular flavor group

from string theory

Baur, Kade, Nilles, SRS, Vaudrevange: 2008.07534, 2012.09586, 2104.03981

Saúl Ramos-Sánchez (IF, UNAM) The flavor puzzle with strings

Siegel modular symmetries from $\mathbb{T}^2/\mathbb{Z}_2$

• Recall that $\mathbb{T}^2/\mathbb{Z}_2$ yields $G_{flavor} = (D_8 \times D_8)/\mathbb{Z}_2$
- Recall that $\mathbb{T}^2/\mathbb{Z}_2$ yields $G_{flavor} = (D_8 \times D_8)/\mathbb{Z}_2$
- BUT there are TWO free moduli $U, T \Rightarrow SL(2, \mathbb{Z})_U \times SL(2, \mathbb{Z})_T$?

- Recall that $\mathbb{T}^2/\mathbb{Z}_2$ yields $G_{flavor} = (D_8 \times D_8)/\mathbb{Z}_2$
- BUT there are TWO free moduli $U, T \Rightarrow SL(2, \mathbb{Z})_U \times SL(2, \mathbb{Z})_T$? NO!

- Recall that $\mathbb{T}^2/\mathbb{Z}_2$ yields $G_{flavor} = (D_8 \times D_8)/\mathbb{Z}_2$
- BUT there are TWO free moduli $U, T \Rightarrow SL(2, \mathbb{Z})_U \times SL(2, \mathbb{Z})_T$? NO!
- The resulting modular symmetry is

 $\operatorname{Sp}(4,\mathbb{Z}) \supset \operatorname{SL}(2,\mathbb{Z})_U \times \operatorname{SL}(2,\mathbb{Z})_T$

- Recall that $\mathbb{T}^2/\mathbb{Z}_2$ yields $G_{flavor} = (D_8 \times D_8)/\mathbb{Z}_2$
- BUT there are TWO free moduli $U, T \Rightarrow SL(2, \mathbb{Z})_U \times SL(2, \mathbb{Z})_T$? NO!
- The resulting modular symmetry is

 $\operatorname{Sp}(4,\mathbb{Z}) \supset \operatorname{SL}(2,\mathbb{Z})_U \times \operatorname{SL}(2,\mathbb{Z})_T$

Linearly realized as $G_{modular} = (S_3^T \times S_3^U) \rtimes \mathbb{Z}_4^M$

- Recall that $\mathbb{T}^2/\mathbb{Z}_2$ yields $G_{flavor} = (D_8 \times D_8)/\mathbb{Z}_2$
- BUT there are TWO free moduli $U, T \Rightarrow SL(2, \mathbb{Z})_U \times SL(2, \mathbb{Z})_T$? NO!
- The resulting modular symmetry is

 $\operatorname{Sp}(4,\mathbb{Z}) \supset \operatorname{SL}(2,\mathbb{Z})_U \times \operatorname{SL}(2,\mathbb{Z})_T$

Linearly realized as $G_{modular} = (S_3^T \times S_3^U) \rtimes \mathbb{Z}_4^M$

• Eclectic structure: $G_{eclectic} = G_{flavor} \rtimes G_{modular}$, order = 4608

- Recall that $\mathbb{T}^2/\mathbb{Z}_2$ yields $G_{flavor} = (D_8 \times D_8)/\mathbb{Z}_2$
- BUT there are TWO free moduli $U, T \Rightarrow SL(2, \mathbb{Z})_U \times SL(2, \mathbb{Z})_T$? NO!
- The resulting modular symmetry is

 $\operatorname{Sp}(4,\mathbb{Z}) \supset \operatorname{SL}(2,\mathbb{Z})_U \times \operatorname{SL}(2,\mathbb{Z})_T$

Linearly realized as $G_{modular} = (S_3^T \times S_3^U) \rtimes \mathbb{Z}_4^M$

• Eclectic structure: $G_{eclectic} = G_{flavor} \rtimes G_{modular}$, order = 4608

bottom-up and top-down phenomenology unexplored !!

Quasi-eclectic symmetries for model building

Quasi-Eclectic realization

of a simple lepton model

		C	hen, Kn	app-Pére	ez, Rar	nos-Ha	mud, Sl	RS, Ratz	, Shukla	(2021
	$(E_1^{\mathcal{C}}, E_2^{\mathcal{C}}, E_3^{\mathcal{C}})$	L	H_d	H_u	χ	φ	S_{χ}	S_{φ}	Y	
$A_4^{ m traditional}$	$({f 1}_0,{f 1}_2,{f 1}_1)$	3	1_0	1_0	3	3	1_0	1_0	1_0	
Γ_3	1_0	1_0	1_0	1_0	3	1_0	1_0	1_0	3	
modular weights	(1, 1, 1)	-1	0	0	0	0	0	0	2	

Alternative to eclectic: quasi-eclectic picture $G_{modular} \times G_{flavor}$

		C	hen, Kn	app-Pére	ez, Rar	nos-Ha	mud, Sl	RS, Ratz	z, Shukla	(2021
	$(E_1^{\mathcal{C}}, E_2^{\mathcal{C}}, E_3^{\mathcal{C}})$	L	H_d	H_u	χ	φ	S_{χ}	S_{φ}	Y	
$A_4^{ m traditional}$	$({f 1}_0,{f 1}_2,{f 1}_1)$	3	1_0	1_0	3	3	1_0	1_0	1_0	
Γ_3	1_0	1_0	1_0	1_0	3	1_0	1_0	1_0	3	
modular weights	(1, 1, 1)	-1	0	0	0	0	0	0	2	

Alternative to eclectic: *quasi-eclectic* picture $G_{modular} \times G_{flavor}$ Inherits control over the Kähler potential because of G_{flavor}

		C	hen, Kn	app-Pére	ez, Rar	nos-Ha	mud, Sl	RS, Ratz	z, Shukla	(2021
	$(E_1^{\mathcal{C}}, E_2^{\mathcal{C}}, E_3^{\mathcal{C}})$	L	H_d	H_u	χ	φ	S_{χ}	S_{φ}	Y	
$A_4^{ m traditional}$	$({f 1}_0,{f 1}_2,{f 1}_1)$	3	1_0	1_0	3	3	1_0	1_0	1_0	
Γ_3	1_0	1_0	1_0	1_0	3	1_0	1_0	1_0	3	
modular weights	(1, 1, 1)	-1	0	0	0	0	0	0	2	

Alternative to eclectic: *quasi-eclectic* picture $G_{modular} \times G_{flavor}$ Inherits control over the Kähler potential because of G_{flavor} Choose flavon χ : (3,3) and a diagonal VEV $\langle \chi \rangle = v_1 \operatorname{diag}\{1,1,1\}$

		C	hen, Kn	app-Pére	ez, Rai	nos-Ha	mud, Sf	RS, Ratz	z, Shukla	(202)
	$(E_1^{\mathcal{C}}, E_2^{\mathcal{C}}, E_3^{\mathcal{C}})$	L	H_d	H_u	χ	φ	S_{χ}	S_{φ}	Y	
$A_4^{ m traditional}$	$({f 1}_0,{f 1}_2,{f 1}_1)$	3	1_0	1_0	3	3	1_0	1_0	1_0	
Γ_3	1_0	1_0	1_0	1_0	3	1_0	1_0	1_0	3	
modular weights	(1, 1, 1)	-1	0	0	0	0	0	0	2	

Alternative to eclectic: *quasi-eclectic* picture $G_{modular} \times G_{flavor}$ Inherits control over the Kähler potential because of G_{flavor} Choose flavon χ : (3,3) and a diagonal VEV $\langle \chi \rangle = v_1 \operatorname{diag}\{1,1,1\}$

Saúl Ramos-Sánchez (IF, UNAM)

The flavor puzzle with strings

In summary

• Flavor puzzle: open questions about flavor (number and mixings of particles)

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = non-modular × modular symmetries

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions
- Toroidal orbifold compactifications of string theory reveal an <u>eclectic</u> flavor structure = non-modular × modular symmetries
- Symmetries, representations and charges fixed by the compactification

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = non-modular × modular symmetries
- Symmetries, representations and charges fixed by the compactification
- Many string models that reproduce features of SM

Olguín-Trejo, Pérez-Martínez, SRS (1808.06622)

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = non-modular × modular symmetries
- Symmetries, representations and charges fixed by the compactification
- Many string models that reproduce features of SM

Olguín-Trejo, Pérez-Martínez, SRS (1808.06622)

• Consequences for flavor in explicit constructions are studied

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = non-modular × modular symmetries
- Symmetries, representations and charges fixed by the compactification
- Many string models that reproduce features of SM

Olguín-Trejo, Pérez-Martínez, SRS (1808.06622)

- Consequences for flavor in explicit constructions are studied
- (Solve many challenges of existing particle physics models with flavor symmetries!)

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = non-modular × modular symmetries
- Symmetries, representations and charges fixed by the compactification
- Many string models that reproduce features of SM

- Consequences for flavor in explicit constructions are studied
- (Solve many challenges of existing particle physics models with flavor symmetries!)
- Interesting predictions on neutrino physics
 Caveat: some free parameters, less than the number of predictions

Olguín-Trejo, Pérez-Martínez, SRS (1808.06622)

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions
- Toroidal orbifold compactifications of string theory reveal an eclectic flavor To work on
- Symmetries, represe
- Many string models
- Consequences for fla
- (Solve many challen symmetries!)
- Interesting predictio Caveat: some free p

• flavor with $\mathbb{T}^2/\mathbb{Z}_4$ & $\mathbb{T}^2/\mathbb{Z}_6$?	on
Baur, Nilles, SRS, Trautner, Vaudrevange (2023)	
• CP and CP violation ?	622)
Nilles, Ratz, Trautner, Vaudrevange (2018)	
• bottom-up pheno with $\Gamma_N, N > 6$?	
Arriaga, SRS, (2023)	or
• dynamic moduli stabilization & de Sitter ?	
Knapp, Liu, Nilles, SRS, Ratz (2023)	
• more pheno in these models ?	
a non supersymmetric constructions?	
• non-supersymmetric constructions !	
Pérez-Martínez, SRS, Vaudrevange (2105.03460)	
• already testable predictions ?	
	V

20

- Flavor puzzle: open questions about flavor (number and mixings of particles)
- String theory: candidate theory for quantum gravity and all other quantum interactions
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = non-modular × modular symmetries
- Symmetries, representations and charges fixed by the compactification
- Many string models And beyond...
- Consequences for fla
- (Solve many challen symmetries!)
- Interesting predictio Caveat: some free p
- DM + inflation with KK ALPs? Gordillo, Morales, SRS (2023)
 DM in multi-Higgs non-SUSY models ? Cervantes, Pérez-Figueroa, Pérez-Martínez, SRS (2020,08520)
 Spectral distortions in inflation? Baur, Henríquez, García, SRS (2023)
 non-Abelian orbifolds & flavor ? Hernández-Segura, SRS (2023)
 Machine learning for better models? Escalante-Notario, Portillo-Castillo, SRS (2212.00821,23x.xxxx)
 ...

Saúl Ramos-Sánchez (IF, UNAM)

The flavor puzzle with strings

Just in case...

Backup slides

Congruence modular subgroups: $\Gamma(N) \subset SL(2,\mathbb{Z})$

$$\Gamma(N) = \{ \gamma \in \operatorname{SL}(2,\mathbb{Z}) \, | \, \gamma = \mathbb{1} \mod N \}$$

are normal subgroups of $SL(2,\mathbb{Z})$

Congruence modular subgroups: $\Gamma(N) \subset SL(2,\mathbb{Z})$

$$\Gamma(N) = \{ \gamma \in \operatorname{SL}(2,\mathbb{Z}) \, | \, \gamma = 1 \mod N \}$$

are normal subgroups of $SL(2,\mathbb{Z})$

(Double-cover) finite modular subgroups: $\Gamma'_N \cong SL(2,\mathbb{Z})/\Gamma(N)$

Congruence modular subgroups: $\Gamma(N) \subset SL(2,\mathbb{Z})$

$$\Gamma(N) = \{ \gamma \in \operatorname{SL}(2,\mathbb{Z}) \, | \, \gamma = 1 \mod N \}$$

are normal subgroups of $\mathrm{SL}(2,\mathbb{Z})$

(Double-cover) finite modular subgroups: $\Gamma'_N \cong SL(2,\mathbb{Z})/\Gamma(N)$

$$\begin{split} \Gamma'_N &= \left\langle \mathbf{S}, \mathbf{T} \mid \mathbf{S}^4 = (\mathbf{S}\mathbf{T})^3 = T^N = \mathbb{1}, \quad \mathbf{S}^2\mathbf{T} = \mathbf{T}\mathbf{S}^2, \qquad N = 2, 3, 4, 5 \right\rangle \\ \Gamma'_2 &\cong S_3, \ \Gamma'_3 \cong T', \ \Gamma_4 \cong \mathrm{SL}(2, 4), \ \Gamma_5 \cong \mathrm{SL}(2, 5), \dots \\ & \text{e.g. Liu, Ding (2019)} \end{split}$$

Finite modular subgroups: $\Gamma_N \cong PSL(2,\mathbb{Z})/\overline{\Gamma}(N)$ (PSL(2, \mathbb{Z}) \cong SL(2, \mathbb{Z})/{±1})

$$\Gamma_N = \langle S, T | S^2 = (ST)^3 = T^N = 1, N = 2, 3, 4, 5 \rangle$$

 $\Gamma_2 \cong S_3, \ \Gamma_3 \cong A_4, \ \Gamma_4 \cong S_4, \ \Gamma_5 \cong A_5, \dots, \Gamma_7 \cong \Sigma(168), \dots$

e.g. de Adelhaart, Feruglio, Hagedorn (2011)

Thus far, models with modular flavor symmetries are supersymmetric

Thus far, models with modular flavor symmetries are supersymmetric Superfields build reps. of Γ_N or Γ'_N ; transform as

$$\Phi_{n_i} \xrightarrow{\gamma} (cT+d)^{n_i} \rho(\gamma) \Phi_{n_i}, \qquad \Phi_{n_i} \in \left\{ (e, \mu, \tau)^T, (u, c, t)^T, \ldots \right\}$$

 n_i : modular weight, $\rho(\gamma)$: matrix rep. of γ for Φ_{n_i}

Thus far, models with modular flavor symmetries are supersymmetric Superfields build reps. of Γ_N or Γ'_N ; transform as

$$\Phi_{n_i} \xrightarrow{\gamma} (cT+d)^{n_i} \rho(\gamma) \Phi_{n_i}, \qquad \Phi_{n_i} \in \left\{ (e,\mu,\tau)^T, (u,c,t)^T, \dots \right\}$$

 n_i : modular weight, $\rho(\gamma)$: matrix rep. of γ for Φ_{n_i} Couplings $\hat{Y}^{(n_Y)}(T)$ are modular forms

$$W \supset \sum \hat{Y}^{(n_Y)}(T) \Phi_{n_1} \Phi_{n_2} \Phi_{n_3}, \qquad \hat{Y}^{(n_Y)} \xrightarrow{\gamma} (cT+d)^{n_Y} \rho(\gamma) \hat{Y}^{(n_Y)}$$

 n_Y : modular weight, $\rho(\gamma)$: matrix rep. of γ for $\hat{Y}^{(n_Y)}(T)$

Thus far, models with modular flavor symmetries are supersymmetric Superfields build reps. of Γ_N or Γ'_N ; transform as

$$\Phi_{n_i} \xrightarrow{\gamma} (cT+d)^{n_i} \rho(\gamma) \Phi_{n_i}, \qquad \Phi_{n_i} \in \left\{ (e,\mu,\tau)^T, (u,c,t)^T, \dots \right\}$$

 n_i : modular weight, $\rho(\gamma)$: matrix rep. of γ for Φ_{n_i} Couplings $\hat{Y}^{(n_Y)}(T)$ are *modular forms*

$$W \supset \sum \hat{Y}^{(n_Y)}(T) \Phi_{n_1} \Phi_{n_2} \Phi_{n_3}, \qquad \hat{Y}^{(n_Y)} \xrightarrow{\gamma} (cT+d)^{n_Y} \rho(\gamma) \hat{Y}^{(n_Y)}$$

 n_Y : modular weight, $ho(\gamma)$: matrix rep. of γ for $\hat{Y}^{(n_Y)}(T)$ Admissible iff

$$W(\Phi_{n_1},\ldots) \xrightarrow{\gamma} (cT+d)^{-1} \mathbb{1} W(\Phi_{n_1},\ldots), \qquad \text{i.e. } n_Y + \sum n_i = -1, \quad \prod \rho(\gamma) = 1$$

Note the nontrivial *automorphy factor* $(cT+d)^{-1} \rightarrow W$ covariant

How to proceed with modular flavor symmetries

- Take your favorite symmetry: $G_{mod} = \Gamma_N \in \{S_3, A_4, S_4, A_5, \ldots\}$
- $\bullet\,$ Choose your favorite representations $\rho(\gamma)$ for quark and lepton fields

e.g. quark doublets Q as 3 or $\mathbf{1} \oplus \mathbf{1}' \oplus \mathbf{1}''$ of $\Gamma_3 \cong A_4, \dots$

- Pick your favorite modular weights n_i and n_Y
- Write your G_{mod} -covariant superpotential W

e.g.
$$W \supset \hat{Y}^u H_u Q \bar{u} + \hat{Y}^d H_d Q \bar{d} + \hat{Y}^e H_d L \bar{e} + \frac{\hat{Y}}{\Lambda} L H_u L H_u$$

- Take your favorite inv. Kähler potential K; typical choice $K=\sum |\Phi_{n_i}|^2$ MANY other modular invariant K possible! - Chen, SR-S, Ratz (1909.06910)
- Choose a $\langle T \rangle \neq 0 \quad \rightarrow \quad$ nontrivial rep. of $\hat{Y}(\langle T \rangle)$ breaks G_{mod}
- EW breakdown with $\langle H_u \rangle, \langle H_d \rangle \neq 0$
- Diagonalize quark and lepton matrices to compute V_{CKM} and U_{PMNS} and adjust only $\langle T \rangle$ to data

Saúl Ramos-Sánchez (IF, UNAM)

The flavor puzzle with strings

From top-down to bottom-up

eclectic flavor symmetries

Saúl Ramos-Sánchez (IF, UNAM) The flavor puzzle with strings

Eclectic flavor groups

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

Eclectic flavor groups

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

Recipe to get the eclectic flavor group associated with a G_{flavor} : • Determine $Out(G_{flavor})$

Eclectic flavor groups

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

Recipe to get the eclectic flavor group associated with a G_{flavor} :

- Determine $Out(G_{flavor})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

- Determine $Out(G_{flavor})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
- Verify that there are suitable (triplet) representations for matter fields

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

- Determine $Out(G_{flavor})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
- Verify that there are suitable (triplet) representations for matter fields
- Determine which $G_{modular}$ is generated (via e.g. GAP)

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

- Determine $Out(G_{flavor})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
- Verify that there are suitable (triplet) representations for matter fields
- Determine which $G_{modular}$ is generated (via e.g. GAP)
- $G_{eclectic} \cong$ multiplicative closure of G_{flavor} and $G_{modular}$

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

- Determine $Out(G_{flavor})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
- Verify that there are suitable (triplet) representations for matter fields
- Determine which $G_{modular}$ is generated (via e.g. GAP)
- $G_{eclectic} \cong$ multiplicative closure of G_{flavor} and $G_{modular}$
- Verify whether there is a third (class-inverting) outer automorphism that act as a \mathbb{Z}_2 CP-like transformation to further enhance the eclectic flavor symmetry

flavor group	GAP	$\operatorname{Aut}(\mathcal{G}_{\mathrm{fl}})$	finite modular		eclectic flavor	
9fl	ID		grouj	58	group	
Q_8	[8, 4]	S_4	without \mathcal{CP}	S_3	$\operatorname{GL}(2,3)$	
0000000			with \mathcal{CP}			
$\mathbb{Z}_3 imes \mathbb{Z}_3$	[9, 2]	GL(2,3)	without \mathcal{CP}	S_3	$\Delta(54)$	
			with \mathcal{CP}	$S_3 \times \mathbb{Z}_2$	[108, 17]	
A_4	[12, 3]	S_4	without \mathcal{CP}	S_3	S_4	
				S_4	S_4	
17			with \mathcal{CP}	8 -9	-	
T'	[24, 3]	S_4	without \mathcal{CP}	S_3	GL(2,3)	
			with \mathcal{CP}			
$\Delta(27)$	[27, 3]	[432, 734]	without \mathcal{CP}	S_3	$\Delta(54)$	
62 - 23				T'	$\Omega(1)$	
			with \mathcal{CP}	$S_3 \times \mathbb{Z}_2$	[108, 17]	
				GL(2,3)	[1296, 2891]	
$\Delta(54)$	[54, 8]	[432, 734]	without \mathcal{CP}	T'	$\Omega(1)$	
32 11			with \mathcal{CP}	GL(2,3)	[1296, 2891]	

Nilles, SR-S, Vaudrevange (2001.01736)

Back in the $\mathbb{T}^2/\mathbb{Z}_3$ example

Restricted superpotential

Back in the $\mathbb{T}^2/\mathbb{Z}_3$ example

Restricted superpotential

More interestingly

$$K = -\log(-iT + iT) + \sum_{i} (-iT + iT)^{-2/3} |\Phi_{-2/3}^{i}|^{2}$$

Only canonical terms are allowed

 \rightarrow predictability of bottom-up models with Γ'_N recovered! \bigcirc

Nilles, SRS, Vaudrevange (2004.05200)

Use Narain formalism: split string in independent components

$$X(\tau, \sigma) = X_R(\sigma - \tau) + X_L(\sigma + \tau)$$
Groot-Nibbelink, Vaudrevange (2017)

Use Narain formalism: split string in independent components

$$X(\tau, \sigma) = X_R(\sigma - \tau) + X_L(\sigma + \tau)$$
Groot-Nibbelink, Vaudrevange (2017)

Perform \mathbb{T}^2/Θ (e.g. $\Theta = \mathbb{Z}_3$) on each 2D independent string component

$$\mathcal{O}_{Narain} = (\mathbb{R}^2_R \otimes \mathbb{R}^2_L) / S_{Narain}$$

Use Narain formalism: split string in independent components

$$X(\tau, \sigma) = X_R(\sigma - \tau) + X_L(\sigma + \tau)$$
Groot-Nibbelink, Vaudrevange (2017)

Perform \mathbb{T}^2/Θ (e.g. $\Theta = \mathbb{Z}_3$) on each 2D independent string component

$$\mathcal{O}_{Narain} = (\mathbb{R}^2_R \otimes \mathbb{R}^2_L) / S_{Narain}$$

Inspiration: C, P, T in SM are outer automorphisms of the Poincaré symmetry group

Use Narain formalism: split string in independent components

$$X(au, \sigma) = X_R(\sigma - au) + X_L(\sigma + au)$$

Groot-Nibbelink, Vaudrevange (2017)

Perform \mathbb{T}^2/Θ (e.g. $\Theta=\mathbb{Z}_3)$ on each 2D independent string component

$$\mathcal{O}_{Narain} = (\mathbb{R}^2_R \otimes \mathbb{R}^2_L) / S_{Narain}$$

Inspiration: C, P, T in SM are outer automorphisms of the Poincaré symmetry group

What are the outer automorphisms of $S_{Narain} = \{g\}$?

$$Out(S_{Narain}) = \left\{ h = (\Sigma, t) \notin S_{Narain} \mid hgh^{-1} \in S_{Narain} \right\}$$

Rotations: $h_{\Sigma} = (\Sigma, 0) \rightarrow O(2, 2; \mathbb{Z})$, Translations: $h_t = (\mathbb{1}_4, t)$

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \left(\begin{array}{cc} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{array} \right), \qquad B = \operatorname{Re} T \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right)$$

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric G, thus T, U !!

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric G, thus T, U !!

	$h_{\Sigma} =$	S_U	T_U	\mathbf{S}_T	T_T	Μ	K_*
 $U \xrightarrow{h_{\Sigma}}$		-1/U	U+1	U	U	T	$-\bar{U}$
$T \xrightarrow{h_{\Sigma}}$		T	T	-1/T	T+1	U	$-\bar{T}$

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric G, thus T, U !!

_	$h_{\Sigma} =$	S_U	T_U	S_T	T_T	М	K_*
$U \xrightarrow{h_{\Sigma}}$		-1/U	U+1	U	U	T	$-\bar{U}$
$T \xrightarrow{h_{\Sigma}}$		T	T	-1/T	T+1	U	$-\bar{T}$
Rec	call: in S	$\mathrm{SL}(2,\mathbb{Z})$	T -	$\xrightarrow{\mathrm{S}} -\frac{1}{T},$	$T \stackrel{\gamma}{-}$	$\xrightarrow{\Gamma} T +$	1

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric G, thus $T, U \parallel$

	$h_{\Sigma} =$	S_U	T_U	S_T	T_T	Μ	K_*
$U \xrightarrow{h_{\Sigma}}$		-1/U	U+1	U	U	T	$-\bar{U}$
$T \xrightarrow{h_{\Sigma}}$		T	T	-1/T	T+1	U	$-\bar{T}$

 $\operatorname{SL}(2,Z)_T = \langle \operatorname{S}_T, \operatorname{T}_T \rangle, \quad \operatorname{SL}(2,Z)_U = \langle \operatorname{S}_U, \operatorname{T}_U \rangle$ $\textcircled{\odot}$

M: mirror symmetry, K_*: CP-like transformation 🙂 Nilles, Ratz, Trautner, Vaudrevange (2018); Novichkov, Penedo, Petcov, Titov (2019)

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric G, thus T, U !!

	$h_{\Sigma} =$	S_U	T_U	S_T	T_T	Μ	K_*
$U \xrightarrow{h_{\Sigma}}$		-1/U	U+1	U	U	T	$-\bar{U}$
$T \xrightarrow{h_{\Sigma}}$		T	T	-1/T	T+1	U	$-\bar{T}$

 $\operatorname{SL}(2,Z)_T = \langle \operatorname{S}_T, \operatorname{T}_T \rangle, \quad \operatorname{SL}(2,Z)_U = \langle \operatorname{S}_U, \operatorname{T}_U \rangle \qquad \textcircled{\odot}$

M: mirror symmetry, K_*: CP-like transformation 🙂 Nilles, Ratz, Trautner, Vaudrevange (2018); Novichkov, Penedo, Petcov, Titov (2019)

Further, $\{h_t\}$ don't change T, U, but do transform fields \rightarrow traditional flavor symmetry S

Saúl Ramos-Sánchez (IF, UNAM) The flavor puzzle with strings

Modular weights n_i , representations and couplings of Φ_{n_i} not *ad hoc*! \bigcirc

Modular weights n_i , representations and couplings of Φ_{n_i} not *ad hoc*! Example $\mathbb{T}^2/\mathbb{Z}_3$: must fix U to $\langle U \rangle = \omega = e^{2\pi i/3} \rightarrow \text{broken } \text{SL}(2,\mathbb{Z})_U$

Lauer, Mas, Nilles (1989)

30 / 30

By using CFT formalism, inspect $SL(2,\mathbb{Z})_T$ on the triplet of matter fields:

$$h_{\Sigma}: \rho(\mathbf{S}_T) = \frac{\mathrm{i}}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega^2 & \omega\\ 1 & \omega & \omega^2 \end{pmatrix}, \quad \rho(\mathbf{T}_T) = \begin{pmatrix} \omega^2 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

 $ho(\mathrm{S}_T)$ and $ho(\mathrm{S}_T)$ build the reps. $\mathbf{2'}\oplus\mathbf{1}$ of modular group $\Gamma_3'=T'$ \bigcirc

$$\Phi_{n=-\frac{2}{3},-\frac{5}{3}} \xrightarrow{\mathbf{S}_T} (-T)^n \rho(\mathbf{S}_T) \Phi_n, \qquad \Phi_n \xrightarrow{\mathbf{T}_T} \rho(\mathbf{T}_T) \Phi_n$$

Saúl Ramos-Sánchez (IF, UNAM)

The flavor puzzle with strings

Modular weights n_i , representations and couplings of Φ_{n_i} not *ad hoc*! Example $\mathbb{T}^2/\mathbb{Z}_3$: must fix U to $\langle U \rangle = \omega = e^{2\pi i/3} \rightarrow \text{broken } \text{SL}(2, \mathbb{Z})_U$

By using CFT formalism, inspect $SL(2,\mathbb{Z})_T$ on the triplet of matter fields:

$$h_t: \rho(\mathbf{A}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \ \rho(\mathbf{B}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \ \rho(\mathbf{C}) = \rho(\mathbf{S}_T^2)$$

 $\begin{array}{l}\rho(A)\text{, }\rho(B)\text{ and }\rho(C)\text{ build the reps }\mathbf{3}_{2(1)}\text{ and }\mathbf{3}_{1(1)}\text{ of traditional flavor}\\ \text{group }\Delta(54)\text{ for }\Phi_{-2/3}\text{ and }\Phi_{-5/3} & \text{ }_{\text{f. also in Kobayashi, Plöger, Nilles, Raby, Ratz (2006)}\end{array}$

Modular weights n_i , representations and couplings of Φ_{n_i} not *ad hoc*! Example $\mathbb{T}^2/\mathbb{Z}_3$: must fix U to $\langle U \rangle = \omega = e^{2\pi i/3} \rightarrow \text{broken } \text{SL}(2,\mathbb{Z})_U$ e_2 first eclectic flavor symmetry: modular + traditional flavor

$$\begin{split} \Delta(54)\cup T' &\cong \Omega(1) = SG[648,533] \\ \text{with } \mathcal{CP}: \ \Delta(54)\cup T'\cup \mathbb{Z}_2^{\mathcal{CP}} \cong SG[1296,2891] \end{split}$$

Modular weights n_i , representations and couplings of Φ_{n_i} not *ad hoc*! Example $\mathbb{T}^2/\mathbb{Z}_3$: must fix U to $\langle U \rangle = \omega = e^{2\pi i/3} \rightarrow \text{broken } \text{SL}(2,\mathbb{Z})_U$ e_2 first eclectic flavor symmetry: modular + traditional flavor

> $\Delta(54) \cup T' \cong \Omega(1) = SG[648, 533]$ with CP: $\Delta(54) \cup T' \cup \mathbb{Z}_2^{CP} \cong SG[1296, 2891]$ Can we generalize this in a bottom-up fashion ?