Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern Simons

Observables

Soluciones

Cuantización

Conclusiones

Teoría de Maxwell-Chern-Simons en variedades con fronteras

Bogar Díaz

Departamento de Matemáticas

Seminario ICN-UNAM,12-Agosto 2022¹

¹Fernando Barbero, Juan Margalef-Bentabol, y Eduardo S. Villaseñor 🚊 🔊 ५.०

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern Simons

Observables

Soluciones

Cuantización

Conclusiones

1 Áreas de Investigación

2 Teoría de Maxwell-Chern-Simons

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

3 Observables de frontera

4 Soluciones

5 Cuantización de Fock

6 Conclusiones

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

 Mecánica estadística: aplicada a la física de la atmósfera PRE 102 (2021) 042107, 106 (2022) 014108

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

 Mecánica estadística: aplicada a la física de la atmósfera PRE 102 (2021) 042107, 106 (2022) 014108

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

- Observables
- Soluciones
- Cuantización
- Conclusiones

- Mecánica estadística: aplicada a la física de la atmósfera PRE 102 (2021) 042107, 106 (2022) 014108
- Teoría de percolación PRD 103 (2021) 094029, RMF 68 (2022) 011701

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

- Observables
- Soluciones
- Cuantización
- Conclusiones

- Mecánica estadística: aplicada a la física de la atmósfera PRE 102 (2021) 042107, 106 (2022) 014108
- Teoría de percolación PRD 103 (2021) 094029, RMF 68 (2022) 011701

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

- Mecánica estadística: aplicada a la física de la atmósfera PRE 102 (2021) 042107, 106 (2022) 014108
- Teoría de percolación PRD 103 (2021) 094029, RMF 68 (2022) 011701
- Mecánica cuántica: Pureza, entralazamiento cuántico,... PRA 105 (2022) 062412

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

- Observables
- Soluciones
- Cuantización
- Conclusiones

- Mecánica estadística: aplicada a la física de la atmósfera PRE 102 (2021) 042107, 106 (2022) 014108
- Teoría de percolación PRD 103 (2021) 094029, RMF 68 (2022) 011701
- Mecánica cuántica: Pureza, entralazamiento cuántico,... PRA 105 (2022) 062412

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

- Mecánica estadística: aplicada a la física de la atmósfera PRE 102 (2021) 042107, 106 (2022) 014108
- Teoría de percolación PRD 103 (2021) 094029, RMF 68 (2022) 011701
- Mecánica cuántica: Pureza, entralazamiento cuántico,... PRA 105 (2022) 062412
- Relatividad General PRD 103 (2021) 024051, 064062, JHEP 05 (2022) 175

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

- Observables
- Soluciones
- Cuantización
- Conclusiones

- Mecánica estadística: aplicada a la física de la atmósfera PRE 102 (2021) 042107, 106 (2022) 014108
- Teoría de percolación PRD 103 (2021) 094029, RMF 68 (2022) 011701
- Mecánica cuántica: Pureza, entralazamiento cuántico,... PRA 105 (2022) 062412
- Relatividad General PRD 103 (2021) 024051, 064062, JHEP 05 (2022) 175

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

- Observables
- Soluciones
- Cuantización
- Conclusiones

- Mecánica estadística: aplicada a la física de la atmósfera PRE 102 (2021) 042107, 106 (2022) 014108
- Teoría de percolación PRD 103 (2021) 094029, RMF 68 (2022) 011701
- Mecánica cuántica: Pureza, entralazamiento cuántico,... PRA 105 (2022) 062412
- Relatividad General PRD 103 (2021) 024051, 064062, JHEP 05 (2022) 175
- Teoría de Campos definidas en variedadades con fronteras JHEP 10 (2019) 121, CQG 36 (2019) 205014, PRD 106 (2022) 025011

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern-Simons

Observables

Soluciones

Cuantización

Conclusiones

Maxwell-Chern-Simons

$$S_{\rm MCS}(\boldsymbol{A}) = \int_{\boldsymbol{M}} \left(\alpha \boldsymbol{F} \wedge \star \boldsymbol{F} + \beta \boldsymbol{A} \wedge \boldsymbol{F} \right), \tag{1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern-Simons

Observables

Soluciones

Cuantización

Conclusiones

Maxwell-Chern-Simons

(1)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

$$S_{
m MCS}(\mathbf{A}) = \int_{\mathbf{M}} \Big(lpha \mathbf{F} \wedge \star \mathbf{F} + eta \mathbf{A} \wedge \mathbf{F} \Big),$$

Relevante en

• Invariantes topólogicos (polinomios de Jones)

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern-Simons

Observables

Soluciones

Cuantización

Conclusiones

Maxwell-Chern-Simons

(1)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

$$\mathcal{S}_{ ext{MCS}}(oldsymbol{A}) = \int_{oldsymbol{M}} \Big(lpha oldsymbol{F} \wedge \star oldsymbol{F} + eta oldsymbol{A} \wedge oldsymbol{F} \Big),$$

- Invariantes topólogicos (polinomios de Jones)
- Electrodinámica masiva

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern-Simons

Observables

Soluciones

Cuantización

Conclusiones

Maxwell-Chern-Simons

(1)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$S_{
m MCS}(\boldsymbol{A}) = \int_{\boldsymbol{M}} \Big(lpha \boldsymbol{F} \wedge \star \boldsymbol{F} + eta \boldsymbol{A} \wedge \boldsymbol{F} \Big),$$

- Invariantes topólogicos (polinomios de Jones)
- Electrodinámica masiva
- Materia condensada, aislantes topólogicos

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern-Simons

Observables

Soluciones

Cuantización

Conclusiones

Maxwell-Chern-Simons

$$S_{\rm MCS}(\boldsymbol{A}) = \int_{\boldsymbol{M}} \left(\alpha \boldsymbol{F} \wedge \star \boldsymbol{F} + \beta \boldsymbol{A} \wedge \boldsymbol{F} \right), \tag{1}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Invariantes topólogicos (polinomios de Jones)
- Electrodinámica masiva
- Materia condensada, aislantes topólogicos
- Efecto Hall cuántico: la conductividad toma los valores cuantizados.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern-Simons

Observables

Soluciones

Cuantización

Conclusiones

Maxwell-Chern-Simons

$$S_{\rm MCS}(\boldsymbol{A}) = \int_{\mathcal{M}} \Big(\alpha \boldsymbol{F} \wedge \star \boldsymbol{F} + \beta \boldsymbol{A} \wedge \boldsymbol{F} \Big), \tag{1}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Invariantes topólogicos (polinomios de Jones)
- Electrodinámica masiva
- Materia condensada, aislantes topólogicos
- Efecto Hall cuántico: la conductividad toma los valores cuantizados.
- Observables y estados de borde (o frontera), clásicos y cuánticos.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern-Simons

- Observables
- Soluciones
- Cuantización
- Conclusiones

$$\begin{array}{rcl} L: & \mathcal{TQ} := \mathcal{T}\left(\mathcal{C}_0^\infty(\Sigma) \times \Omega^1(\Sigma)\right) & \longrightarrow & \mathbb{R} \\ & \mathrm{v} = \left((\mathcal{A}_t, \mathcal{A}), (v_t, v)\right) & \longmapsto & \mathcal{L}(v) \end{array}$$

$$L(\mathbf{v}) = \int_{\Sigma} \left[-\alpha \left(\mathbf{v} - \mathrm{d}A_t \right) \wedge * \left(\mathbf{v} - \mathrm{d}A_t \right) + \alpha \left(* \mathrm{d}A \right) \mathrm{d}A + \beta \left(\mathbf{v} - \mathrm{d}A_t \right) \wedge A + \beta A_t \mathrm{d}A \right] + \int_{\partial \Sigma} \iota_{\partial}^* \left(\lambda^2 A \iota_{\nu} * A \right) , \quad (2)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Notar $\imath_{\partial}^{*}(A_{t}) = 0.$

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern-Simons

Observables

Soluciones

Cuantización

Conclusiones

$$\begin{array}{rcl} L: & \mathcal{TQ} := \mathcal{T}\left(\mathcal{C}_0^\infty(\Sigma) \times \Omega^1(\Sigma)\right) & \longrightarrow & \mathbb{R} \\ & & \mathrm{v} = \left((\mathcal{A}_t, \mathcal{A}), (v_t, v)\right) & \longmapsto & \mathcal{L}(v) \end{array}$$

$$L(\mathbf{v}) = \int_{\Sigma} \left[-\alpha \left(\mathbf{v} - \mathrm{d}A_t \right) \wedge * \left(\mathbf{v} - \mathrm{d}A_t \right) + \alpha \left(* \mathrm{d}A \right) \mathrm{d}A + \beta \left(\mathbf{v} - \mathrm{d}A_t \right) \wedge A + \beta A_t \mathrm{d}A \right] + \int_{\partial \Sigma} \iota_{\partial}^* \left(\lambda^2 A \iota_{\nu} * A \right) , \quad (2)$$

Notar $\imath_{\partial}^{*}(A_{t}) = 0.$

$$\imath_{\partial}^{*}\left(\{\alpha \ast \mathbf{d} + \lambda^{2}\iota_{\nu}\ast\}A\right) = \mathbf{0}\,,$$

Compatible con $A \mapsto A + d\epsilon$ with $\imath_{\partial}^*(\epsilon) = 0$, adaptado a la foliación.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern-Simons

Observables

Soluciones

Cuantización

Conclusiones

Formulación Hamiltoniana-Bulto

Constricciones:

$$p_t = 0, \qquad \delta(p - \beta * A) = 0,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $\mathrm{con}\ \delta = -\ast \mathrm{d}\ast.$

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern-Simons

Observables

Soluciones

Cuantización

Conclusiones

Formulación Hamiltoniana-Bulto

Constricciones:

$$p_t = 0, \qquad \delta(p - \beta * A) = 0,$$

con $\delta = - * d*$. Campo vectorial Hamiltoniano

$$\begin{split} X_{At} &= \mu_t, \qquad X_{pt} = 0, \\ X_A &= -\frac{1}{2\alpha} \left(p + \beta * A \right) + \mathrm{d}A_t, \\ X_p &= 2\alpha \delta \mathrm{d}A - \frac{\beta}{2\alpha} * \left(p + \beta * A \right) - \beta * \mathrm{d}A_t, \end{split}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

donde $\mu_t \in C^{\infty}(\Sigma)$ es arbitrario

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern-Simons

Observables

Soluciones

Cuantización

Conclusiones

Formulación Hamiltoniana-Bulto

Constricciones:

$$p_t = 0, \qquad \delta(p - \beta * A) = 0,$$

con $\delta = - * d*$. Campo vectorial Hamiltoniano

$$\begin{split} X_{At} &= \mu_t, \qquad X_{pt} = 0, \\ X_A &= -\frac{1}{2\alpha} \left(p + \beta * A \right) + \mathrm{d}A_t, \\ X_p &= 2\alpha\delta\mathrm{d}A - \frac{\beta}{2\alpha} * \left(p + \beta * A \right) - \beta * \mathrm{d}A_t, \end{split}$$

donde $\mu_t \in C^\infty(\Sigma)$ es arbitrario – Simetría de norma

$$A \mapsto A + d\epsilon, \quad p \mapsto p - \beta * d\epsilon,$$
 (3)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

con $\epsilon \in C^{\infty}(\Sigma)$ tal que $\imath_{\partial}^{*}(\epsilon) = 0$.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern-Simons

Observables

Soluciones

Cuantización

Conclusiones

Primeras constricciones

Frontera

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$\lambda = 0$	$\lambda eq 0$
$egin{aligned} &\imath_\partial^*\left(A_t ight)=0\ &\imath_\partial^*\left(\mu_t ight)=0\ &\imath_\partial^*\left(*\mathrm{d} A ight)=0\ \end{aligned}$	$\begin{split} \imath_{\partial}^{*}\left(A_{t}\right) &= 0\\ \imath_{\partial}^{*}\left(\mu_{t}\right) &= 0\\ \imath_{\partial}^{*}\left(\left\{\alpha * \mathrm{d} + \lambda^{2}\iota_{\nu}*\right\}A\right) &= 0\\ \imath_{\partial}^{*}\left(\left\{\alpha * \mathrm{d} + \lambda^{2}\iota_{\nu}*\right\}\left(p + \beta * A\right)\right) &= 0 \end{split}$

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern-Simons

Observables

Soluciones

Cuantización

Conclusiones

Frontera–Disco
$$r_0 - \lambda^2 \mapsto -\alpha r_0 \lambda^2$$

$$\begin{array}{c|c} \lambda = 0 & \lambda \neq 0 \\ \hline i_{\partial}^{*}(A_{t}) = 0 & i_{\partial}^{*}(A_{t}) = 0 \\ i_{\partial}^{*}(\mu_{t}) = 0 & i_{\partial}^{*}(\mu_{t}) = 0 \\ i_{\partial}^{*}(*\mathrm{d}A) = 0 & i_{\partial}^{*}(*\mathrm{d}A) = -\lambda^{2}A_{\theta} \mid_{\partial} \\ i_{\partial}^{*}\left(\left\{\alpha * \mathrm{d} + \lambda^{2}\iota_{\nu}*\right\}(p + \beta * A)\right) = 0 \end{array}$$

Condición introducida por Balachandra et. al. 1994 –Después del formalismo Hamiltoniano.

Si el disco esta rodeado por un superconductor, $1/\lambda^2$ puede ser interpretado como la profundidad de penetración.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern-Simons

Observables

Soluciones

Cuantización

Conclusiones

Cadena en la frontera

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Para
$$k \in \mathbb{N}$$
, definitions $\alpha_k := (*d)^k \alpha$, $\alpha_0 = \alpha$, $\alpha_{-k} = 0$ y
 $\pi := p + \beta * A$. Entonces, con $\Gamma = i_{\partial}^* * d$ $(\lambda = 0)$ y
 $\Gamma = i_{\partial}^* (\alpha * d + \lambda^2 \iota_{\nu} *)$ $(\lambda \neq 0)$:

$$\begin{split} &\Gamma(\pi_0) = 0 \,, \\ &\Gamma(A_{2k} + 2\beta * \pi_{2k-2}) - 4\beta^2 \Gamma(A_{2k-2}) = 0 \,, \qquad k = 1, 2, \dots \\ &\Gamma(\pi_{2k} + 2\beta * A_{2k}) = 0 \,, \qquad k = 1, 2, \dots \end{split}$$

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern-Simons

Observables

Soluciones

Cuantización

Conclusiones

Cadena en la frontera

Para
$$k \in \mathbb{N}$$
, definitions $\alpha_k := (*d)^k \alpha$, $\alpha_0 = \alpha$, $\alpha_{-k} = 0$ y
 $\pi := p + \beta * A$. Entonces, con $\Gamma = i_{\partial}^* * d$ ($\lambda = 0$) y
 $\Gamma = i_{\partial}^* (\alpha * d + \lambda^2 \iota_{\nu} *)$ ($\lambda \neq 0$):

$$\begin{split} &\Gamma(\pi_0) = 0 \,, \\ &\Gamma(A_{2k} + 2\beta * \pi_{2k-2}) - 4\beta^2 \Gamma(A_{2k-2}) = 0 \,, \qquad k = 1, 2, \dots \\ &\Gamma(\pi_{2k} + 2\beta * A_{2k}) = 0 \,, \qquad k = 1, 2, \dots \end{split}$$

Para $\lambda = 0$ se pueden escribir

$$i_{\partial}^{*}\left(\left(*\mathrm{d}\right)^{2k+1}\left(p+\beta*A\right)\right) = 0, \qquad (4a)$$
$$i_{\partial}^{*}\left(\left(*\mathrm{d}\right)^{2k+1}A\right) = 0. \qquad (4b)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern-Simons

- Observables
- Soluciones
- Cuantización
- Conclusiones

Comentarios

- Este tipo de cadena infinita aparece por ejemplo en el caso del campo escalar, CQG 36 205014
- El número realmente depende de la regularidad que se pida a las soluciones—Análisis funcional
- Conocidas en la literatura matemática²

²H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer New York (2010) = + (3)

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Observables de frontera

Dada $\Lambda \in C^{\infty}(\Sigma)$, definimos

$$Q_{\Lambda}(A,p) = \int_{\Sigma} d\Lambda \wedge * (p - \beta * A) .$$
(5)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Observables de frontera

Dada $\Lambda \in C^{\infty}(\Sigma)$, definimos

$$Q_{\Lambda}(A,p) = \int_{\Sigma} d\Lambda \wedge * (p - \beta * A) .$$
 (5)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Invariantes: si $A' = A + d\epsilon$, $p' = p - \beta * d\epsilon$, satisfacen $Q_{\Lambda}(A', p') = Q_{\Lambda}(A, p)$.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Observables de frontera

Dada $\Lambda \in C^{\infty}(\Sigma)$, definimos

$$Q_{\Lambda}(A,p) = \int_{\Sigma} d\Lambda \wedge * (p - \beta * A) .$$
(5)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Invariantes: si $A' = A + d\epsilon$, $p' = p - \beta * d\epsilon$, satisfacen $Q_{\Lambda}(A', p') = Q_{\Lambda}(A, p)$. Observables caracterizadas por $i_{\partial}^{*}(\Lambda)$, ya que en la superficie de constricciones

$$\begin{aligned} Q_{\Lambda}(A,p) &= \int_{\Sigma} \Lambda * \delta \left(p - \beta * A \right) + \int_{\partial \Sigma} i_{\partial}^{*} \left(\Lambda * \left(p - \beta * A \right) \right) \\ &= \int_{\partial \Sigma} i_{\partial}^{*} \left(\Lambda * \left(p - \beta * A \right) \right). \end{aligned}$$

Notar las condiciones de frontera juegan un role-estas observables son evaluadas en soluciones.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Su evolución

$$\dot{Q}_{\Lambda}(A,p) = \int_{\Sigma} \mathrm{d}\Lambda \wedge * (X_p - \beta * X_A) = 2\alpha \int_{\partial \Sigma} \imath_{\partial}^* (\Lambda \mathrm{d} * \mathrm{d}A) .$$
 (6)

Para $\lambda = 0$, $\iota_{\partial}^* (*dA) = 0$, en ese caso, son *constantes de movimiento*.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Su evolución

$$\dot{Q}_{\Lambda}(A,p) = \int_{\Sigma} \mathrm{d}\Lambda \wedge * (X_p - \beta * X_A) = 2\alpha \int_{\partial \Sigma} \iota_{\partial}^* (\Lambda \mathrm{d} * \mathrm{d}A) .$$
(6)

Para $\lambda = 0$, i_{∂}^* (*dA) = 0, en ese caso, son *constantes de movimiento*. El PP de dos observables $Q_{\Lambda_1}(A, p)$ y $Q_{\Lambda_2}(A, p)$ es

$$\{Q_{\Lambda_1}(A,p), Q_{\Lambda_2}(A,p)\} = 2\beta \int_{\Sigma} d\Lambda_1 \wedge d\Lambda_2$$
$$= \beta \int_{\partial \Sigma} i_{\partial}^* (\Lambda_1 d\Lambda_2 - \Lambda_2 d\Lambda_1) . \qquad (7)$$

Notar, para $\beta = 0$ conmutan, pero si $\beta \neq 0$ y $\partial \Sigma \cong \mathbb{S}^1$ generan la álgebra de Kac-Moody U(1).³

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern Simons

Observables

Soluciones

Cuantización

Conclusiones

Soluciones $\lambda = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Soluciones de las ecuaciones de Hamilton y constricciones (bulto y frontera).⁴

 $^4lpha=-1/2$ 5 Una versión.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern Simons

Observables

Soluciones

Cuantización

Conclusiones

Soluciones $\lambda = 0$

Soluciones de las ecuaciones de Hamilton y constricciones (bulto y frontera).⁴

Teoreema de Hodge-Morrey⁵

$$\Omega^k(\Sigma) = \mathcal{E}^k(\Sigma) \oplus \mathcal{C}^k(\Sigma) \oplus \mathcal{H}^k(\Sigma),$$

donde

$$\mathcal{E}^{k}(\Sigma) = \left\{ \mathrm{d}\gamma \,|\, \gamma \in \Omega^{k-1}(\Sigma) \, \mathrm{con} \, \imath_{\partial}^{*}\gamma = \mathbf{0} \right\}, \tag{8a}$$

$$\mathcal{C}^{k}(\Sigma) = \left\{ \delta \zeta \, | \, \zeta \in \Omega^{k+1}(\Sigma) \, \operatorname{con} i_{\partial}^{*}(*\zeta) = 0 \right\}, \tag{8b}$$

$$\mathcal{H}^{k}(\Sigma) = \{ h \in \Omega^{k}(\Sigma) \, | \, \mathrm{d}h = 0 \, \mathrm{y} \, \delta h = 0 \} \,. \tag{8c}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $^4lpha=-1/2$ 5 Una versión.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Escribimos

$$A = A_{\mathrm{d}} + A_{\delta} + A_{\mathrm{h}}, \qquad p = p_{\mathrm{d}} + p_{\delta} + p_{\mathrm{h}}, \qquad (9)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Escribimos

$$A = A_{\rm d} + A_{\delta} + A_{\rm h}, \qquad p = p_{\rm d} + p_{\delta} + p_{\rm h}, \qquad (9)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

La constricción del bulto (Gauss) implica $p_d = \beta * A_{\delta}$.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Escribimos

$$A = A_{\rm d} + A_{\delta} + A_{\rm h}, \qquad p = p_{\rm d} + p_{\delta} + p_{\rm h}, \qquad (9)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

La constricción del bulto (Gauss) implica $p_d = \beta * A_{\delta}$. La primera constriccion en la frontera $0 = i_{\partial}^* (* dA_{\delta})$.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Escribimos

$$A = A_{\rm d} + A_{\delta} + A_{\rm h}, \qquad p = p_{\rm d} + p_{\delta} + p_{\rm h}, \qquad (9)$$

La constricción del bulto (Gauss) implica $p_d = \beta * A_{\delta}$. La primera constriccion en la frontera $0 = i_{\partial}^* (* dA_{\delta})$. Las demás ecuaciones (del bulto) quedan

$$\begin{aligned} \ddot{A}_{\delta} &= -\left(\delta d + 4\beta^{2}\right) A_{\delta} ,\\ \dot{A}_{d} &= 2\beta * A_{\delta} + dA_{t} ,\\ p_{\delta} &= \dot{A}_{\delta} - \beta * A_{d} ,\\ \dot{A}_{h} &= p_{h} + \beta * A_{h} ,\\ \dot{p}_{h} &= \beta * p_{h} - \beta^{2} A_{h} . \end{aligned}$$
(10)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern Simons

Observables

Soluciones

Cuantización

Conclusiones

Buscamos $artheta\in \Omega^1(\Sigma)$ tal que

$$\delta \mathrm{d}\vartheta = \omega^2 \vartheta \quad \mathrm{con} \quad \imath_\partial^* (\ast \mathrm{d}\vartheta) = 0.$$
 (11)

Bien definido, el operador definido positivo es autoadjunto $\delta d.$ Teorema espectral.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Buscamos $\vartheta \in \Omega^1(\Sigma)$ tal que

$$\delta d\vartheta = \omega^2 \vartheta \quad \text{con} \quad \imath_{\partial}^* (\ast d\vartheta) = 0.$$
 (11)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bien definido, el operador definido positivo es autoadjunto δd . Teorema espectral. Usando las auto 1-formas ϑ_I (con autovalor $\omega_I^2 > 0$), $\langle \vartheta_I, \vartheta_J \rangle = \int_{\Sigma} \vartheta_I \wedge * \vartheta_J = \delta_{IJ}$, la soluciones son

$$\begin{split} A_{\delta}(t) &= \sum_{I} \frac{1}{\sqrt{2\tilde{\omega}_{I}}} \big(C_{I} \exp\{(i\tilde{\omega}_{I}t)\} + C_{I}^{*} \exp\{(-i\tilde{\omega}_{I}t)\} \big) \vartheta_{I} \,, \\ p_{\delta}(t) &= \sum_{I} \frac{i}{\sqrt{2\tilde{\omega}_{I}^{3}}} \Big(\left(\tilde{\omega}_{I}^{2} - 2\beta^{2}\right) \left(C_{I} \exp\{(i\tilde{\omega}_{I}t)\} - C_{I}^{*} \exp\{(-i\tilde{\omega}_{I}t)\} \right) \\ &+ 2\beta^{2} \left(C_{I} - C_{I}^{*} \right) \Big) \vartheta_{I} - \beta * \left(\mathrm{d} \left(\int_{0}^{t} A_{t} \mathrm{d}t' \right) + A_{\mathrm{d}}(0) \right) \,, \end{split}$$

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

$$\begin{split} A_{\rm d}(t) =& 2\beta \sum_{I} \frac{-i}{\sqrt{2\tilde{\omega}_{I}^{3}}} \big(C_{I} \left(\exp\{(i\tilde{\omega}_{I}t)\} - 1 \right) - C_{I}^{*} \left(\exp\{(-i\tilde{\omega}_{I}t)\} - 1 \right) \big) * \\ &+ {\rm d} \left(\int_{0}^{t} A_{t} {\rm d}t' \right) + A_{\rm d}(0) , \\ p_{\rm d}(t) =& \beta \sum_{I} \frac{1}{\sqrt{2\tilde{\omega}_{I}}} \big(C_{I} \exp\{(i\tilde{\omega}_{I}t)\} + C_{I}^{*} \exp\{(-i\tilde{\omega}_{I}t)\} \big) * \vartheta_{I} , \end{split}$$

con $\tilde{\omega}_I^2 = \omega_I^2 + 4\beta^2.$ La parte real e imaginaria de C son

$$\sqrt{\frac{2}{\tilde{\omega}_I}}\operatorname{Re} C_I = \langle \vartheta_I, A_{\delta}(\mathbf{0}) \rangle, \quad -\sqrt{2\tilde{\omega}_I}\operatorname{Im} C_I = \langle \vartheta_I, p_{\delta}(\mathbf{0}) + \beta * A_d(\mathbf{0}) \rangle.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

$$\begin{split} \mathcal{A}_{\mathrm{d}}(t) =& 2\beta \sum_{I} \frac{-i}{\sqrt{2\tilde{\omega}_{I}^{3}}} \left(\mathcal{C}_{I} \left(\exp\{(i\tilde{\omega}_{I}t)\} - 1 \right) - \mathcal{C}_{I}^{*} \left(\exp\{(-i\tilde{\omega}_{I}t)\} - 1 \right) \right) * \\ &+ \mathrm{d} \left(\int_{0}^{t} \mathcal{A}_{t} \mathrm{d}t' \right) + \mathcal{A}_{\mathrm{d}}(0) , \\ \mathcal{P}_{\mathrm{d}}(t) =& \beta \sum_{I} \frac{1}{\sqrt{2\tilde{\omega}_{I}}} \left(\mathcal{C}_{I} \exp\{(i\tilde{\omega}_{I}t)\} + \mathcal{C}_{I}^{*} \exp\{(-i\tilde{\omega}_{I}t)\} \right) * \vartheta_{I} , \end{split}$$

con $\tilde{\omega}_I^2 = \omega_I^2 + 4\beta^2.$ La parte real e imaginaria de C son

$$\sqrt{\frac{2}{\tilde{\omega}_I}}\operatorname{Re} C_I = \left< \vartheta_I, A_{\delta}(\mathbf{0}) \right>, \quad -\sqrt{2\tilde{\omega}_I}\operatorname{Im} C_I = \left< \vartheta_I, p_{\delta}(\mathbf{0}) + \beta * A_d(\mathbf{0}) \right>.$$

En la frontera, resulta que automáticamente $(i_{\partial}^* (* d\vartheta_I) = 0)$ se satisfacen las constricciones:

$$egin{aligned} &i_\partial^*\left((*\mathrm{d})^{2n+1}\left(p_\delta+eta*A_\mathrm{d}
ight)
ight)\propto\sum_I(-1)^n\omega_I^{2n}\imath_\partial^*\left(*\mathrm{d}artheta_I
ight)\,,\ &i_\partial^*\left((*\mathrm{d})^{2n+3}A_\delta
ight)\propto\sum_I(-1)^{n+1}\omega_I^{2n+2}\imath_\partial^*\left(*\mathrm{d}artheta_I
ight)\,. \end{aligned}$$

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Sector Armónico

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Notar $\dot{p}_{\rm h} - \beta * \dot{A}_{\rm h} = 0$, entonces $p_{\rm h} - \beta * A_{\rm h}$ son constantes de movimiento.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Sector Armónico

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Notar $\dot{p}_{\rm h} - \beta * \dot{A}_{\rm h} = 0$, entonces $p_{\rm h} - \beta * A_{\rm h}$ son constantes de movimiento. Las soluciones son

$$\begin{split} A_{\rm h}(t) &= \frac{1}{2\beta} * \left(p_{\rm h}(0) - \beta * A_{\rm h}(0) \right) \\ &+ \frac{1}{2\beta} \Big(\sin \left(2\beta t \right) - \cos \left(2\beta t \right) * \Big) \Big(p_{\rm h}(0) + \beta * A_{\rm h}(0) \Big) , \\ p_{\rm h}(t) &= \frac{1}{2} \Big(p_{\rm h}(0) - \beta * A_{\rm h}(0) \Big) \\ &+ \frac{1}{2} \Big(\cos \left(2\beta t \right) + \sin \left(2\beta t \right) * \Big) \Big(p_{\rm h}(0) + \beta * A_{\rm h}(0) \Big) . \end{split}$$

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern Simons

Observables

Soluciones

Cuantización

Conclusiones

Existen
$$\{h_m, \bar{h}_m\}$$
 $(m \in \mathbb{N}$, auto 1-formas de $*$ $(*^2 = -1, los autovalores son $\pm i$), tales que$

$$*h_m = -ih_m, *\bar{h}_m = i\bar{h}_m, (h_m, h_l) = \delta_{ml} = (\bar{h}_m, \bar{h}_l), (h_m, \bar{h}_l) = 0,$$

donde $(h_m, h_l) = \int_{\Sigma} \bar{h}_m \wedge *h_l$. Usando esta base, para $\beta > 0$ podemos escribir⁶

$$p_{\mathrm{h}}(0)+etast A_{\mathrm{h}}(0)=\sqrt{2eta}\sum_{m}\left(a_{m}h_{m}+a_{m}^{*}ar{h}_{m}
ight)\,,$$
 $p_{\mathrm{h}}(0)-etast A_{\mathrm{h}}(0)=\sqrt{2eta}\sum_{m}\left(b_{m}^{*}h_{m}+b_{m}ar{h}_{m}
ight)\,,$

con

$$egin{aligned} &a_m = rac{1}{\sqrt{2eta}}(h_m,p_\mathrm{h}(0)+eta*A_\mathrm{h}(0))\,, \ &b_m = rac{1}{\sqrt{2eta}}(ar{h}_m,p_\mathrm{h}(0)-eta*A_\mathrm{h}(0))\,. \end{aligned}$$

⁶Para $\beta < 0$ debemos cambiar $\sqrt{2\beta} \rightarrow \sqrt{-2\beta}$ e intercambiar $a_m \operatorname{con} a_m^*$ y $b_m \operatorname{con} b_m^*$.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern Simons

Observables

Soluciones

Cuantización

Conclusiones

Disco

Para encontrar ϑ_I y h_m necesitamos conocer Σ .

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern Simons

Observables

Soluciones

Cuantizaciór

Conclusione

Para encontrar ϑ_I y h_m necesitamos conocer Σ . Tenemos

$$\vartheta_{N,n} = \frac{1}{\omega_{N,n}^2} * \mathrm{d} \left(\left(A_{N,n} \exp\{(iN\theta)\} + A_{N,n}^* \exp\{(-iN\theta)\} \right) J_N(\omega_{N,n}r) \right).$$

Disco

con $A_{N,n}$ fijadas por $\langle \vartheta_{N,n}, \vartheta_{M,m} \rangle = \delta_{nm} \delta_{NM}$, las frecuencias $\omega_{N,n}$ vienen fijadas de la condición $J_N(\omega r_0) = 0.^7$

 $^{7}\omega_{N,n} = z_{N,n}/r_{0}$, donde $z_{N,n}$ son los ceros de $J_{N,\square}$, $\langle \square \rangle$,

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern Simons

Observables

Soluciones

Cuantizaciór

Conclusione

Disco

Para encontrar ϑ_I y h_m necesitamos conocer Σ . Tenemos

$$\vartheta_{N,n} = \frac{1}{\omega_{N,n}^2} * \mathrm{d} \left(\left(A_{N,n} \exp\{(iN\theta)\} + A_{N,n}^* \exp\{(-iN\theta)\} \right) J_N(\omega_{N,n}r) \right).$$

con $A_{N,n}$ fijadas por $\langle \vartheta_{N,n}, \vartheta_{M,m} \rangle = \delta_{nm} \delta_{NM}$, las frecuencias $\omega_{N,n}$ vienen fijadas de la condición $J_N(\omega r_0) = 0.7$ Y

$$h_n = \frac{1}{\sqrt{2\pi n r_0^n}} \mathrm{d} z^n \,, \tag{12}$$

con $z = x_1 + ix_2$ (x_1, x_2 coordenadas Cartesianas en Σ) y $n \in \mathbb{N}$.

 $^{7}\omega_{N,n} = z_{N,n}/r_{0}$, donde $z_{N,n}$ son los ceros de $J_{N,\square}$, and $J_{N,\square}$, a

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern Simons

Observables

Soluciones

Cuantización

Conclusiones

En coordenadas polares

$$h_n = \sqrt{rac{n}{2\pi}} \left(rac{r}{r_0} e^{i\theta}
ight)^n \left(rac{\mathrm{d}r}{r} + i\mathrm{d} heta
ight),$$

se tiene que para $r < r_0$, $h_n \xrightarrow[n \to \infty]{n \to \infty} 0$. Y para $r = r_0$, $h_n = \sqrt{\frac{n}{2\pi}} e^{n\theta} \left(\frac{\mathrm{d}r}{r_0} + i \mathrm{d}\theta \right)$. Estas h_n se comportan como *estados de borde*.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern Simons

Observables

Soluciones

Cuantización

Conclusiones

En coordenadas polares

$$h_n = \sqrt{rac{n}{2\pi}} \left(rac{r}{r_0} e^{i\theta}
ight)^n \left(rac{\mathrm{d}r}{r} + i\mathrm{d} heta
ight),$$

se tiene que para $r < r_0$, $h_n \xrightarrow[n \to \infty]{n \to \infty} 0$. Y para $r = r_0$, $h_n = \sqrt{\frac{n}{2\pi}} e^{n\theta} \left(\frac{\mathrm{d}r}{r_0} + i\mathrm{d}\theta \right)$. Estas h_n se comportan como *estados de borde*. El caso $\lambda \neq 0$ sigue en estudio, hay obstrucciones que sugieren que otro enfoque debe ser seguido.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Cuantización de Fock

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

En espacio reducido:

$$\Omega_{S} = -i \sum_{I} \mathrm{d} C_{I} \wedge \mathrm{d} C_{I}^{*} + \sum_{m} \left(-i \mathrm{d} a_{m} \wedge \mathrm{d} a_{m}^{*} - i \mathrm{d} b_{m} \wedge \mathrm{d} b_{m}^{*} \right) ,$$

$$H_{S} = \sum_{I} \tilde{\omega}_{I} C_{I}^{*} C_{I} + 2|\beta| \sum_{m} a_{m}^{*} a_{m} .$$

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Cuantización de Fock

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

En espacio reducido:

$$\Omega_{S} = -i \sum_{I} \mathrm{d} C_{I} \wedge \mathrm{d} C_{I}^{*} + \sum_{m} \left(-i \mathrm{d} a_{m} \wedge \mathrm{d} a_{m}^{*} - i \mathrm{d} b_{m} \wedge \mathrm{d} b_{m}^{*} \right) ,$$

$$H_{S} = \sum_{I} \tilde{\omega}_{I} C_{I}^{*} C_{I} + 2|\beta| \sum_{m} a_{m}^{*} a_{m} .$$

Osciladores desacoplados— Cuantización directa. Notar los modos b_m son constantes.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Cuantización de Fock

En espacio reducido:

$$\Omega_{S} = -i \sum_{I} \mathbf{d} C_{I} \wedge \mathbf{d} C_{I}^{*} + \sum_{m} \left(-i \mathbf{d} a_{m} \wedge \mathbf{d} a_{m}^{*} - i \mathbf{d} b_{m} \wedge \mathbf{d} b_{m}^{*} \right) ,$$

$$H_{S} = \sum_{I} \tilde{\omega}_{I} C_{I}^{*} C_{I} + 2|\beta| \sum_{m} a_{m}^{*} a_{m} .$$

Osciladores desacoplados— Cuantización directa. Notar los modos b_m son constantes.

$$[\hat{C}_I, \hat{C}_J^{\dagger}] = \delta_{IJ}, \qquad [\hat{a}_m, \hat{a}_n^{\dagger}] = \delta_{mn} = [\hat{b}_m, \hat{b}_n^{\dagger}].$$

El Hamiltoniano cuántico

$$\hat{H} = \sum_{I} \tilde{\omega}_{I} \hat{C}_{I}^{\dagger} \hat{C}_{I} + 2|\beta| \sum_{n} \hat{a}_{n}^{\dagger} \hat{a}_{n} \,. \tag{13}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Observables de borde cuánticos

$$\begin{split} Q^{S}_{\Lambda}(A,p) &= \int_{\Sigma} \mathrm{d}\Lambda \wedge * \Big(p_{\mathrm{h}}(0) - \beta * A_{\mathrm{h}}(0) \Big) \,, \\ &= \sqrt{2\beta} \sum_{m} \left(b^{*}_{m} \int_{\Sigma} \mathrm{d}\Lambda \wedge * h_{m} + b_{m} \int_{\Sigma} \mathrm{d}\Lambda \wedge * \bar{h}_{m} \right) \,, \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

usando la base h_m y $\beta > 0$.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Observables de borde cuánticos

$$\begin{split} Q^{S}_{\Lambda}(A,p) &= \int_{\Sigma} \mathrm{d}\Lambda \wedge * \Big(p_{\mathrm{h}}(0) - \beta * A_{\mathrm{h}}(0) \Big) \,, \\ &= \sqrt{2\beta} \sum_{m} \left(b^{*}_{m} \int_{\Sigma} \mathrm{d}\Lambda \wedge * h_{m} + b_{m} \int_{\Sigma} \mathrm{d}\Lambda \wedge * \bar{h}_{m} \right) \,, \end{split}$$

usando la base h_m y $\beta > 0$. Definimos las observables, actuando sobre la base $\{h_n, \bar{h}_n\}$, como

$$\begin{split} \hat{Q}_{h_n} &:= \sqrt{2\beta} \sum_m \left(\hat{b}_m^{\dagger} \int_{\Sigma} h_n \wedge *h_m + \hat{b}_m \int_{\Sigma} h_n \wedge *\bar{h}_m \right) \\ &= \sqrt{2\beta} \, \hat{b}_n \,, \end{split} \tag{14a} \\ \hat{Q}_{\bar{h}_n} &:= \sqrt{2\beta} \sum_m \left(\hat{b}_m^{\dagger}(h_n, h_m) + \hat{b}_m(h_n, \bar{h}_m) \right) \\ &= \sqrt{2\beta} \, \hat{b}_n^{\dagger} \,, \end{aligned} \tag{14b}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern Simons

Observables

Soluciones

Cuantización

Conclusiones

Conclusiones

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Conclusiones

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 Las fronteras tienen consecuencias importantes física y matemáticamente.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Las fronteras tienen consecuencias importantes física y matemáticamente.

2 MCS—Cadena infinita de constricciones en la frontera.

Conclusiones

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Chern Simons

Observables

Soluciones

Cuantización

Conclusiones

Conclusiones

- Las fronteras tienen consecuencias importantes física y matemáticamente.
- **2** MCS—Cadena infinita de constricciones en la frontera.
- 3 Observables y estados de frontera clásicos y cuánticos.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Áreas de Investigación

Physical Review D 106 025011

Bogar Díaz

- Teoría de Maxwell-Chern Simons
- Observables
- Soluciones
- Cuantización
- Conclusiones

- Las fronteras tienen consecuencias importantes física y matemáticamente.
- **2** MCS—Cadena infinita de constricciones en la frontera.
- 3 Observables y estados de frontera clásicos y cuánticos.
- **@** En el caso $\lambda = 0$, constantes de movimiento, soluciones, cuantización de Fock.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Áreas de Investigación

Physical Review D 106 025011

Bogar Díaz

- Teoría de Maxwell-Chern Simons
- Observables
- Soluciones
- Cuantización
- Conclusiones

- Las fronteras tienen consecuencias importantes física y matemáticamente.
- 2 MCS—Cadena infinita de constricciones en la frontera.
- 3 Observables y estados de frontera clásicos y cuánticos.
- **3** En el caso $\lambda = 0$, constantes de movimiento, soluciones, cuantización de Fock.
- **5** Disco—otras regiones.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Bogar Díaz Áreas de Investigación

Physical Review D 106 025011

- Teoría de Maxwell-Chern Simons
- Observables
- Soluciones
- Cuantización
- Conclusiones

- Las fronteras tienen consecuencias importantes física y matemáticamente.
- 2 MCS—Cadena infinita de constricciones en la frontera.
- 3 Observables y estados de frontera clásicos y cuánticos.
- **3** En el caso $\lambda = 0$, constantes de movimiento, soluciones, cuantización de Fock.
- **5** Disco—otras regiones.
- **6** Otras condiciones de frontera pueden ser consideradas.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Physical Review D 106 025011

Bogar Díaz

Áreas de Investigación

- Teoría de Maxwell-Cherr Simons
- Observables
- Soluciones
- Cuantización
- Conclusiones

- Las fronteras tienen consecuencias importantes física y matemáticamente.
- 2 MCS—Cadena infinita de constricciones en la frontera.
- 3 Observables y estados de frontera clásicos y cuánticos.
- **3** En el caso $\lambda = 0$, constantes de movimiento, soluciones, cuantización de Fock.
- **5** Disco—otras regiones.
- 6 Otras condiciones de frontera pueden ser consideradas.
- 7 Teorías BF, Relatividad General, etc.

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

This project has received funding from Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant Agreement No 801538.

This project has received funding from Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant Agreement No 801538

イロト 不得 トイヨト イヨト

э

Bogar Díaz

Áreas de Investigación

Teoría de Maxwell-Cherr Simons

Observables

Soluciones

Cuantización

Conclusiones

Gracias.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @