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|. Lattice structure of a non-commutative plane
NC plane, [Z/I}Z,Z/I\f]] — 1@’4] — i@eij, 6 = const. (’I,, ] — 1,2)

A (fuzzy) lattice structure is imposed by the operator identity
2T A
exp (1 —iEz> =1
a

Momentum components are commutative and periodic over Brillouin zone:
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k; discrete = lattice is automatically periodic



Assume periodicity over N X N — momenta k, = 3—]7{,72/ (n; € Z)

1
0 = —Na?
T

e continuum limit: a — 0
e infinite volume Iimit: Na — o0

The Double-Scaling Limit

a—0, N—oo at Na? = const.

combines both at ¢ = const.: continuous NC plane of infinite extent.

Simultaneous limit in the spirit of UV/IR mixing.



Il. The NC \¢p*-model

Formulation for NC field theory in terms of ordinary coordinates z,,,
if all fields are multiplied by x-products :

o(x) *Y(x) := ¢(x) exp (15 %M@Wﬁy)@b(x)

based on plane wave decomposition, e'Prfneldviv — ol (P+a) = 5O puvav
Euclidean action:
d 1 m? 5 A
Sle] = dx[58u¢8u¢‘|‘7¢ +Z¢*¢*¢*¢]

Bilinear terms under f . *x-product = standard product (since ©,, = —©,,)

= )\ determines extent of NC effects.



Perturbation theory:

: . d 1 dy. exp(iku®puvpr)
1-loop diagrams: [ d°k 7 [ d% o
planar non-planar

leading divergence
ind=4, |k| <A: o< A? x [1/A? + pu(©%)ps] ™

(Minwalla/Van Raamsdonk/Seiberg, '00)
|©]| > 0 : removes non-planar UV divergence, unless p — 0

Limit © — 0 is not smooth, beware of expansion in small ||©]|

|©] — oo is commutative, but different from © = 0



First consider d = 3

¢(Z,t), NC plane + commutative Euclidean time ¢

Action on a N? x T lattice can be mapped onto a matrix model
with twisted boundary conditions (Ambjgrn/Makeenko/Nishimura/Szabo, '00)
T 2 > 1, 2
Ty | 53 (Rer! = 6t)) +5 (ot +1) - o))
t=1 R

1=1

l\.')lv—L

S50 + 2500 |

é(t) - Hermitian N x N matrices, at t=1...T

e Time direction: ordinary (discrete) kinetic term



e NC plane: unitary “twist eaters” I'; provide shift by one lattice unit, if

., = Z;0;T; ('t Hooft-Weyl algebra).

We use Zo1 = Zfy = 2™ F/N with k= (N +1)/2, N odd

Solution for twist eaters: shift- and clock-operator




Gubser/Sondhi, '01:  1-loop calculation in Hartree-Fock approximation

= Conjectured phase diagram (in d = 3,4) :

e small 6 : Ising-type transition: disorder <+ uniform order

e larger 6 : disorder <+ striped order (new!)

(order at m* < —||©]|7" ~  very low temperature)
e Chen/Wu, '02: RG study in d = 4 — e : striped phase for 0 > 12/4/¢

e Castorina/Zappala, '02: approach with Seg
supports Gubser/Sondhi conjecture

e W.B./F. Hofheinz/J. Nishimura '04: numerical study

Striped phase observed, persists in Double-Scaling Limit



Simulations reveal phase diagram in m? -\ plane
(large A — strong NC effects)

N =T =15, 25, 35, 45, phase transitions stable for N > 25
Ordered regime splits indeed into

e uniform phase: small A

e striped phase: larger A
Evaluation relies on momentum dependent order parameter

M(k) = < 2% o | 3060, 1)

NT k=IPIN/2
(rotation to capture pattern of each configurations)

M (0) uniform order, M (k > 0) detects stripes with width o< 1/k
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2" order (in both cases)

e transition uniform-striped : 1" order (hysteresis cycles don't close)

Thermal cycle: e phase transitions order-disorder of

Striped phase persists in Double-Scaling Limit (W.B./Hofheinz/Nishimura '04)



Corresponding model in d = 2 (skip time coordinate)

Usually a continuous, global sym. cannot break spontaneously in d < 2

However, Mermin-Wagner-Coleman Theorem assumes
locality and IR regularity.

Sill, Gubser/Sondhi '01 do not expect a striped phase (generalised M-W-C)
But: Castorina/Zappala '07: analysis of S seems to allow stripes.

Numerical:
Ambjgrn/Catterall '02, W.B./Hofheinz/Nishimura '04 see stripes.

But: does it survive the Double-Scaling Limit?
Or fate like confinement phase of lattice QED?

Solved in thesis by Héctor Mejia-Diaz (UNAM)
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Phase Diagram
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Phase diagram ind = 2 :
requires scaling of the axes different from d = 3: N32m? vs. N2\

Stabilisation for N > 19
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m2=0.0, N=35, N?A=125

5 10 15 20 25 30 35

m?=-0.57, N=35, N2A=125
5 10 15 20 25 30 35

| I
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Snapshots: above: disordered, below: uniform /striped order
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m2=-0.14, N=35, N2A=240
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m2=-0.84, N=35, N2A=240
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Map matrices back to lattice: +/— ~ dark/bright
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N=19, N2A=50 N =19, N?X=450
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Identification of the phase transition order/disorder :

Above: uniform /striped order parameter takes off for decreasing m?

Below: peak of connected correlator (M?)c = (M?) — (M)? localises critical value m?
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N =35, A=0.222, m?>=—0.57

Correlation Function

0 5 10 15 20 25 30 35

L1

Correlation (¢(0,0)®(x,,0)) hear striped phase (N3/2m2, NZ)\) >~ (—118,272),
pattern not condensed — disordered.

Concept: approach m? \ mg for increasing IN such that the correlator down to the first
dip stabilises.

Thus Am? := m” — m? defines a scale, which translates — with a suitable exponent
— into the desired Double-Scaling Limit: a® oc (Am?)°

Question: does proximity to striped phase persist in this limit?
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N

Ansatz: definea = 1 at N = 35: Na® = const. = a = /32
Adjust dimension, like reduced temperature 7 = (T — T.) /1. ,

2 (AmQ)U

“ T m2)te

Take two sizes N7, No with Am?, Amg, at fixed A (— the dim’less term A6 remains
const.), same correlation decay. Extract exponent

In(mj ./m3j.)
"7 n(Am2 _JAm2,) + In(m?,/m3.)

o will stabilise for sufficiently large INV; and small Amfc :

iff we stay near the striped phase.
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Matched Correlation Functions, A =0.222

Matched Correlation Functions, A=0.286

12 12
1 N =35 —a 1 N=25 =
N =45 —e— N =35 +—e—
N =55 —a— 0.8 + N =45 —a— 1
0.6 »
0.4
0.2]
ol
023 2 4 6 8 10
A N1 No o
35 | 45 || 0.152 (7)
0222 | 35 | 55 || 0.156 (6)
45 | 55 | 0.161 (11)
25 | 35 || 0.161 (9)
0286 | 25 | 45 | 0.167 (7)
35 | 45 | 0.178 (23)
04 | 25 | 35 | 0.147 (13)

Matched Correlation Functions, A=0.4

N =25 —a—
N =35 —e—

(Feasibility of the simulation restricts the accessible values of N2\ :
too large — landscape of deep semi-stable minima)
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Stabilisation of o is manifest:

0.3 T T T T T
A=0.222 ——+—
A=0.286 :--*---
0.25 |- A=04 o T
0.2 | H -
*
¥ * a
o 015 é T . t -
0.1 _
0.05 _
0 | | | | |
25 30 35 40 45 50 55
(Ng + N,)/2
o =0.16(1)

Striped phase persists in the Double-Scaling Limit,
translation symmetry does break spontaneously.



IV. Conclusions
We studied the 3d and 2d A¢*-model with a NC plane.

Lattice version can be mapped on a Hermitian matrix model.
This enables MC simulations (standard Metropolis algorithm).

m? < 0 enforces order

A resp. 6 small: uniform order ; A resp. 6 large: striped order

Striped phase survives the Double-Scaling Limit
(a—>0and L = Na — oo, at 0 = const. )

SSB of translation invariance even in d = 2

Mermin-Wagner-Coleman Theorem evaded
by IR divergence and non-locality
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