RPC experience NISER

VARCHASWI K S KASHYAP

On behalf of NISER

Outline

- RPC experience of NISER members
- RPC R & D for CBM
- ALICE-3 requirements
- RPC options and R & D foreseen

Varchaswi K S Kashyap

V. K. S. Kashyap et al , Pramana – J. Phys. (2016) 87: 92

Thursday, 15-12-2022

Work experience (RPCs) contd.

Varchaswi K S Kashyap

- Bakelite electrodes: 2 mm thick
- Electrode spacing: 2 mm
- Surface resistivity of the conductive coating: $\sim 100 250 \text{ k}\Omega/\text{square}$
- **Length**: ~1.6 m
- Width (wide side): ~0.9 m
- Width (narrow side): ~0.6 m

Paddle

RE4/2 RPCs

0

Work experience (RPCs) contd.

Varchaswi K S Kashyap

V. K. S. Kashyap et al , Pramana – J. Phys. (2016) 87: 92

Thursday, 15-12-2022

MuonID Mexico Meeting, V K S Kashyap

Work experience (RPCs) contd.

Varchaswi K S Kashyap

- Glass electrodes: 3 mm thick
- Electrode spacing: 2 mm
- Surface resistivity of the conductive coating: $\sim 1 M\Omega$ /square
- Length: 1 m
- Width: 1 m

V. K. S. Kashyap et al , Pramana – J. Phys. (2016) 87: 92

MuonID Mexico Meeting, V K S Kashyap

Work experience (RPCs) – contd.

Varchaswi K S Kashyap

ANUSPARSH FE electronics

Thursday, 15-12-2022

Impedance matching circuit

Signal before impedance matching

Signal after impedance matching

Raveendrababu Karnam

- 30 x 30 cm² RPCs
- 3 mm electrode thickness
- 2 mm gas gap
- 1 MΩ/square surface resistivity
- Bulk resistivity of Asahi: 4.73 x 10¹² Ω.cm (ε_r=16.6)
- Bulk resistivity of Saint-Gobain: 3.65 x $10^{12} \Omega$.cm (ϵ_r =11.4)

K. Raveendrababu et al JINST, 2016, 11, P08024

Green:Pulse from RPC1Magenta:Pulse from RPC2Yellow:Telescope trigger (3F) pulse

Raveendrababu Karnam

Raveendrababu Karnam

K. Raveendrababu et.al. JINST, 2016, 11, C08001.

Compressed Baryonic Matter experiment at FAIR

Muon Chamber (MuCh) System

- First 2 stations to be instrumented by GEM detectors
- RPCs proposed for 3rd and 4th stations
- Plan to use same electronics for GEM and RPCs
- R & D @ NISER for high rate capability RPCs

Picture from CBM-MUCH-TDR

High rate capability RPCs

The rate capability of RPC is defined as

$$r_C = \frac{r}{V} = \frac{1}{\rho t \langle Q \rangle}$$

where $r_c = r/V$ is the rate per unit voltage drop, r is the particle (counting) rate, V is the voltage drop across the electrodes, ρ is the bulk resistivity of the electrodes, t is the total thickness of the electrodes and $\langle Q \rangle$ is the average charge produced in the gas for each count.

Avg. charge in gas gap <q> (pC)</q>	Induced charge on readout (pC)	Total electrode thickness (mm)	Bulk resistivity (Ω .cm)	Rate (kHz.cm ⁻²)	Voltage drop (V)
20	1	4	3x10 ¹⁰	1.25	300
10	0.5	4	3x10 ¹⁰	2.5	300
5	0.25	4	3x10 ¹⁰	5	300

CBM MUCH requirement: 30 kHz.cm⁻² in 3rd station and 10 kHz.cm⁻² in 4th station !!

Semiconductive glass RPC

MuonID Mexico Meeting, V K S Kashyap

Semiconductive glass RPC

0.9E

0.8

0.7

MuonID Mexico Meeting, V K S Kashyap

For 0.3% SF_6

Threshold = 25fC
 Threshold = 50fC

Threshold = 100fC
Threshold = 200fC

Normal glass RPC and noise reduction

V. K. S. Kashyap et al, CBM Progress report, 2019

Bakelite RPC development for Muography and HEP experiments (Recent activity)

- Bakelite from Teknemika, Italy
- 20 x 20 cm² RPCs with and without linseed oil coating
- ~1 mm electrode thickness
- 2 mm gas gap
- 1 MΩ/square surface resistivity
- Bulk resistivity: ~10¹⁰ Ω.cm

83.5 m\

63.5 m\

43.5 mV

23.5 m

3.5 n

-16.5 m\

-36.5 (

-56.5 m\

-76.5 mV

ALICE-3 proposal

- Moderate charged particle rate of 3 Hz/cm²
- Approximate area coverage needed: ~157 m²
- Granularity of 6 x 6 cm² or 5 x 5 cm² pad size
- Readout channels ~ 40k

ALICE-3, Letter of Intent, 2021

Electrode materials

Modes of operation

Avalanche Mode

Streamer Mode

- After ionization, charge multiplication reaches to an extent that its own field prevent further multiplication
- This is also known as the saturated avalanche
- Charge induced is ~1 pC
- Requires low-noise preamplification electronics
- Higher count rates are possible
- Better time resolution

- When the applied voltage is increased beyond the saturated avalanche regime a streamer or mild spark is created.
- A conductive channel is formed across the electrodes and the small discharge area remains inactive for a larger amount of time.
- Charge induced is ~10-100 pC
- Requires no preamplification electronics
- Cannot be operated in high count rate environment

Gas mixture and GWP

Gases used in RPC and Global Warming Potential (GWP)

Gas	Freon-r134a	i-butane	SF ₆
GWP	1430	3	23900

- Freon r134a and SF₆ have high GWP
- Alternative gas candidates:

Gas	HFO-1234ze	HFO-1234yf
GWP	6	4

- These gases currently do not show performance similar to that of r134a mixtures in the avalanche mode and can be used as additional components to reduce overall gas mixture GWP
 M. Capeans et al. 2015 IEEE Nuc. Sci.
- More R & D ongoing to find good alternatives

- 1. M. Capeans et al, 2015 IEEE Nuc. Sci. Symp.and Med. Imag. Conf. (NSS/MIC), 2015, pp. 1-4
- 2. R. Guida et al, https://doi.org/10.1016/j.nima.2019.04.027

Quality control

- Visual inspection of gap and components
- Mechanical tests leak tests of the gas gaps and pressure test of the spacers. Test of cooling systems for electronics
- Electrical tests I-V characteristics of the gas gap. Connectivity tests of readouts and FE electronics after integration.
- Uniformity and performance tests-Cosmic muon characterization using hodoscope

Summary

- NISER group has expertise in RPC detectors and members have work experience related to INO, CMS and CBM experiments
- NISER is currently performing R & D on glass and bakelite RPCs for HEP experiments and societal applications
- The ALICE LoI requires that a muon chamber should have a rate capability of 3 Hz/cm² and granularity of 25 cm². RPCs could easily cater to the requirement
- R & D would be needed for RPC design and low GWP alternate gas mixtures

NISER RPC group

Prof. Bedangadas Mohanty

Experience: WA98@CERN, STAR@RHIC, ALICE@CERN **Interest and expertise:** Physics analysis and simulations, QCD Critical Point and Phase Diagram **Current responsibilities:** Part of STAR BES-II program, ALICE; Professor and Chairperson, Centre for Medical and Radiation physics, CBM@FAIR,

Dr. Varchaswi K S Kashyap

Experience: INO, ISMRAN and SuperCDMS Interest and expertise: Gas detectors, neutron detectors and cryogenic detectors Current responsibilities: R & D related to advanced gas detectors for EHEP experiments – GEM, RPC and detectors for rare event experiments, CBM@FAIR

Dr. Raveendrababu Karnam

Experience: INO. CMS Si tracker, ATLAS ZDC, Muography Interest and expertise: Resistive plate chambers and gas detectors Current responsibilities: Developing a portable muon radiography system for societal applications

