Cosmological limits to Non-Standard Interactions of the neutrino

Abdel Pérez-Lorenzana Cinvestav-IPN

ICN, JANUARY 2023

In coll. with J.A. Venzor, J. De Santiago and G. Garcia-Arroyo.

Decoupling occurs when: $H \approx \Gamma = \langle \sigma v \rangle \eta$

<u>Relic Neutrino Background</u>

At decoupling $e^+e^- \nleftrightarrow \nu \overline{\nu}$ and $e\nu \nleftrightarrow e\nu$: $T_{\nu} = T_{\gamma}$

Decoupling occurs when: $H \approx \Gamma = \langle \sigma v \rangle \eta$

$$T \approx \mathcal{O}(1) \left(\frac{M_W}{M_P}\right)^{1/3} \frac{M_W}{\alpha_w^{2/3}} \approx 1.5 \, MeV$$
 A neutrino background

Relic Neutrino Background

At decoupling $e^+e^- \leftrightarrow \nu \overline{\nu}$ and $e\nu \leftrightarrow e\nu$: $T_{\nu} = T_{\gamma}$

Decoupling occurs when: $H \approx \Gamma = \langle \sigma v \rangle \eta$

$$T \approx \mathcal{O}(1) \left(\frac{M_W}{M_P}\right)^{1/3} \frac{M_W}{\alpha_w^{2/3}} \approx 1.5 \, MeV$$
 A neutrino background

neutrino freeze-out: $T_* \approx 0.84 MeV$

Relic Neutrino Background

At decoupling $e^+e^- \nleftrightarrow \nu \overline{\nu}$ and $e\nu \leftrightarrow e\nu$: $T_{\nu} = T_{\gamma}$

Decoupling occurs when: $H \approx \Gamma = \langle \sigma v \rangle \eta$

$$T \approx \mathcal{O}(1) \left(\frac{M_W}{M_P}\right)^{1/3} \frac{M_W}{\alpha_w^{2/3}} \approx 1.5 \, MeV$$
 A neutrino background

neutrino freeze-out: $T_* \approx 0.84 MeV$

At $T \sim 0.5 MeV (z \sim 10^9)$: there is no energy to sustain e^+e^- pair production

Entropy balance: $S_{e^{\pm}} + S_{\gamma}$ and S_{ν} are diluted at the same rate

Relic Neutrino Background

At decoupling
$$e^+e^- \leftrightarrow \nu \overline{\nu}$$
 and $e\nu \leftrightarrow e\nu$: $T_{\nu} = T_{\gamma}$

Decoupling occurs when: $H \approx \Gamma = \langle \sigma v \rangle \eta$

$$T \approx \mathcal{O}(1) \left(\frac{M_W}{M_P}\right)^{1/3} \frac{M_W}{\alpha_w^{2/3}} \approx 1.5 \, MeV$$
 A neutrino background

neutrino freeze-out: T_{*} ≈ 0.84 *MeV*

At $T \sim 0.5 MeV (z \sim 10^9)$: there is no energy to sustain e^+e^- pair production

Entropy balance: $S_{\rho^{\pm}} + S_{\gamma}$ and S_{γ} are diluted at the same rate

Entropy balance. $\sim_{e^{\perp}}$, Thus, after pair annihilation: $\left(\frac{T_{\gamma}}{T_{\nu}}\right) = \left(\frac{11}{4}\right)^{1/3}$ \therefore $T_{\nu} = 1.95 K$ $(1.68 \times 10^{-4} eV)$

Neutrino cosmology parameters

Free streaming and structure formation

Over dense regions collapse

while

neutrinos fly away

Collapse time scale:

 $\Delta \boldsymbol{t}_{\text{collapse}} \equiv (4 \, \pi \, G \, \rho \, a)^{-1/2}$

Escape time scale:

 $\Delta t_{escape} \equiv \underline{\lambda}$ $\mathcal{V}_{thermal}$

Evolution of primordial (matter) perturbations:

 $\ddot{\delta} + (Pressure - gravity)\delta = 0$

Neutrino free streaming scale:

$$\lambda_{\rm FS} \equiv \sqrt{\frac{8\pi^2 c_v^2}{3\Omega_m H^2}} \simeq 4.2 \sqrt{\frac{1+z}{\Omega_{m,0}}} \left(\frac{\rm eV}{m_v}\right) h^{-1} \,\rm Mpc$$
$$k_{\rm FS} \equiv \frac{2\pi}{\lambda_{\rm FS}}$$

 $k \gg k_{FS}$: δ_{ν} vanishes metric pert. are reduced

- Shifts CMB power spectra & damps its amplitude
- Structures don't form

Matter power spectrum

Neutrino mass limits

<u>Neff</u>

Planck 2018

Big Bang Nucleosynthesis

Nucleosynthesis outputs

7.7		^
-/ V	ρ	TT
<u> </u>		

<u>Neutrino - scalar NSI</u>

Neutrinophilic bosons

Neutrino scatterings

Neutrino decays

Neutrino annihilations

Neutrino - scalar NSI

Taule et al, 2022

 $\sigma_{\nu} \to \delta G_{\mu\nu} \to \delta T_{\mu\nu}|_{\gamma} \to \delta T_{\gamma}$

$$\sigma_{\nu} \to \delta G_{\mu\nu} \to \delta T_{\mu\nu}|_{\gamma} \to \delta T_{\gamma}$$

Phase space distribution function

$$f(\mathbf{x}, \mathbf{q}, \tau) = f^0(q) \left[1 + \Theta(\mathbf{x}, q, \mathbf{n}, \tau)\right]$$

$$\sigma_{\nu} \to \delta G_{\mu\nu} \to \delta T_{\mu\nu}|_{\gamma} \to \delta T_{\gamma}$$

Phase space distribution function

$$f(\mathbf{x}, \mathbf{q}, \tau) = f^0(q) \left[1 + \Theta(\mathbf{x}, q, \mathbf{n}, \tau)\right]$$

In synchronous gauge:

Boltzmann Eq. (in Fourier space) $\mu = \hat{k} \cdot \hat{n}$ $f^{0} \left[\frac{\partial \Theta}{\partial \tau} + ik \frac{q}{\epsilon} \mu \Theta + \frac{d \ln f_{\alpha}^{0}}{d \ln q} \left[\dot{\eta} - \frac{\dot{h} + 6\dot{\eta}}{2} \mu^{2} \right] \right] = a \tilde{C}^{(1)}[f]$ Neutrino NSI

$$\nu_i(\mathbf{p}_1) + \nu_j(\mathbf{p}_2) \leftrightarrow \nu_k(\mathbf{p}_3) + \nu_l(\mathbf{p}_4).$$

$$\nu \rightarrow \nu \\ \nu \rightarrow \nu$$

 $\tilde{C} = \frac{1}{2E} \int d\Pi_2 d\Pi_3 d\Pi_4 (2\pi)^4 \delta^4 (P + P_2 - P_3 - P_4) \mathcal{M}^2 F(\mathbf{k}, \mathbf{p}, \mathbf{p_2}, \mathbf{p_3}, \mathbf{p_4}, \tau)$

$$d\Pi = \frac{g_* d^3 p}{2E(2\pi)^3}$$

$$\begin{split} F(\mathbf{x}, \mathbf{p_1}, \mathbf{p_2}, \mathbf{p_3}, \mathbf{p_4}, \tau) &= f(\mathbf{x}, \mathbf{p_3}, \tau) f(\mathbf{x}, \mathbf{p_4}, \tau) [1 - f(\mathbf{x}, \mathbf{p_1}, \tau)] [1 - f(\mathbf{x}, \mathbf{p_2}, \tau)] \\ &- f(\mathbf{x}, \mathbf{p_1}, \tau) f(\mathbf{x}, \mathbf{p_2}, \tau) [1 - f(\mathbf{x}, \mathbf{p_3}, \tau)] [1 - f(\mathbf{x}, \mathbf{p_4}, \tau)] \end{split}$$

Neutrino NSI

$$\nu_i(\mathbf{p}_1) + \nu_j(\mathbf{p}_2) \leftrightarrow \nu_k(\mathbf{p}_3) + \nu_l(\mathbf{p}_4).$$

 $\tilde{C} = \frac{1}{2E} \int d\Pi_2 d\Pi_3 d\Pi_4 (2\pi)^4 \delta^4 (P + P_2 - P_3 - P_4) \mathcal{M}^2 F(\mathbf{k}, \mathbf{p}, \mathbf{p_2}, \mathbf{p_3}, \mathbf{p_4}, \tau)$

$$d\Pi = \frac{g_* d^3 p}{2E(2\pi)^3}$$

$$\begin{split} F(\mathbf{x}, \mathbf{p_1}, \mathbf{p_2}, \mathbf{p_3}, \mathbf{p_4}, \tau) &= f(\mathbf{x}, \mathbf{p_3}, \tau) f(\mathbf{x}, \mathbf{p_4}, \tau) [1 - f(\mathbf{x}, \mathbf{p_1}, \tau)] [1 - f(\mathbf{x}, \mathbf{p_2}, \tau)] \\ &- f(\mathbf{x}, \mathbf{p_1}, \tau) f(\mathbf{x}, \mathbf{p_2}, \tau) [1 - f(\mathbf{x}, \mathbf{p_3}, \tau)] [1 - f(\mathbf{x}, \mathbf{p_4}, \tau)] \end{split}$$

Legendre mode decomposition:

$$\Theta(\mathbf{k}, q, \mathbf{n}, \tau) = \sum_{\ell=0}^{\infty} (-i)^{\ell} (2\ell+1)\theta_{\ell}(k, q, \tau) P_{\ell}(\mu)$$

$$\frac{\partial \theta_{\ell}}{\partial \tau} - \frac{kq}{(2\ell+1)\epsilon} \left[\ell \theta_{\ell-1} - (\ell+1)\theta_{\ell+1}\right] + \frac{d\ln f^0}{d\ln q} \left[\frac{\dot{h} + 6\dot{\eta}}{15}\delta_{\ell 2} - \frac{\dot{h}}{6}\delta_{\ell 0}\right] = \frac{a}{f^0}\tilde{C}_{\ell}$$

 $\tilde{C}^{(1)} = \frac{g_*^3 T}{128\pi^3 z} \frac{d\ln f^{(0)}(z)}{d\ln p} \sum_{\ell=0}^{\infty} (-i)^\ell (2\ell+1)\vartheta_\ell P_\ell(\mu) \left[\mathcal{A}(z) + \mathcal{B}_\ell(z) - 2\mathcal{D}_\ell(z)\right]$

 $z = \epsilon/T_0$

$$f(x^{i}, q_{j}, \tau) = f_{0}(q) \left[1 + \Psi(x^{i}, q, \hat{n}_{j}, \tau) \right]$$

Relaxation time approximation

 $C/f_0 \approx a \Gamma \Psi$

$$\dot{\Psi}_0 = -\frac{qk}{\epsilon}\Psi_1 + \frac{\dot{h}d\,\ln\,f_0}{d\,\ln\,q},$$

$$\dot{\Psi}_1 = \frac{qk}{3\epsilon} (\Psi_0 - 2\Psi_2),$$

$$\dot{\Psi}_2 = \frac{qk}{5\epsilon} (2\Psi_1 - 3\Psi_3) - \left(\frac{\dot{h}}{15} + \frac{2\dot{\eta}}{5}\right) \frac{d\ln f_0}{d\ln q} - a\Gamma\Psi_2,$$

$$\dot{\Psi}_{l\geq 3} = \frac{qk}{(2l+1)\epsilon} \left(l\Psi_{l-1} - (l+1)\Psi_{l+1} \right) - a\Gamma\Psi_l.$$

NSI bounds for heavy scalar mediator

NSI bounds for light scalar mediator

J. Venzor, G. García-Arrollo, APL, J. de Santiago, PRD 105, 123539 (2022)

Resonant NSI effects

FIG. 11. Posterior probability for different sets of data and for $M_{\phi} = 1 \text{eV}$

FIG. 12. Posterior probability for different sets of data and for $M_{\phi} = 10 \text{eV}$

Resonant NSI bounds

Preliminary!

Preliminary!

Tension decreased down to about 2.8 σ – 3.3 σ

Effective thermal mass from scalar NSI

$$\Delta m(m_f;T) = \frac{m_f}{\pi^2} \int_{m_f}^{\infty} dk \sqrt{k^2 - m_f^2} f(k)$$

$$f_{,\nu}$$

$$\phi_{|}$$

$$\phi_{|}$$

 $m_{\rm eff} = m_{\nu} + 2G_{\rm eff}\Delta m(m_e; T_{\gamma}) + 3G_{\rm S}\Delta m(m_{\nu}; T_{\nu})$

$$G_{\rm eff} = \frac{g_f g_\nu}{m_\phi^2} \qquad \qquad G_{\rm S} = \frac{g_\nu^2}{m_\phi^2}$$

K. S. Babu, G. Chauhan, and P. S. B. Dev, PRD 101 (2020)

Effective mass from vNSI

J. Venzor, APL, J. de Santiago, PRD 103 (2020)

NSI effective mass effects on Tdec

J. Venzor, APL, J. de Santiago, PRD 103 (2020)

Light scalar NSI effects on Neff

J. Venzor, APL, J. de Santiago, PRD 103 (2020)

BBN bounds on light scalar NSI

J. Venzor, APL, J. de Santiago, PRD 103 (2020)

BBN bounds on light scalar NSI

- Neutrinos play an important role along termal history of the Universe.
- Cosmological data (CMB, Matter spectrum, BBN) are sensible to neutrino physics through

$$T_{dec}$$
, $\sum m_{\nu}$, N_{eff} , (k_{FS})

- NSI may alter such parameters, providing a way to explore for observational bounds to the new couplings
- We have explored NSI effects on CMB-BAO-H0 data and BBN for light scalar mediators, and around resonance

More work underway...

TT-PS

Resonant NSI interaction limits

Data: Planck +	BAO	BAO+H0								
$M_{\phi}[eV]$	10^{-2}		10^{-1}			1	10		100	
H_0 [km s ⁻¹ /Mpc]	$68.1^{+2.8}_{-2.8}$	$71.1^{+1.8}_{-1.8}$	$68.1^{+2.7}_{-2.7}$	$71.2^{+1.6}_{-1.7}$	$67.9^{+2.5}_{-2.3}$	$71.2^{+1.6}_{-1.6}$	$67.7^{+2.6}_{-2.6}$	$71.1^{+1.6}_{-1.6}$	$67.5^{+2.6}_{-2.7}$	$71.0^{+1.7}_{-1.7}$
N_{eff}	$3.12_{-0.44}^{+0.47}$	$3.58_{-0.29}^{+0.31}$	$3.12_{-0.43}^{+0.43}$	$3.59_{-0.31}^{+0.31}$	$3.05_{-0.39}^{+0.42}$	$3.56^{+0.30}_{-0.27}$	$3.03_{-0.39}^{+0.43}$	$3.54_{-0.30}^{+0.30}$	$3.02_{-0.41}^{+0.42}$	$3.54_{-0.28}^{+0.29}$
$\sum m_{\nu} [eV]$	< 0.110	< 0.119	< 0.114	< 0.123	< 0.112	< 0.110	< 0.120	< 0.117	< 0.110	< 0.0915
$g_{\nu} \times 10^{14}$	< 861	< 909	< 91.7	< 106	< 15.0	$12.4^{+7.8}_{-8.9}$	< 36.7	27^{+20}_{-20}	< 147	< 207

TABLE I. Observational limits at 95% confidence for different models with varying N_{eff} and m_{ν} . We see that for 1 and 10 M_{ϕ} the interaction is non zero at more than 2σ .

NSI effective mass effects on neutrino density

J. Venzor, APL, J. de Santiago, PRD 103 (2020)

Burles, Nollett & Turner 1999