Scalar Fields in

Non-Commutative Spaces

- I. Non-commutative (NC) space and lattice regularization
- II. The NC $\lambda \phi^4$ -model: formulation Phase diagram in space-time dimension d = 3 and d = 2
- **III.** Can translation symmetry break spontaneously in d = 2 ?

Héctor Mejía-Díaz, Marco Panero, W.B., JHEP 1410:56

I. Lattice structure of a non-commutative plane

NC plane, $[\hat{x}_i, \hat{x}_j] = i \Theta_{ij} = i \theta \epsilon_{ij}, \ \theta = \text{const.}$ (i, j = 1, 2)

A (fuzzy) lattice structure is imposed by the operator identity

$$\exp\left(\mathrm{i}\frac{2\pi}{a}\hat{x}_i\right) = \hat{1}$$

Momentum components are commutative and periodic over Brillouin zone:

$$e^{i k_i \hat{x}_i} = e^{i (k_i + \frac{2\pi}{a}) \hat{x}_i}$$

$$\hat{\mathbb{1}} = e^{i (k_i + \frac{2\pi}{a}) \hat{x}_i} e^{-i k_j \hat{x}_j} = \dots = \hat{\mathbb{1}} \exp\left(\frac{i \pi}{a} \theta(k_2 - k_1)\right)$$

$$\Rightarrow \frac{\theta}{2a} k_i \in \mathbb{Z}$$

 k_i discrete \Rightarrow lattice is automatically periodic

Assume periodicity over $N \times N \to \text{momenta} \ k_n = \frac{2\pi}{aN}n \quad (n_i \in \mathbb{Z})$

$$\theta = \frac{1}{\pi} N a^2$$

- continuum limit: $a \rightarrow 0$
- infinite volume limit: $Na \to \infty$

The Double-Scaling Limit

$$a \to 0, \ N \to \infty$$
 at $Na^2 = \text{const.}$

combines both at $\theta = \text{const.}$: continuous NC plane of infinite extent.

Simultaneous limit in the spirit of UV/IR mixing.

II. The NC $\lambda \phi^4$ -model

Formulation for NC field theory in terms of ordinary coordinates x_{μ} , if all fields are multiplied by \star -products :

$$\phi(x) \star \psi(x) := \phi(x) \exp\left(\frac{\mathrm{i}}{2} \overleftarrow{\partial}_{\mu} \Theta_{\mu\nu} \overrightarrow{\partial}_{\nu}\right) \psi(x)$$

based on plane wave decomposition, $e^{i p_{\mu} \hat{x}_{\mu}} e^{i q_{\nu} \hat{x}_{\nu}} = e^{i (p+q)_{\mu} \hat{x}_{\mu} - \frac{i}{2} p_{\mu} \Theta_{\mu\nu} q_{\nu}}$

Euclidean action:

$$S[\phi] = \int d^d x \left[\frac{1}{2} \partial_\mu \phi \,\partial_\mu \phi + \frac{m^2}{2} \phi^2 + \frac{\lambda}{4} \phi \star \phi \star \phi \star \phi \right]$$

Bilinear terms under $\int : \star$ -product \equiv standard product (since $\Theta_{\mu\nu} = -\Theta_{\nu\mu}$) $\Rightarrow \lambda$ determines extent of NC effects.

Perturbation theory:

1-loop diagrams:
$$\int d^d k \frac{1}{k^2 + m^2}$$
, $\int d^d k \frac{\exp(i k\mu \Theta \mu \nu p \nu)}{k^2 + m^2}$
planar non-planar
leading divergence
in $d = 4$, $|k| < \Lambda$: $\propto \Lambda^2$ $\propto [1/\Lambda^2 + p_\mu(\Theta^2)_{\mu\nu}p_\nu]^{-1}$

(Minwalla/Van Raamsdonk/Seiberg, '00)

$$\begin{split} \|\Theta\| > 0 : \text{ removes non-planar UV divergence, unless } p \to 0 \\ \text{Limit } \Theta \to 0 \text{ is not smooth, beware of expansion in small } \|\Theta\| \\ \|\Theta\| \to \infty \text{ is commutative, but different from } \Theta = 0 \end{split}$$

First consider d = 3

 $\phi(\vec{x},t)$, NC plane + commutative Euclidean time t

Action on a $N^2 \times T$ lattice can be mapped onto a matrix model with twisted boundary conditions (Ambjørn/Makeenko/Nishimura/Szabo, '00)

$$S[\bar{\phi}] = \operatorname{Tr} \sum_{t=1}^{T} \left[\frac{1}{2} \sum_{i=1}^{2} \left(\Gamma_{i} \bar{\phi}(t) \Gamma_{i}^{\dagger} - \bar{\phi}(t) \right)^{2} + \frac{1}{2} \left(\bar{\phi}(t+1) - \bar{\phi}(t) \right)^{2} + \frac{m^{2}}{2} \bar{\phi}^{2}(t) + \frac{\lambda}{4} \bar{\phi}^{4}(t) \right]$$

 $\bar{\phi}(t)$: Hermitian $N \times N$ matrices, at $t = 1 \dots T$

• Time direction: ordinary (discrete) kinetic term

• NC plane: unitary "twist eaters" Γ_i provide shift by one lattice unit, if

 $\Gamma_i \Gamma_j = Z_{ji} \Gamma_j \Gamma_i$ ('t Hooft-Weyl algebra).

We use $Z_{21} = Z_{12}^* = e^{2\pi i k/N}$ with k = (N+1)/2, <u>N odd</u>

Solution for twist eaters: shift- and clock-operator

Gubser/Sondhi, '01: 1-loop calculation in Hartree-Fock approximation

 \Rightarrow Conjectured phase diagram (in d = 3, 4) :

- small θ : Ising-type transition: disorder \leftrightarrow uniform order
- larger θ : disorder \leftrightarrow striped order (new!)

(order at $m^2 \ll - \|\Theta\|^{-1} \sim \text{very low temperature})$

- \bullet Chen/Wu, '02: RG study in $d=4-\varepsilon$: striped phase for $\theta>12/\sqrt{\varepsilon}$
- Castorina/Zappalà, '02: approach with $S_{\rm eff}$ supports Gubser/Sondhi conjecture
- W.B./F. Hofheinz/J. Nishimura '04: numerical study Striped phase observed, persists in Double-Scaling Limit

Simulations reveal phase diagram in $m^2 - \lambda$ plane (large $\lambda \rightarrow$ strong NC effects)

 $N=T=15,\ 25,\ 35,\ 45,\$ phase transitions stable for $N\geq 25$

Ordered regime splits indeed into

- uniform phase: small λ
- striped phase: larger λ

Evaluation relies on momentum dependent order parameter

$$M(k) = \frac{1}{NT} \max_{k=|\vec{p}|N/2\pi} \left| \sum_{t} \tilde{\phi}(\vec{p}, t) \right|$$

(rotation to capture pattern of each configurations)

M(0) uniform order, M(k>0) detects stripes with width $\propto 1/k$

Thermal cycle: • phase transitions order-disorder of 2nd order (in both cases)
 • transition uniform-striped : 1st order (hysteresis cycles don't close)

Striped phase persists in Double-Scaling Limit (W.B./Hofheinz/Nishimura '04)

Corresponding model in d = 2

(skip time coordinate)

Usually a continuous, global sym. cannot break spontaneously in $d \leq 2$

However, Mermin-Wagner-Coleman Theorem assumes locality and IR regularity.

Sill, Gubser/Sondhi '01 do not expect a striped phase (generalised M-W-C)

But: Castorina/Zappalà '07: analysis of $S_{\rm eff}$ seems to allow stripes.

Numerical: Ambjørn/Catterall '02, W.B./Hofheinz/Nishimura '04 see stripes.

But: does it survive the Double-Scaling Limit? Or fate like confinement phase of lattice QED?

Solved in thesis by Héctor Mejía-Díaz (UNAM)

Phase diagram in d = 2:

requires scaling of the axes different from $d=3:~N^{3/2}m^2$ vs. $N^2\lambda$

Stabilisation for $N \ge 19$

11

Snapshots: above: disordered, below: uniform/striped order

Map matrices back to lattice: +/- $\,\sim\,$ dark/bright

Identification of the phase transition order/disorder :

Above: uniform/striped order parameter takes off for decreasing m^2 Below: peak of connected correlator $\langle M^2 \rangle_{\rm C} = \langle M^2 \rangle - \langle M \rangle^2$ localises critical value $m_{\rm c}^2$

Correlation $\langle \phi_{(0,0)}\phi_{(x_1,0)}\rangle$ near striped phase $(N^{3/2}m^2, N^2\lambda) \simeq (-118, 272)$, pattern not condensed \rightarrow disordered.

Concept: approach $m^2 \searrow m_c^2$ for increasing N such that the correlator down to the first dip stabilises.

Thus $\Delta m^2 := m^2 - m_c^2$ defines a scale, which translates — with a suitable exponent — into the desired Double-Scaling Limit: $a^2 \propto (\Delta m^2)^{\sigma}$

Question: does proximity to striped phase persist in this limit?

Ansatz: define a = 1 at N = 35: $Na^2 = \text{const.} \Rightarrow a = \sqrt{\frac{35}{N}}$ Adjust dimension, like reduced temperature $\tau = (T - T_c)/T_c$,

$$a^2 = \frac{(\Delta m^2)^{\sigma}}{(m_c^2)^{1+\sigma}}$$

Take two sizes N_1 , N_2 with Δm_1^2 , Δm_2^2 , at fixed λ (\rightarrow the dim'less term $\lambda \theta$ remains const.), same correlation decay. Extract exponent

$$\sigma = \frac{\ln(m_{1,c}^2/m_{2,c}^2)}{\ln(\Delta m_{1,c}^2/\Delta m_{2,c}^2) + \ln(m_{1,c}^2/m_{2,c}^2)}$$

 σ will stabilise for sufficiently large N_i and small $\Delta m_{i,c}^2$, iff we stay near the striped phase.

(Feasibility of the simulation restricts the accessible values of $N^2\lambda$; too large \rightarrow landscape of deep semi-stable minima)

Stabilisation of σ is manifest:

Striped phase persists in the Double-Scaling Limit, translation symmetry does break spontaneously.

IV. Conclusions

We studied the 3d and 2d $\lambda \phi^4$ -model with a NC plane.

Lattice version can be mapped on a Hermitian matrix model.

This enables MC simulations (standard Metropolis algorithm).

 $m^2 \ll 0$ enforces order :

 λ resp. θ small: <u>uniform</u> order ; λ resp. θ large: striped order

Striped phase survives the Double-Scaling Limit ($a \rightarrow 0$ and $L = Na \rightarrow \infty$, at $\theta = \text{const.}$)

SSB of translation invariance even in $\mathbf{d}=\mathbf{2}$

Mermin-Wagner-Coleman Theorem evaded by IR divergence and non-locality